Nominate someone to our 2025 list of Innovators Under 35

Every year, MIT Technology Review recognizes 35 young innovators who are doing pioneering work across a range of technical fields including biotechnology, materials science, artificial intelligence, computing, and more. 

We’re now taking nominations for our 2025 list and you can submit one here. The process takes just a few minutes. Nominations will close at 11:59 PM ET on January 20, 2025. You can nominate yourself or someone you know, based anywhere in the world. The only rule is that the nominee must be under the age of 35 on October 1, 2025.  

We want to hear about people who have made outstanding contributions to their fields and are making an early impact in their careers. Perhaps they’ve led an important scientific advance, founded a company that’s addressing an urgent problem, or discovered a new way to deploy an existing technology that improves people’s lives. 

If you want to nominate someone, you should identify a clear advance or innovation for which they are primarily responsible. We seek to highlight innovators whose breakthroughs are broad in scope and whose influence reaches beyond their immediate scientific communities. 

The 2025 class of innovators will join a long list of distinguished honorees. We featured Lisu Su, now CEO of AMD, when she was 32 years old; Andrew Ng, a computer scientist and serial entrepreneur, made the list in 2008 when he was an assistant professor at Stanford. That same year, we featured 31-year-old Jack Dorsey—two years after he launched Twitter. And Helen Greiner, co-founder of iRobot, was on the list in 1999.

Know someone who should be on our 2025 list? We’d love to hear about them. Submit your nomination today or visit our FAQ to learn more.

The arrhythmia of our current age

Thumpa-thumpa, thumpa-thumpa, bump, 

thumpa, skip, 

thumpa-thump, pause …

My heart wasn’t supposed to be beating like this. Way too fast, with bumps, pauses, and skips. On my smart watch, my pulse was topping out at 210 beats per minute and jumping every which way as my chest tightened. Was I having a heart attack? 

The day was July 4, 2022, and I was on a 12-mile bike ride on Martha’s Vineyard. I had just pedaled past Inkwell Beach, where swimmers sunbathed under colorful umbrellas, and into a hot, damp headwind blowing off the sea. That’s when I first sensed a tugging in my chest. My legs went wobbly. My head started to spin. I pulled over, checked my watch, and discovered that I was experiencing atrial fibrillation—a fancy name for a type of arrhythmia. The heart beats, but not in the proper time. Atria are the upper chambers of the heart; fibrillation means an attack of “uncoordinated electrical activity.”   

I recount this story less to describe a frightening moment for me personally than to consider the idea of arrhythmia—a critical rhythm of life suddenly going rogue and unpredictable, triggered by … what? That July afternoon was steamy and over 90 °F, but how many times had I biked in heat far worse? I had recently recovered from a not-so-bad bout of covid—my second. Plus, at age 64, I wasn’t a kid anymore, even if I didn’t always act accordingly.  

Whatever the proximal cause, what was really gripping me on July 4, 2022, was the idea of arrhythmia as metaphor. That a pulse once seemingly so steady was now less sure, and how this wobbliness might be extrapolated into a broader sense of life in the 2020s. I know it’s quite a leap from one man’s abnormal ticker to the current state of an entire species and era, but that’s where my mind went as I was taken to the emergency department at Martha’s Vineyard Hospital. 

Maybe you feel it, too—that the world seems to have skipped more than a beat or two as demagogues rant and democracy shudders, hurricanes rage, glaciers dissolve, and sunsets turn a deeper orange as fires spew acrid smoke into the sky, and into our lungs. We can’t stop watching tiny screens where influencers pitch products we don’t need alongside news about senseless wars that destroy, murder, and maim tens-of-thousands. Poverty remains intractable for billions. So does loneliness and a rising crisis in mental health even as we fret over whether AI is going to save us or turn us into pets; and on and on.

For most of my life, I’ve leaned into optimism, confident that things will work out in the end. But as a nurse admitted me and attached ECG leads to my chest, I felt a wave of doubt about the future. Lying on a gurney, I watched my pulse jump up and down on a monitor, erratically and still way too fast, as another nurse poked a needle into my hand to deliver an IV bag of saline that would hydrate my blood vessels. Soon after, a young, earnest doctor came in to examine me, and I heard the word uttered for the first time. 

“You are having an arrhythmia,” he said.

Even with my heart beating rat-a-tat-tat, I couldn’t help myself. Intrigued by the word, which I had heard before but had never really heard, I pulled out the phone that is always at my side and looked it up.

ar·rhyth·mi·a
Noun: “a condition in which the heart beats with an irregular or abnormal  rhythm.” Greek a-, “without,” and rhuthmos, “rhythm.”

I lay back and closed my eyes and let this Greek origin of the word roll around in my mind as I repeated it several times—rhuthmos, rhuthmos, rhuthmos.

Rhythm, rhythm, rhythm …

I tapped my finger to follow the beat of my heart, but of course I couldn’t, because my heart wasn’t beating in the steady and predictable manner that my finger could easily have followed before July 4, 2022. After all, my heart was built to tap out in a rhythm, a rhuthmos—not an arhuthmos

Later I discovered that the Greek rhuthmos, ῥυθμός, like the English rhythm, refers not only to heartbeats but to any steady motion, symmetry, or movement. For the ancient Greeks this word was closely tied to music and dance; to the physics of vibration and polarity; to a state of balance and harmony. The concept of rhuthmos was incorporated into Greek classical sculptures using a strict formula of proportions called the Kanon, an example being the Doryphoros (Spear Bearer) originally by the fifth century sculptor Polykleitos. Standing today in the Acropolis Museum in Athens this statue appears to be moving in an easy fluidity, a rhuthmos that’s somehow drawn out of the milky-colored stone. 

The Greeks also thought of rhuthmos as harmony and balance in emotions, with Greek playwrights penning tragedies where the rhuthmos of life, nature, and the gods goes awry. “In this rhythm, I am caught,” cries Prometheus in Aeschylus’s Prometheus Bound, where rhuthmos becomes a steady, unrelenting punishment inflicted by Zeus when Prometheus introduces fire to humans, providing them with a tool previously reserved for the gods. Each day Prometheus, who is chained to a rock, has his liver eaten out by an eagle, only to have the liver grow back each night, a cycle repeated day after day in a steady beat for an eternity of penance, pain, and vexation.

In modern times, cardiologists have used rhuthmos to refer to the physical beating of the muscle in our chests that mixes oxygen and blood and pumps it through 60,000 miles of veins, arteries, and capillaries to fingertips, toe tips, frontal cortex, kidneys, eyes, everywhere. In 2006, the journal Rhythmos launched as a quarterly medical publication that focuses on cardiac electrophysiology. This subspecialty of cardiology involves the electrical signals animating the heart with pulses that keep it beating steadily—or, for me in the summer of 2022, not. 

The question remained: Why?

As far as I know, I wasn’t being punished by Zeus, although I couldn’t entirely rule out the possibility that I had annoyed some god or goddess and was catching hell for it. Possibly covid was the culprit—that microscopic bundle of RNA with the power of a god to mess with us mortals—but who knows? As science learns more about this pernicious bug, evidence suggests that it can play havoc with the nervous system and tissue that usually make sure the heart stays in rhuthmos

A-fib also can be instigated by even moderate imbibing of alcohol, by aging, and sometimes by a gene called KCNQ1. Mutations in this gene “appear to increase the flow of potassium ions through the channel formed with the KCNQ1 protein,” according to MedlinePlus, part of the National Library of Medicine. “The enhanced ion transport can disrupt the heart’s normal rhythm, resulting in atrial fibrillation.” Was a miscreant  mutation playing a role in my arrhythmia?

Angst and fear can influence A-fib too. I had plenty of both during the pandemic, along with most of humanity. Lest we forget—and we’re trying really, really hard to forget—covid anxiety continued to rage in the summer of 2022, even after vaccines had arrived and most of the world had reopened. 

Back then, the damage done to fragile brains forced to shelter in place for months and months was still fresh. Cable news and social media continued to amplify the terror of seeing so many people dead or facing permanent impairment. Politics also seemed out of control, with demagogues—another Greek word—running amok. Shootings, invasions, hatred, and fury seemed to lurk everywhere. This is one reason I stopped following the news for days at a time—something I had never done, as a journalist and news junkie. I felt that my fragile heart couldn’t bear so much visceral tragedy, so much arhuthmos.

We each have our personal stories from those dark days. For me, covid came early in 2020 and led to a spring and summer with a pervasive brain fog, trouble breathing, and eventually a depression of the sort that I had never experienced before. At the same time, I had friends who ended up in the ICU, and I knew people whose parents and other relatives had passed. My mother was dying of dementia, and my father had been in and out of the ICU a half-dozen times with myasthenia gravis, an autoimmune disease that can be fatal. This family dissolution had started before covid hit, but the pandemic made the implosion of my nuclear family seem worse and undoubtedly contributed to the failure of my heart’s pulse to stay true. 


Likewise, the wider arhuthmos some of us are feeling now began long before the novel coronavirus shut down ordinary life in March 2020. Statistics tell us that anxiety, stress, depression, and general mental unhealthiness have been steadily ticking up for years. This seems to suggest that something bigger has been going on for some time—a collective angst that seems to point to the darker side of modern life itself. 

Don’t get me wrong. Modern life has provided us with spectacular benefits—Manhattan, Boeing 787 Dreamliners, IMAX films, cappuccinos, and switches and dials on our walls that instantly illuminate or heat a room. Unlike our ancestors, most of us no longer need to fret about when we will eat next or whether we’ll find a safe place to sleep, or worry that a saber-toothed tiger will eat us. Nor do we need to experience an A-fib attack without help from an eager and highly trained young doctor, an emergency department, and an IV to pump hydration into our veins. 

But there have been trade-offs. New anxieties and threats have emerged to make us feel uneasy and arrhythmic. These start with an uneven access to things like emergency departments, eager young doctors, shelter, and food—which can add to anxiety not only for those without them but also for anyone who finds this situation unacceptable. Even being on the edge of need can make the heart gambol about.

Consider, too, the basic design features of modern life, which tend toward straight lines—verticals and horizontals. This comes from an instinct we have to tidy up and organize things, and from the fact that verticals and horizontals in architecture are stable and functional. 

All this straightness, however, doesn’t always sit well with brains that evolved to see patterns and shapes in the natural world, which isn’t horizontal and vertical. Our ancestors looked out over vistas of trees and savannas and mountains that were not made from straight lines. Crooked lines, a bending tree, the fuzzy contour of a grassy vista, a horizon that bobs and weaves—these feel right to our primordial brains. We are comforted by the curve of a robin’s breast and the puffs and streaks and billows of clouds high in the sky, the soft earth under our feet when we walk.

Not to overly romanticize nature, which can be violent, unforgiving, and deadly. Devastating storms and those predators with sharp teeth were a major reason why our forebears lived in trees and caves and built stout huts surrounded by walls. Homo sapiens also evolved something crucial to our survival—optimism that they would survive and prevail. This has been a powerful tool—one of the reasons we are able to forge ahead, forget the horrors of pandemics and plagues, build better huts, and learn to make cappuccinos on demand. 

As one of the great optimists of our day, Kevin Kelly, has said: “Over the long term, the future is decided by optimists.” 

But is everything really okay in this future that our ancestors built for us? Is the optimism that’s hardwired into us and so important for survival and the rise of civilization one reason for the general anxiety we’re feeling in a future that has in some crucial ways turned out less ideal than those who constructed it had hoped? 

At the very least, modern life seems to be downplaying elements that are as critical to our feelings of safety as sturdy walls, standing armies, and clean ECGs—and truly more crucial to our feelings of happiness and prosperity than owning two cars or showing off the latest swimwear on Miami Beach. These fundamentals include love and companionship, which statistics tell us are in short supply. Today millions have achieved the once optimistic dream of living like minor pharaohs and kings in suburban tract homes and McMansions, yet inadvertently many find themselves separated from the companionship and community that are basic human cravings. 

Modern science and technology can be dazzling and good and useful. But they’ve also been used to design things that hurt us broadly while spectacularly benefiting just a few of us. We have let the titans of social media hijack our genetic cravings to be with others, our need for someone to love and to love us, so that we will stay glued to our devices, even in the ED when we think we might be having a heart attack. Processed foods are designed to play on our body’s craving for sweets and animal fat, something that evolution bestowed so we would choose food that is nutritious and safe to eat (mmm, tastes good) and not dangerous (ugh, sour milk). But now their easy abundance overwhelms our bodies and makes many of us sick. 

We invented money so that acquiring things and selling what we make in order to live better would be faster and easier. In the process, we also invented a whole new category of anxiety—about money. We worry about having too little of it and sometimes too much; we fear that someone will steal it or trick us into spending it on things we don’t need. Some of us feel guilty about not spending enough of it on feeding the hungry or repairing our climate. Money also distorts elections, which require huge amounts of it. You may have gotten a text message just now, asking for some to support a candidate you don’t even like. 

The irony is that we know how to fix at least some of what makes us on edge. For instance, we know we shouldn’t drive gas-guzzling SUVs and that we should stop looking at endless perfect kitchens, too-perfect influencers, and 20-second rants on TikTok. We can feel helpless even as new ideas and innovations proliferate. This may explain one of the great contradictions of this age of arrhythmia—one demonstrated in a 2023 UNESCO global survey about climate change that questioned 3,000 young people from 80 different countries, aged 16 to 24. Not surprisingly, 57% were “eco-anxious.” But an astonishing 67% were “eco-optimistic,” meaning many were both anxious and hopeful. 

Me too. 

All this anxiety and optimism have been hard on our hearts—literally and metaphorically. Too much worry can cause this fragile muscle to break down, to lose its rhythm. So can too much of modern life. Cardiovascular disease remains the No. 1 killer of adults, in the US and most of the world, with someone in America dying of it every 33 seconds, according to the Centers for Disease Control and Prevention. The incidence of A-fib has tripled in the past 50 years (possibly because we’re diagnosing it more); it afflicted almost 50 million people globally in 2016.


For me, after that initial attack on Martha’s Vineyard, the A-fib episodes kept coming. I charted them on my watch, the blips and pauses in my pulse, the moments when my heart raced at over 200 beats per minute, causing my chest to tighten and my throat to feel raw. Sometimes I tasted blood, or thought I did. I kept bicycling through the summer and fall of 2022, gingerly watching my heart rate to see if I could keep the beats from taking a sudden leap from normal to out of control. 

When an arrhythmic episode happened, I struggled to catch my breath as I  pulled over to the roadside to wait for the misfirings to pass. Sometimes my mind grew groggy, and I got confused. It became difficult during these cardio-disharmonious moments to maintain my cool with other people. I became less able to process the small setbacks that we all face every day—things I previously had been able to let roll off my back. 

Early in 2023 I had my heart checked by a cardiologist. He conducted an echocardiogram and had me jog on a treadmill hooked up to monitors. “There has been no damage to your heart,” he declared after getting the results, pointing to a black-and-white video of my heart muscle contracting and constricting, drawing in blood and pumping it back out again. I felt relieved, although he also said that the A-fib was likely to persist, so he prescribed a blood thinner called Eliquis as a precaution to prevent stroke. Apparently, during unnatural pauses in one’s heartbeat blood can clot and send tiny, scab-like fragments into the brain, potentially clogging up critical capillaries and other blood vessels. “You don’t want that to happen,” said the cardiologist.

Toward the end of my heart exam, the doctor mentioned a possible fix for my arrhythmia. I was skeptical, although what he proposed turned out to be one of the great pluses of being alive right now—a solution that was unavailable to my ancestors or even to my grandparents. “It’s called a heart ablation,” he said. The procedure, a simple operation, redirects errant electric signals in the heart muscle to restore a normal pattern of beating. Doctors will run a tube into your heart, find the abnormal tissue throwing off the rhythm, and zap it with either extreme heat, cold, or (the newest option) electrical pulses. There are an estimated 240,000 such procedures a year in the United States. 

“Can you really do that?” I asked.

“We can,” said the doctor. “It doesn’t always work the first time. Sometimes you need a second or third procedure, but the success rate is high.”

A few weeks later, I arrived at Beth Israel Hospital in Boston at 11 a.m. on a Tuesday. My first cardiologist was unavailable to do the procedure, so after being prepped in the pre-op area I was greeted by Andre d’Avila, a specialist in electrocardiology, who explained again how the procedure worked. He said  that he and an electrophysiology fellow would be inserting long, snakelike catheters through the femoral veins in my groin that contain wires tipped with a tiny ultrasound camera and a cauterizer that would be used to selectively and carefully burn the surfaces of my atrial muscles. The idea was to create patterns of scar tissue to block and redirect the errant electrical signals and restore a steady rhuthmos to my heart. The whole thing would take about two or three hours, and I would likely be going home that afternoon.

Moments later, an orderly came and wheeled me through busy hallways to an OR where Dr. d’Avila introduced the technicians and nurses on his OR team. Monitors pinged and machines whirred as moments later an anesthesiologist placed a mask over my mouth and nose, and I slipped into unconsciousness. 

The ablation was a success. Since I woke up, my heart has kept a steady beat, restoring my internal rhuthmos, even if the procedure sadly did not repair the myriad worrisome externalities—the demagogues, carbon footprints, and the rest. Still, the undeniably miraculous singeing of my atrial muscles left me with a realization that if human ingenuity can fix my heart and restore its rhythm, shouldn’t we be able to figure out how to fix other sources of arhuthmos in our lives? 

We already have solutions to some of what ails us. We know how to replace fossil fuels with renewables, make cities less sharp-edged, and create smart gizmos and apps that calm our minds rather than agitating them. 

For my own small fix, I thank Dr. d’Avila and his team, and the inventors of the ablation procedure. I also thank Prometheus, whose hubris in bringing fire to mortals literally saved me by providing the hot-tipped catalyst to repair my ailing heart. Perhaps this can give us hope that the human species will bring the larger rhythms of life into a better, if not perfect, beat. Call me optimistic, but also anxious, about our prospects even as I can now place my finger on my wrist and feel once again the steady rhuthmos of my heart.

What do jumping spiders find sexy? How DIY tech is offering insights into the animal mind.

In his quest to understand the hermit crab housing market, biologist Mark Laidre of Dartmouth College had to get creative. Crabs are always looking to move into a bigger, better shell, but having really nice digs also comes with risks. Sometimes crabs gang up to pull an inhabitant out of an especially desirable shell. If they succeed, the shell is quickly claimed by the largest gang member, leaving another open shell for a slightly smaller crab to grab, and on down the chain until everyone has upgraded. 

To better gauge the trade-offs between shell size and defensibility, Laidre collaborated with an engineer to create the hermit crab eviction machine, a device that holds onto an occupied shell and measures how much force it takes a scientist to pull the crab out (crabs are not harmed or left homeless). It’s essentially a portable load cell that can survive the sun, sand, and humidity of the field. 

The force required to evict a hermit crab is an important measurement, because hanging on to their homes is a matter of life and death for crabs. “If you are evicted, there’s a real strong probability that what is left at the end of one of those chains is something that’s too small for you to even enter,” Laidre says. In his field area on a beach in Costa Rica, a homeless crab can quickly succumb to predators or heat: “You’re really dead meat in a sense.”

Studying the minds of other animals comes with a challenge that human psychologists don’t usually face: Your subjects can’t tell you what they’re thinking. To get answers from animals, scientists need to come up with creative experiments to learn why they behave the way they do. Sometimes this requires designing and building experimental equipment from scratch.

The DIY contraptions that animal behavior scientists create range from ingeniously simple to incredibly complex. All of them are tailored to help answer questions about the lives and minds of specific species, from insects to elephants. Do honeybees need a good night’s sleep? What do jumping spiders find sexy? Do falcons like puzzles? For queries like these, off-the-shelf gear simply won’t do.

The eviction machine was inspired by Laidre’s curiosity about crabs. But sometimes new questions about animals are inspired by an intriguing device or technology, as was the case with another of Laidre’s inventions: the hermit crab escape room (more on that below). The key, Laidre says, is to be sure the question you’re asking is relevant to the animals’ lives.

Here are five more contraptions custom-built by scientists to help them understand the lives and minds of the animals they study. 

OLY DEMPSTER

The falcon innovation box

The brainy birds in the parrot and crow families are the stars of scientific studies on avian intelligence. Now these smarties have a surprising new rival: a falcon. Raptors are not known for creative problem-solving, but behavioral ecologist Katie Harrington of the University of Veterinary Medicine Vienna suspected the striated caracara falcons she had observed on a remote Falkland Island were different. “They’re really interested in investigating things,” she says. “They’re very intelligent birds in general.”

diagram of the falcon experiment

HARRINGTON, ET AL.

To test their smarts, Harrington took inspiration from an “innovation arena” (left), designed for Goffin’s cockatoos, which are members of the parrot family known for their problem-solving abilities. It’s a semicircular array of 20 clear plastic boxes containing puzzles requiring different solutions to release rewards like cashews or corn kernels. Hauling the seven-foot-wide arena to the Falklands was not an option. So Harrington designed a 16-inch-wide “innovation box” attached to a wooden board, with eight compartments and puzzles adapted from the cockatoo studies. 

The birds loved it. “We were having caracaras run full speed to participate,” Harrington says. The challenge was keeping other birds away while one worked the box. The birds were able to solve the puzzles, which involved things like rattling a plank to knock down a bit of mutton or pulling a twig out from under a platform with mutton on it. They were even able to solve a tricky one that required them to punch a hole in a piece of tissue that obscured the treata task that eluded some cockatoos. 

In fact, 10 of 15 falcons solved all the puzzles, most of them within two sessions with the box. So Harrington designed eight new, harder tasks, but soon learned that some required unnatural movements for caracaras. She plans to keep trying to find tasks that reveal what they’re physically and mentally capable of. “They’re totally willing to show us,” she says, “as long as we can design things that are good enough to allow them to show us.”

The raccoon smart box

Why are raccoons so good at city living? One theory is that it’s because they’re flexible thinkers. To test this idea, UC Berkeley cognitive ecologist Lauren Stanton adapted a classic laboratory experiment, called the reversal learning task. For this test, an animal is rewarded for learning to consistently choose one of two options, but then the correct answer is reversed so that the other option brings the reward. Flexible thinkers are better at reacting to the reversals. “They’re going to be more able to switch their choices, and over time, they should be faster,” Stanton says.

To test the learning skills of wild urban raccoons in Laramie, Wyoming, Stanton and her team built a set of “smart boxes” to deploy on the outskirts of the city, each with an antenna to identify raccoons that had previously been captured and microchipped. Inside the box, raccoons found two large buttonssourced from an arcade supplierthat they could push, one of which delivered a reward. Hidden in a separate compartment, an inexpensive Raspberry Pi computer board, powered by a motorcycle battery, recorded which buttons the raccoons pushed and switched the reward button as soon as they made nine out of 10 correct choices. A motor turned a disc with holes in it below a funnel to dispense the reward of dog kibble. 

Many raccoonsand some skunkswere surprisingly eager to participate, which made getting clean data a challenge. “We had multiple raccoons just shove inside the device at the same time, like, three, four animals all trying to compete to get into it,” Stanton says. She also had to employ stronger adhesive to hold the buttons on after a few particularly enthusiastic raccoons ripped them off. (She had placed some kibble inside the transparent buttons to encourage the animals to push them.) 

Surprisingly, the smart boxes revealed that the shyer, more docile raccoons were the best learners. 

The jumping spider eye tracker

The thing about jumping spiders that intrigues behavioral ecologist Elizabeth Jakob is their demeanor. “They look so curious all the time,” she says. Unlike other arachnids, which spend most of their time motionless in their web, jumping spiders are out and about, hunting prey and courting mates. Jakob is interested in what goes on inside their sesame-seed-size brains. What matters to these tiny spiders? 

BARRETT KLEIN

For clues, Jakob watches their eyes, particularly their two principal ones, which have high-acuity color vision at the center of their boomerang-­shaped retinas. She uses a tool evolved from an ophthalmoscope that was specially modified to study the eyes of jumping spiders more than a half-century ago. Generations of scientists, including Jakob and her students at UMass Amherst, have built on this design, slowly morphing it into a mini movie theater that tracks the retinal tubes moving and twisting behind the spiders’ principal eyes as they watch. 

A spider is tethered in front of the tracker while a video of, say, a cricket silhouette is projected through the tracker’s lenses into the spider’s eyes. A beam of infrared light is simultaneously reflected off the spider’s retinas, back through the lenses, and recorded by a camera. The recording of those reflections is then superimposed on the video, showing exactly what the spider was looking at. Jakob found that just about the only thing more interesting to a jumping spider than a potential cricket dinner is a black spot that is growing larger. Could it be an approaching predator? The spider’s lower-resolution secondary eyes catch a glimpse of the looming spot in the corner of the video screen and prompt the primary eyes to shift away from the cricket to get a better look. 

Jakob’s eye tracker has also inspired other scientists’ creative experiments. Visual ecologist Nate Morehouse of the University of Cincinnati used the tracker to reveal that females of one jumping spider species aren’t all that interested in male suitors’ flashy red masks and brilliant green legsit’s the males’ orange knees that they focus on during courtship displays. “To get this insight into what they actually care about is really cool,” Jakob says.

The hermit crab escape room

Hermit crabs won’t just settle for the best empty snail shell they can findthey also remodel their homes. Hermit crab shells get better with time as each subsequent inhabitant makes home improvements, like widening the entranceway or carving out a more open, spacious interior. 

Dartmouth’s Mark Laidre has been studying crabs and their shell preferences for more than a decade. So when he realized he could use a micro-CT x-ray machine to create a three-­dimensional digital scan of a shell, he immediately began envisioning the experimental possibilities. To better understand the choices crabs make, he scanned shells that crabs clearly favored and then made alterations before 3D-printing them in plastic. “We could add little elements onto those that changed the external or the internal architecture,” Laidre says.

Next, he presented crabs with a dilemma. They were placed alone inside a box with a small exit (as shown below) and given a choice between two shells: a really nice, spacious model but with spikes added to the outside so that the crabs would not fit through the exit, and a shell that they would fit through but with uncomfortable spiny protrusions added to the inside. Could they figure out how to get out? “It’s effectively an escape room,” Laidre says.

When not trapped, crabs preferred the comfy shell with protrusions on the outside, claws down. But hermit crabs are social animals that prefer to be with other crabs, giving them motivation to escape solitary confinement. By the end of the day, more than a third of the trapped crabs had sized up their situation, moved from the crummy shell, and escaped. 

Solving a completely novel problem takes a certain amount of mental wherewithal that crabs don’t often get credit for. And Laidre suspects that cognitive capability may be what separated the successful escapees from the crabs that didn’t make it out of the escape room. 

The bee insominator

Sleepy people tend to be poor communicators. Entomologist Barrett Klein of the University of Wisconsin–La Crosse wanted to know if the same was true for drowsy honeybees. These social insects have a sophisticated communication system, known as the waggle dance, to convey to other bees where to find nectar. Are tired bees worse wagglers? To find out, Klein needed a way to keep bees up all night.

A metal disc attached to the back of a bee, seen on the right side of the photo, is painted yellow to hide whether it is made of steel that will be jostled by the magnets to keep her awake, or copper that won’t react to the magnets.
BARRETT KLEIN

He thought of shaking the hive, but this would just send all the bees angrily flying out. He wanted to keep some bees from sleeping while the rest slumbered peacefully, so that their dances could be compared the next day. Klein considered putting individual bees in vials that would be periodically shaken, but he couldn’t be sure if changes in their dance were due to sleepiness or isolation. He also thought of poking bees, aiming streams of air at individual bees, or even shining focused infrared beams at their faces. “Try to do that on all these bees facing all different directions,” Klein said. “It would be insane.” 

Eventually he landed on using neodymium rare earth magnets to jostle bees that had metal wafers glued between their wings with pine resin. “I had to make a hive that was narrow, with only two-millimeter-thick glass on either side, and have the magnets very close but not touching or scraping the glass,” Klein says. The biggest catch with this contraptiondubbed the Insominatorwas that Klein had to stay up all night rolling the banks of magnets back and forth alongside the hive three times a minute, depriving himself of sleep along with the bees.

But it paid off: He found that sleepy bees are indeed sloppy dancers. They did shorter dances that were less accurate with directiona miscommunication that could send hivemates on a flowerless search. In a follow-up study, Klein showed that other bees were not impressed with the drowsy displays and would promptly leave to find better wagglers. 

Happily, he has since upgraded the Insominator to automatically roll the magnets.

Betsy Mason is a freelance science journalist and editor based in the San Francisco Bay Area.

Azalea: a science-fiction story

“This is simply a question of right and wrong.”

“You can’t deny the costs, though. You keep saying that just one more year of taxes will solve—

“We’re not solving—we’re mitigating!”

“Then what’s the point?”

The shrill back-and-forth fills the kitchen, where Xia is busy making breakfast, some kind of awful cricket-protein smoothie with kale. Tascha squeezes into the small space behind her, kisses her on the cheek. 

“Can you maybe put that in your head?”

Xia doesn’t put it in her head, but she at least lowers the volume with a click of her tongue. ElectoPod’s never-ending shouting match becomes something more akin to ocean noise, where only occasional angry waves splash through the kitchen. 

Tascha digs through the fridge, looking for something that isn’t kale or crickets. Finds a BitterBucketBrew and cracks it open. The coffee comes from gengineered plants that can survive higher latitudes. Caffeine in heaps, plus a proprietary process to filter out almost all endocrine disruptors, phthalates, microplastics, arsenic, and lead. Xia says it isn’t as good as coffee grown from heirloom stocks. It’s not natural, she says. Xia also says that a 99% filtration rate isn’t all that great when hormone mimics are dangerous in parts per trillion. 

For a refugee, Xia can be awfully picky. 

“You should be paying attention to the election,” Xia says. “This is your country.”

Tascha sips her coffee. “That’s why I have you.”

“Why don’t you run for district carbon board?” Xia presses. 

“Because then I’d have to deal with people. Anyway, I don’t have time. I’m trying to make bonus so we can get into Azalea.”

“If you don’t make time, someone stupid will. Gribaldi is running again. In Texas—”

“Don’t worry.” Tascha kisses Xia on the forehead. “Even Gribaldi’s not as stupid as Texas.” 

Xia makes a biting motion at Tascha, deliberately turning up the volume in the kitchen.

Is that passive-aggressive? 

Or aggressive-aggressive? 

Regardless, ElectoPod once again floods the kitchen with the latest depressing news. A new generation of nearly undetectable AI proxies are battling it out for mindshare as November approaches. An ocean of microtargeted content is pouring into people’s feeds, custom-generated on-the-fly ads and entertainment based on mountains of tracking data—all of it illegally obtained offshore, all of it tailored to sway public opinion—and no one knows who or what is generating it. It’s enough to make Tascha think she should have fought through her ADHD and gotten her programming degree. Someone has to be making money off that. 

Instead, Tascha clicks her tongue and turns on her own feed. Peace instantly envelops her, as ElectoMute smothers ElectoPod. Custom-tuned bone-conducted vibrations hum through her skull, perfectly canceling out the sound waves of Xia’s obsession. ElectoMute is Tascha’s only paid subscription. It’s not even sound, Xia complains every time she sees the monthly bill. A symptom of Late-Stage Capitalism. Paying to make the noise of another feed go away. 

Tascha calls it the best $50 a month she’s ever spent. 

Sometimes, it’s just nicer to shut things out. If Tascha’s honest, it’s always nicer to shut things out. Ever since she got her first bone implants on recommendation of the school counselor to help her focus and calm herself, she’s been a fan of shutting things out. People are both distracting and a hassle. Tascha is still sort of amazed that Xia doesn’t get on her nerves more. Sure, she also has another—very secret—mute feed tuned to Xia’s voice … but doesn’t everyone put their relationship on mute sometimes?

Xia is pushing a smoothie across the table at her. Her lips make noise shapes. “No smoothie?” 

Tascha shuts off ElectoMute and XiaMute. “Did you know the plywood they’re using on the worksite is made of mushrooms?” 

“So?”

“It’s like, mushroom-hemp composite. I could bring some back for your smoothies.”

“Very funny.”

“It’s carbon negative. You’d love it.” 

Xia gives her a sharp look. “Don’t be cute. I’ll take it from the kid who lost her whole town to a tornado, not from you.” 

Xia volunteers at the Georgia Displacement Authority. She doesn’t have a full work permit yet, but she can volunteer, so, of course, she does. 

Xia, always looking out for everyone. 

Tascha nurses her smoothie. Her father says that relationships are about compromise. If the worst thing about Xia is kale-cricket smoothies, Tascha knows she’s a winner. She forces down the last of the smoothie and gets up from the table. 

“I’m late.” 

Xia’s lips move again, making more mouth shapes. 

Tascha tunes back in. “What?” 

“I said, make sure your frigrig’s charged. It’s hot today.”

“It’s always charged. They charge them every shift.”

Xia is undeterred. “And swap out your mask filters. Canada’s burning up again.”


“How is there even any forest left?” 

Janet’s voice crackles in Tascha’s ear as they dangle off their rappelling lines, swinging from point to point in their harnesses. The gray soup of Canada’s burning forests envelops them. 

“How are we in Atlanta, sucking smoke from fucking Canada?” Janet continues. “Are we not America? Do we not have a long and honorable tradition of blockades, border checkpoints, and deportation? If we can keep Texas and Florida out, why not Burnt Canadians? Put up a sign: BC: Not Fucking Welcome.” 

They’re stitching solar, dangling 300 feet in the air, working their way down Tower 3 of the new Azalea Arcology. Tying window electrics, solar paint, and cell panels together. The mix is meant to make a lovely pattern (azaleas, in fact) on the face of the arcology structure, but the architect should be shot, because the electronics are a hassle and Tascha’s crew is behind schedule.

Most of the arcology is fast-attach, standardized like Lego blocks, built in factories, then autonomously shipped to the site and popped together, as simple as a kit. In the early stages, Azalea was just swarms of bots digging, grading, and auto-­assembling according to plan, knitting together the bones and skin of an entire new city of 10,000. Now that they’re at final finishing stages, though, humans are taking back the site. The complex patterns of varied electrical components still need a clever human touch, which is why Tascha’s crew is out in the Atlanta swelter, nearly mummified in Day-Glo frigrigs to keep the heat at bay. 

 It’s one thing to bike to work with just a filter mask and a chilled helmet to keep you cool; it’s a whole other thing to hang off the side of a building all day when wet-bulb temps push into the 40s. 

“I heard someone was camping up in Alberta and lit a bunch of beetle kill on fire. Whole state’s going up.” 

“Is it a state or a province?”

“How the fuck would I know?”

“Can we get off the coms, people?” Latoya, their crew lead, interrupts. “Some of us are trying to make bonus.”

“Yeah, Janet, get to work.”

A whole chorus of agreement follows from the rest of the crew.

“Yeah, Janet, get to work.” 

“Yeah, Janet, get to work.”

“Where the fuck is Janet? I can’t even see her in this smoke. It’s like pea soup.” 

Tascha slides across to a bank of PV windows and takes a sip from her frigrig reservoir. Cool water, sucked out of the humid air by the suit. Far below, cyclists zip down the street, their chilled jackets boosted by their bike batteries, popping in and out of view from under the street’s shading solar shelters and tree foliage. They look like schools of minnows. Heavy cargo vans and zip buses string out in a line, following programmed one-way routes to give most of the space to cyclists. AItlantis, the city management software, must have detected an increase in people waiting at bus shelters, because a surge of robotic zip buses is swarming toward Obama Greenway. 

Tascha starts splicing and soldering a cluster of energy-­generating windows to the solar paint that surrounds them, and then hooking the whole into wires that will carry the energy into the main arcology grid. It’s fussy work. Janet keeps bitching about the smoke. 

“I swear,” she says, as she spools down and jerks to a stop next to Tascha. “I’m just going up there and lighting the rest of that fucking forest on fire. I mean, shit, let’s get it over with—Hey. Tascha. You doing okay?” 

“I’m fine, why?”

“You missed a connection.” 

Tascha blinks away sweat that’s dripping in her eyes. “Oh. Thanks.”

Janet reaches into the nested wires. Tightens screws. Runs her own diagnostic. Everything glows green. “Can’t have our pretty solar design fail before it even gets hooked up, right?”

“Right. Yeah.” Tascha takes another sip of water. The frigrig’s reservoir and heat pump should be keeping it ice cold, but it’s more lukewarm. “Hey, can you check my frigrig battery?” 

Janet spins her around, checks her back. “Looks good to me. Seventy percent.” 

“Plugged in tight?” 

Tugs and jerks. “Yeah. All good. All tight.” 

“Let’s keep it moving, people. I want to finish this wall today,” Latoya says over the com. “Let’s get our bonus, right? For once?”

“If they designed these connections for frigrig gloves, this would go faster,” Janet says.

“Get back to work, Janet.” 

They all say it at the same time, and laugh.

Tascha’s father claims people didn’t wear any kind of cooling clothing in the old days. They wore tank tops and shorts, and sure they sweated buckets, but people didn’t have to completely hide from the heat. Tascha can’t imagine it. The only person Tascha knows who spends any time out in the heat willingly is Xia. Sometimes Xia lies nude on their balcony, letting the sun burn down on her, her skin sheened with sweat, salt jewels trickling lazily down the curves of her ribs. 

There’s something seductive about the contrast between Xia’s sun-browned flesh and the pale spiderweb of lines where the filter mask and its straps have hugged her face.

It’s fascinating and horrifying, like watching someone cook in an oven. 

Xia says it’s like a giant natural sauna, so why wouldn’t she take advantage of it? Saunas are good for you. Just ask the Finns. Xia also claims she’s epigenetically advantaged thanks to the Texas grid constantly failing during her childhood. Her body has been trained to survive any heat—which is so categorically bullshit that Tascha doesn’t even bother to argue. But Tascha does like Xia’s tan lines. There’s something seductive about the contrast between Xia’s sun-browned flesh and the pale spiderweb of lines where the filter mask and its straps have hugged her face. When Tascha ran her fingers over the tan lines one night, Xia told her it was a fetish. 

“It’s called FMT,” Xia said. “Filter mask tan lines. Very Rule 34.”

For reasons Tascha can’t fully explain, she’s annoyed that something that felt personal and private is actually a well-trodden porn search. Even when she’s alone in her own mind, tentatively feeling her way into real intimacy with Xia for the first time in her life, she’s still surrounded by people. At this very moment, there’s probably some algorithm custom-tailoring political attack ads based on FMT. It probably already knows about Tascha. 

People ruin everything.


“Goddamn, that looks like the good life.” 

Janet is peering in through another cluster of windows that they’re supposed to be hooking up. “Check it. You can see the waterfall and the river from here. It’s finished!”

Tascha realizes that she’s been leaning her head against the glass. She wipes sweat out of her eyes and peers through the PV glaze. Sure enough, the artificial river meanders along under high glass gallery arches, doing its job of water repurification and cooling as it winds through the arcology, then out under the dome of a semi-wild park, where lots of fast-growing carbon-sink cypress and citrus are growing, then cascading and pooling down through a series of rapids down into the artificial canyon the arcology uses for geocooling. Deep down in the shadows, Tascha glimpses a series of artificial lakes where mercury-free fish are destined to be raised.  

“Someone’s kayaking!”

A bright-yellow kayak has entered the top of the cataracts, some lunatic with a red helmet paddling down through the water features. Now that Tascha is looking closely, she can see that another whole part of the canyon is destined to be climbing walls. 

“I’m definitely buying in,” Janet says. “You buying in? We get top slots in the lottery, since we worked on it.” 

“I guess it depends if we get bonus.” Tascha’s hands feel clumsy. She drops the leads. “Are you hot? I think my suit’s fritzing.” 

“You want to tap out early, get it checked?”

“It’s just another couple hours. I’m fine.”

“Don’t try and muscle through—”

“I’m fine. Xia keeps telling me saunas are good for you. Let’s get our bonus.” 

Now that she’s sure her frigrig is fritzing, the heat becomes more bearable. She just imagines Xia, sunbathing, sweating it out intentionally. If Xia can take it, Tascha can take it. Christ, Xia complains if Tascha even turns up the A/C in the condo. She’s got the poverty mentality of all Texans, where people dying for lack of electricity is one of the independent territory’s founding principles. 

“It’s fine,” Tascha had explained, the first time they got in a fight over what constituted a reasonable temperature. “The grid’s in surplus. We’re doing them a favor by using it.”

“You’re making that up.”

“I can literally air-condition the balcony if I want. If you just open the doors I can knock it down 15 degrees. I can make you comfortable out there.”

“Don’t you dare.”

It makes Tascha want to move into Azalea even more. The whole place is kept at reasonable temperatures all day, every day. Outdoor Living, Indoors! is the arcology’s tagline, and it sounds like heaven. No wildfire smoke. Controlled temps. All those parks and rec trails and outdoor cafés. The energy systems connected to the cooling systems connected to the hydroponics systems, all of it managed by the unfortunately named AIzalIA Management Software that should, according to the brochure, make the entire arcology not only function as a carbon sink but also run an energy surplus that all the residents will profit from. 

Xia hates the idea of it. 

“It’s more privatization. You can’t privatize municipal services. It drains support for centralized government and general infrastructure. The rich live great, and the poor die like flies.”

“This isn’t Texas. That’s not how we do it here.”

“It’s not Texas … yet. If you let the rich live apart from the rest, eventually they start to undermine everything.”

“Can you just enjoy things, for once? Maybe practice a little optimism?” 

“It happened with schools. It will happen with infrastructure if you let it.”

“You know, this is exactly why the High Reverend of Texas has a warrant out for you. You’re lucky we don’t extradite.”

Xia makes a face. Tascha feels bad. Xia worrying is the same as Xia getting involved is the same as Xia making trouble is the same as Xia taking care of people is the same as Xia taking care of Tascha. It’s what she does. Tascha kisses her on the forehead. “Not everything is a plot to destroy the world.”

“This is exactly how Florida drowned itself. The rich got rich, and then they got on their private jets and flew away when Miami drowned. They always planned on kissing off to somewhere else. You can’t let these people undermine everything and then run away to hide with all their wealth.”

“I don’t think that’s what Azalea is about—”

“Yeah? What’s the buy-in?”

“That’s not fair. You know how much it costs to build. This ain’t cheap tech.”

“You know what would have been cheap? Just fixing the problem in the beginning so we all could just have gone on ­outdoor living, you know, outdoors. But rich people figured they’d be protected, so they didn’t give a shit. They’d move to New Zealand, right? They’d make their own personal compounds. They’d hire guards. They’d make Azaleas and they’d be fine—”

“But we can buy in too! If I make bonus, we’ll have enough—” 

Xia bites her teeth, hard. ElectoPod streams into Tascha’s head, bypassing ElectoMute: a pair of commentary hosts, haranguing one another.

“I think we need to remember that people in Florida had incomplete information.”

“Bullshit. They had everything they needed.” 

“Come on, Sunita. No one sets out to drown themselves! The people who drowned weren’t the people who made the disaster plans. Florida’s governor didn’t care how many people died. His real estate donors didn’t care. They had the numbers. They knew how much bigger storm surges were going to get—”

“So no one had a clue at all? They were just sitting in the dark like mushrooms? Come on, Maria. Let’s listen to this.”

A news announcer cuts in, old news coverage:

 “That’s the South Beach seawall. We can see the water coming up, coming through. We don’t know how many people are still in lower Miami. Obviously, this brings to mind the levee break in New Orleans in the early 2000s. Our thoughts and prayers are with the people of Florida in this trying time.” 

The argument between the hosts resumes. 

“Reminiscent of New Orleans! They had 70 years of warning! Literally everyone knew. Not just the governor! Not just his real estate donors. Don’t bother defending them, Maria. People got exactly what they signed up for. They deserved it.”

Tascha wants to argue with Xia. To point out that ElectoPod is saying that it wasn’t just rich people, that everyone was stupid, that everyone went along. Bottom line, people in general are just stupid, but Xia keeps talking at her, and XiaMute doesn’t seem to be working.

“Wake up, Tascha! You can’t just seal yourself off from people.”

“Wake up, Tascha! You have to be involved. If you don’t get involved, stupid people will.”

Wake up, Tascha! If you don’t pay attention, other people will decide for you.”

“Wake up Tascha! I know about XiaMute.”

“Wake up!”

“Wake up!”

“Wake up!”


Tascha comes awake, gasping. Water rushes around her. She thrashes, trying to swim, trying to keep her head above water.

“Whoa, girl! Take it easy!” Janet is cradling her in her arms, along with some woman in a red helmet. 

The kayaker? 

They’re in the river, Tascha realizes. They’re inside Azalea. The kayaker and Janet are supporting her, holding her up as water flows and tugs around her. The rest of the construction crew clusters on the riverbank, peering through the cattails, watching with concern. “Is she okay?” Latoya calls.

“She’s going to be fine,” the kayaker calls back. 

 “I was talking to Xia …”

“Xia’s coming,” Janet says. “Don’t worry about Xia. Just lay back. That’s right. Let’s get you cool.”

“She’ll be pissed.”

“She’ll be glad you’re alive. Quit fussing.”

Tascha lets herself sink back, lets Janet and the kayaker buoy her up. “What happened?”

Tascha stares up at the arching solar glass overhead as the river flows around her. Smoke is thick out there, but she can’t smell it in here.

“You heatstroked. And then you tried to pop your harness.” Janet laughs. “You almost went all the way to the ground before your safeties caught you. Shhh. Relax. You’re fine now. Took us a bit to get you untangled and inside. Just float. Stay easy. Let the water do its thing. You were cooking.”

“I messed up our bonus—”

“Don’t worry about that. We got you. All you need to do is let this nice water chill you out.”

Tascha stares up at the arching solar glass overhead as the river flows around her. Smoke is thick out there, but she can’t smell it in here. Here, she smells orange blossoms. Smells green ferns … cattails … warm mud. Life. 

“I should have tapped out when my suit died. I should have stopped to fix it.”

“Yeah, well.” Janet laughs. “We always see things clearer after we’ve screwed them up.”

Paolo Bacigalupi is an internationally best-selling author of speculative fiction. His most recent novel, Navola, was released in July by Knopf.

Job title of the future: Digital forest ranger

When Martin Roth began his career as a forest ranger in the 1980s, his job was to care for the forest in a way that would ensure continuity for decades, even centuries. Now, with climate change, it’s more about planning for an uncertain future. “It’s turned into disaster management,” says Roth, for whom the 3,000 acres of forest along the northeastern shore of Lake Constance in Germany double as testing ground for high-tech solutions, earning him the moniker “digital forest ranger” (Digitalförster) in the German forestry community.

Speed and efficiency: After a catastrophic storm, the clock starts ticking: Damaged trees need to be removed before the arrival of bark beetles, which breed in dead trees and can go on to devastate entire forests. While it used to take Roth two and a half hours to cover an acre of forest on foot, drones now let him survey the entire 3,000 acres in a matter of days, so he can quickly locate damaged trees, identify and inform the owners of affected plots, and send information to workers on the ground.

It takes forest soil decades to recover after being compacted by heavy logging equipment. That’s why Roth has digitally mapped all the logging trails and equipped tree harvesters with high-precision satellite antennas so the machines can precisely follow the same route for decades and easily find them in the chaotic aftermath of a storm. GPS data is used to record how much timber was extracted from which location—a crucial upgrade in a forest with many different owners.

A digital reality: Since most of his work can now be done on a mobile device, Roth is spending more time outdoors: “I take the digital steps outside on site, against the backdrop of reality.” 

His most recent project is combining body camera footage with AI. “[Usually] you mark the trees, they’re felled, and you have no idea how much timber you’ll end up with—how many cubic meters, what quality, which tree species,” he explains. Now AI, “looking” through his body camera, automatically recognizes the tree species he has marked and estimates the amount of timber it will produce, sending the information to his phone in real time. 

Preparing for the future: Up to half of European tree species are unsuited to rising temperatures and extended drought periods, so Roth has begun experimenting with new species, planting them in small batches and keeping track of them in his system. With a forest in flux, there are dozens of areas that need interventions at different times, and there are not enough employees to keep it all straight, he says: “Either I know it, or the computer knows it, or no one knows it and it’s lost.” 

Roth’s expertise in tackling the challenges of modern forestry with technology is increasingly sought after—colleagues reach out for advice, and he lectures on digitalization in forestry at the Rottenburg University of Applied Forest Sciences. But he warns that technology can never replace a ramble through the forest: “I should never believe that the digital twin is reality. I always have to do a reality check.”

Meet the radio-obsessed civilian shaping Ukraine’s drone defense

Serhii “Flash” Beskrestnov hates going to the front line. The risks terrify him. “I’m really not happy to do it at all,” he says. But to perform his particular self-appointed role in the Russia-Ukraine war, he believes it’s critical to exchange the relative safety of his suburban home north of the capital for places where the prospect of death is much more immediate. “From Kyiv,” he says, “nobody sees the real situation.”

So about once a month, he drives hundreds of kilometers east in a homemade mobile intelligence center: a black VW van in which stacks of radio hardware connect to an array of antennas on the roof that stand like porcupine quills when in use. Two small devices on the dash monitor for nearby drones. Over several days at a time, Flash studies the skies for Russian radio transmissions and tries to learn about the problems facing troops in the fields and in the trenches.

He is, at least in an unofficial capacity, a spy. But unlike other spies, Flash does not keep his work secret. In fact, he shares the results of these missions with more than 127,000 followers—including many soldiers and government officials—on several public social media channels. Earlier this year, for instance, he described how he had recorded five different Russian reconnaissance drones in a single night—one of which was flying directly above his van.

“Brothers from the Armed Forces of Ukraine, I am trying to inspire you,” he posted on his Facebook page in February, encouraging Ukrainian soldiers to learn how to recognize enemy drone signals as he does. “You will spread your wings, you will understand over time how to understand distance and, at some point, you will save the lives of dozens of your colleagues.”

Drones have come to define the brutal conflict that has now dragged on for more than two and a half years. And most rely on radio communications—a technology that Flash has obsessed over since childhood. So while Flash is now a civilian, the former officer has still taken it upon himself to inform his country’s defense in all matters related to radio.

As well as the frontline information he shares on his public channels, he runs a “support service” for almost 2,000 military communications specialists on Signal and writes guides for building anti-drone equipment on a tight budget. “He’s a celebrity,” one special forces officer recently shouted to me over the thump of music in a Kyiv techno club. He’s “like a ray of sun,” an aviation specialist in Ukraine’s army told me. Flash tells me that he gets 500 messages every day asking for help.

Despite this reputation among rank-and-file service members—and maybe because of it—Flash has also become a source of some controversy among the upper echelons of Ukraine’s military, he tells me. The Armed Forces of Ukraine declined multiple requests for comment, but Flash and his colleagues claim that some high-ranking officials perceive him as a security threat, worrying that he shares too much information and doesn’t do enough to secure sensitive intel. As a result, some refuse to support or engage with him. Others, Flash says, pretend he doesn’t exist. Either way, he believes they are simply insecure about the value of their own contributions—“because everybody knows that Serhii Flash is not sitting in Kyiv like a colonel in the Ministry of Defense,” he tells me in the abrasive fashion that I’ve come to learn is typical of his character. 

But above all else, hours of conversations with numerous people involved in Ukraine’s defense, including frontline signalmen and volunteers, have made clear that even if Flash is a complicated figure, he’s undoubtedly an influential one. His work has become greatly important to those fighting on the ground, and he recently received formal recognition from the military for his contributions to the fight, with two medals of commendation—one from the commander of Ukraine’s ground forces, the other from the Ministry of Defense. 

With a handheld directional antenna and a spectrum analyzer, Flash can scan for hostile signals.
EMRE ÇAYLAK

Despite a small number of semi-autonomous machines with a reduced reliance on radio communications, the drones that saturate the skies above the battlefield will continue to largely depend on this technology for the foreseeable future. And in this race for survival—as each side constantly tries to best the other, only to start all over again when the other inevitably catches up—Ukrainian soldiers need to develop creative solutions, and fast. As Ukraine’s wartime radio guru, Flash may just be one of their best hopes for doing that. 

“I know nothing about his background,” says “Igrok,” who works with drones in Ukraine’s 110th Mechanized Brigade and whom we are identifying by his call sign, as is standard military practice. “But I do know that most engineers and all pilots know nothing about radios and antennas. His job is definitely one of the most powerful forces keeping Ukraine’s aerial defense in good condition.”

And given the mounting evidence that both militaries and militant groups in other parts of the world are now adopting drone tactics developed in Ukraine, it’s not only his country’s fate that Flash may help to determine—but also the ways that armies wage war for years to come.

A prescient hobby

Before I can even start asking questions during our meeting in May, Flash is rummaging around in the back of the Flash-mobile, pulling out bits of gear for his own version of show-and-tell: a drone monitor with a fin-shaped antenna; a walkie-talkie labeled with a sticker from Russia’s state security service, the FSB; an approximately 1.5-meter-long foldable antenna that he says probably came from a US-made Abrams tank.

Flash has parked on a small wooded road beside the Kyiv Sea, an enormous water reservoir north of the capital. He’s wearing a khaki sweat-wicking polo shirt, combat trousers, and combat boots, with a Glock 19 pistol strapped to his hip. (“I am a threat to the enemy,” he tells me, explaining that he feels he has to watch his back.) As we talk, he moves from one side to the other, as if the electromagnetic waves that he’s studied since childhood have somehow begun to control the motion of his body.

Now 49, Flash grew up in a suburb of Kyiv in the ’80s. His father, who was a colonel in the Soviet army, recalls bringing home broken radio equipment for his preteen son to tinker with. Flash showed talent from the start. He attended an after-school radio club, and his father fixed an antenna to the roof of their apartment for him. Later, Flash began communicating with people in countries beyond the Iron Curtain. “It was like an open door to the big world for me,” he says.

Flash recalls with amusement a time when a letter from the KGB arrived at his family home, giving his father the fright of his life. His father didn’t know that his son had sent a message on a prohibited radio frequency, and someone had noticed. Following the letter, when Flash reported to the service’s office in downtown Kyiv, his teenage appearance confounded them. Boy, what are you doing here? Flash recalls an embarrassed official saying. 

Ukraine had been a hub of innovation as part of the Soviet Union. But by the time Flash graduated from military communications college in 1997, Ukraine had been independent for six years, and corruption and a lack of investment had stripped away the armed forces’ former grandeur. Flash spent just a year working in a military radio factory before he joined a private communications company developing Ukraine’s first mobile network, where he worked with technologies far more advanced than what he had used in the military. The  project was called “Flash.” 

A decade and a half later, Flash had risen through the ranks of the industry to become head of department at the progenitor to the telecommunications company Vodafone Ukraine. But boredom prompted him to leave and become an entrepreneur. His many projects included a successful e-commerce site for construction services and a popular video game called Isotopium: Chernobyl, which he and a friend based on the “really neat concept,” according to a PC Gamer review, of allowing players to control real robots (fitted with radios, of course) around a physical arena. Released in 2019, it also received positive reviews from Reuters and BBC News.

But within just a few years, an unexpected attack would hurl his country into chaos—and upend Flash’s life. 

“I am here to help you with technical issues,” Flash remembers writing to his Signal group when he first started offering advice. “Ask me anything and I will try to find the answer for you.”
EMRE ÇAYLAK

By early 2022, rumors were growing of a potential attack from Russia. Though he was still working on Isotopium, Flash began to organize a radio network across the northern suburbs of Kyiv in preparation. Near his home, he set up a repeater about 65 meters above ground level that could receive and then rebroadcast transmissions from all the radios in its network across a 200-square-kilometer area. Another radio amateur programmed and distributed handheld radios.

When Russian forces did invade, on February 24, they took both fiber-optic and mobile networks offline, as Flash had anticipated. The radio network became the only means of instant communications for civilians and, critically, volunteers mobilizing to fight in the region, who used it to share information about Russian troop movements. Flash fed this intel to several professional Ukrainian army units, including a unit of special reconnaissance forces. He later received an award from the head of the district’s military administration for his part in Kyiv’s defense. The head of the district council referred to Flash as “one of the most worthy people” in the region.

Yet it was another of Flash’s projects that would earn him renown across Ukraine’s military.

Despite being more than 100 years old, radio technology is still critical in almost all aspects of modern warfare, from secure communications to satellite-guided missiles. But the decline of Ukraine’s military, coupled with the movement of many of the country’s young techies into lucrative careers in the growing software industry, created a vacuum of expertise. Flash leaped in to fill it.

Within roughly a month of Russia’s incursion, Flash had created a private group called “Military Signalmen” on the encrypted messaging platform Signal, and invited civilian radio experts from his personal network to join alongside military communications specialists. “I am here to help you with technical issues,” he remembers writing to the group. “Ask me anything and I will try to find the answer for you.”

The kinds of questions that Flash and his civilian colleagues answered in the first months were often basic. Group members wanted to know how to update the firmware on their devices, reset their radios’ passwords, or set up the internal communications networks for large vehicles. Many of the people drafted as communications specialists in the Ukrainian military had little relevant experience; Flash claims that even professional soldiers lacked appropriate training and has referred to large parts of Ukraine’s military communications courses as “either nonsense or junk.” (The Korolov Zhytomyr Military Institute, where many communications specialists train, declined a request for comment.)

After Russia’s invasion of Ukraine, Flash transformed his VW van into a mobile radio intelligence center.
EMRE ÇAYLAK

He demonstrates handheld spectrum analyzers with custom Ukrainian firmware.

News of the Signal group spread by word of mouth, and it soon became a kind of 24-hour support service that communications specialists in every sector of Ukraine’s frontline force subscribed to. “Any military engineer can ask anything and receive the answer within a couple of minutes,” Flash says. “It’s a nice way to teach people very quickly.” 

As the war progressed into its second year, Military Signalmen became, to an extent, self-sustaining. Its members had learned enough to answer one another’s questions themselves. And this is where several members tell me that Flash has contributed the most value. “The most important thing is that he brought together all these communications specialists in one team,” says Oleksandr “Moto,” a technician at an EU mission in Kyiv and an expert in Motorola equipment, who has advised members of the group. (He asked to not be identified by his surname, due to security concerns.) “It became very efficient.”

Today, Flash and his partners continue to answer occasional questions that require more advanced knowledge. But over the past year, as the group demanded less of his time, Flash has begun to focus on a rapidly proliferating weapon for which his experience had prepared him almost perfectly: the drone.  

A race without end

The Joker-10 drone, one of Russia’s latest additions to its arsenal, is equipped with a hibernation mechanism, Flash warned his Facebook followers in March. This feature allows the operator to fly it to a hidden location, leave it there undetected, and then awaken it when it’s time to attack. “It is impossible to detect the drone using radio-electronic means,” Flash wrote. “If you twist and turn it in your hands—it will explode.” 

This is just one example of the frequent developments in drone engineering that Ukrainian and Russian troops are adapting to every day. 

Larger strike drones similar to the US-made Reaper have been familiar in other recent conflicts, but sophisticated air defenses have rendered them less dominant in this war. Ukraine and Russia are developing and deploying vast numbers of other types of drones—including the now-notorious “FPV,” or first-person view, drone that pilots operate by wearing goggles that stream video of its perspective. These drones, which can carry payloads large enough to destroy tanks, are cheap (costing as little as $400), easy to produce, and difficult to shoot down. They use direct radio communications to transmit video feeds, receive commands, and navigate.

A Ukrainian soldier prepares an FPV drone equipped with dummy ammunition for a simulated flight operation.
MARCO CORDONE/SOPA IMAGES/SIPA USA VIA AP IMAGES

But their reliance on radio technology is a major vulnerability, because enemies can disrupt the signals that the drones emit—making them far less effective, if not inoperable. This form of electronic warfare—which most often involves emitting a more powerful signal at the same frequency as the operator’s—is called “jamming.”

Jamming, though, is an imperfect solution. Like drones, jammers themselves emit radio signals that can enable enemies to locate them. There are also effective countermeasures to bypass jammers. For example, a drone operator can use a tactic called “frequency hopping,” rapidly jumping between different frequencies to avoid a jammer’s signal. But even this method can be disrupted by algorithms that calculate the hopping patterns.

For this reason, jamming is a frequent focus of Flash’s work. In a January post on his Telegram channel, for instance, which people viewed 48,000 times, Flash explained how jammers used by some Ukrainian tanks were actually disrupting their own communications. “The cause of the problems is not direct interference with the reception range of the radio station, but very powerful signals from several [electronic warfare] antennae,” he wrote, suggesting that other tank crews experiencing the same problem might try spreading their antennas across the body of the tank. 

It is all part of an existential race in which Russia and Ukraine are constantly hunting for new methods of drone operation, drone jamming, and counter-jamming—and there’s no end in sight. In March, for example, Flash says, a frontline contact sent him photos of a Russian drone with what looks like a 10-kilometer-long spool of fiber-optic cable attached to its rear—one particularly novel method to bypass Ukrainian jammers. “It’s really crazy,” Flash says. “It looks really strange, but Russia showed us that this was possible.”

Flash’s trips to the front line make it easier for him to track developments like this. Not only does he monitor Russian drone activity from his souped-up VW, but he can study the problems that soldiers face in situ and nurture relationships with people who may later send him useful intel—or even enemy equipment they’ve seized. “The main problem is that our generals are located in Kyiv,” Flash says. “They send some messages to the military but do not understand how these military people are fighting on the front.”

Besides the advice he provides to Ukrainian troops, Flash also publishes online his own manuals for building and operating equipment that can offer protection from drones. Building their own tools can be soldiers’ best option, since Western military technology is typically expensive and domestic production is insufficient. Flash recommends buying most of the parts on AliExpress, the Chinese e-commerce platform, to reduce costs.

While all his activity suggests a close or at least cooperative relationship between Flash and Ukraine’s military, he sometimes finds himself on the outside looking in. In a post on Telegram in May, as well as during one of our meetings, Flash shared one of his greatest disappointments of the war: the military’s refusal of his proposal to create a database of all the radio frequencies used by Ukrainian forces. But when I mentioned this to an employee of a major electronic warfare company, who requested anonymity to speak about the sensitive subject, he suggested that the only reason Flash still complains about this is that the military hasn’t told him it already exists. (Given its sensitivity, MIT Technology Review was unable to independently confirm the existence of this database.) 

Flash believes that generals in Kyiv “do not understand how these military people are fighting on the front.” So even though he doesn’t like the risks they involve, he takes trips to the frontline about once a month.
EMRE ÇAYLAK

This anecdote is emblematic of Flash’s frustration with a military complex that may not always want his involvement. Ukraine’s armed forces, he has told me on several occasions, make no attempt to collaborate with him in an official manner. He claims not to receive any financial support, either. “I’m trying to help,” he says. “But nobody wants to help me.”

Both Flash and Yurii Pylypenko, another radio enthusiast who helps Flash manage his Telegram channel, say military officials have accused Flash of sharing too much information about Ukraine’s operations. Flash claims to verify every member of his closed Signal groups, which he says only discuss “technical issues” in any case. But he also admits the system is not perfect and that Russians could have gained access in the past. Several of the soldiers I interviewed for this story also claimed to have entered the groups without Flash’s verification process. 

It’s ultimately difficult to determine if some senior staff in the military hold Flash at arm’s length because of his regular, often strident criticism—or whether Flash’s criticism is the result of being held at arm’s length. But it seems unlikely either side’s grievances will subside soon; Pylypenko claims that senior officers have even tried to blackmail him over his involvement in Flash’s work. “They blame my help,” he wrote to me over Telegram, “because they think Serhii is a Russian agent reposting Russian propaganda.” 

Is the world prepared?

Flash’s greatest concern now is the prospect of Russia overwhelming Ukrainian forces with the cheap FPV drones. When they first started deploying FPVs, both sides were almost exclusively targeting expensive equipment. But as production has increased, they’re now using them to target individual soldiers, too. Because of Russia’s production superiority, this poses a serious danger—both physical and psychological—to Ukrainian soldiers. “Our army will be sitting under the ground because everybody who goes above ground will be killed,” Flash says. Some reports suggest that the prevalence of FPVs is already making it difficult for soldiers to expose themselves at all on the battlefield.

To combat this threat, Flash has a grand yet straightforward idea. He wants Ukraine to build a border “wall” of jamming systems that cover a broad range of the radio spectrum all along the front line. Russia has already done this itself with expensive vehicle-based systems, but these present easy targets for Ukrainian drones, which have destroyed several of them. Flash’s idea is to use a similar strategy, albeit with smaller, cheaper systems that are easier to replace. He claims, however, that military officials have shown no interest.

Although Flash is unwilling to divulge more details about this strategy (and who exactly he pitched it to), he believes that such a wall could provide a more sustainable means of protecting Ukrainian troops. Nevertheless, it’s difficult to say how long such a defense might last. Both sides are now in the process of developing artificial-intelligence programs that allow drones to lock on to targets while still outside enemy jamming range, rendering them jammer-proof when they come within it. Flash admits he is concerned—and he doesn’t appear to have a solution.

Flash admits he is worried about Russia overwhelming Ukrainian forces with the cheap FPV drones: “Our army will be sitting under the ground because everybody who goes above ground will be killed.”
EMRE ÇAYLAK

He’s not alone. The world is entirely unprepared for this new type of warfare, says Yaroslav Kalinin, a former Ukrainian intelligence officer and the CEO of Infozahyst, a manufacturer of equipment for electronic warfare. Kalinin recounts talking at an electronic-warfare-focused conference in Washington, DC, last December where representatives from some Western defense companies weren’t able to recognize the basic radio signals emitted by different types of drones. “Governments don’t count [drones] as a threat,” he says. “I need to run through the streets like a prophet—the end is near!”

Nevertheless, Ukraine has become, in essence, a laboratory for a new era of drone warfare—and, many argue, a new era of warfare entirely. Ukraine’s and Russia’s soldiers are its technicians. And Flash, who sometimes sleeps curled up in the back of his van while on the road, is one of its most passionate researchers. “Military developers from all over the world come to us for experience and advice,” he says. Only time will tell whether their contributions will be enough to see Ukraine through to the other side of this war. 

Charlie Metcalfe is a British journalist. He writes for magazines and newspapers, including Wired, the Guardian, and MIT Technology Review.

Coming soon: Our 2024 list of Innovators Under 35

To tackle complex global problems such as preventing disease and mitigating climate change, we’re going to need new ideas from our brightest minds. Every year, MIT Technology Review identifies a new class of Innovators Under 35 taking on these and other challenges. 

On September 10, we will honor the 2024 class of Innovators Under 35. These 35 researchers and entrepreneurs are rising stars in their fields pursuing ambitious projects: One is unraveling the mysteries of how our immune system works, while another is engineering microbes to someday replace chemical pesticides.

Each is doing groundbreaking work to advance one of five areas: materials science, biotechnology, robotics, artificial intelligence, or climate and energy. Some have found clever ways to integrate these disciplines. One innovator, for example, enlists tiny robots to reduce the amount of antibiotics required to treat infections.

MIT Technology Review has published its Innovators Under 35 list since 1999. The first edition was created for our 100th anniversary and was meant to give readers a glimpse into the future, by highlighting what some of the world’s most talented young scientists are working on today.

This year, we’re celebrating our 125th anniversary and honoring this 25th class of innovators with the same goal in mind. (Note: The 2024 list will be made available exclusively to subscribers. If you’re not a subscriber, you can sign up here.)

Keep an eye on The Download newsletter next week for our announcement of the new class. You can also meet some of them at EmTech MIT, which will take place on September 30 and October 1 on MIT’s campus in Cambridge, Massachusetts.

If you can’t wait until then, we’ll reveal our Innovator of the Year during a live broadcast on LinkedIn on Monday, September 9. This person stood out for using their ingenuity to address a power imbalance in the tech sector (and that’s the only hint you get). They’ll join me on screen to talk about their work and share what’s next for their research.

Job title of the future: Weather maker

Much of the western United States relies on winter snowpack to supply its rivers and reservoirs through the summer months. But with warming temperatures, less and less snow is falling—a recent study showed a 23% decline in annual snowpack since 1955. By some estimates, runoff from snowmelt in the western US could decrease by a third between now and the end of the century, meaning less water will be available for agriculture, hydroelectric projects, and urban use in a region already dealing with water scarcity. 

That’s where Frank McDonough comes in. An atmospheric research scientist, McDonough leads a cloud-seeding program at the Desert Research Institute (DRI) that aims to increase snowfall in Nevada and the Eastern Sierras. Snow makers like McDonough and others who generate rain represent a growing sector in a parched world. 

Instant snow: Cloud seeding for snow works by injecting a tiny amount of silver iodide dust into a cloud to help its water vapor condense into ice crystals that grow into snowflakes. In other conditions, water molecules drawn to such particles coalesce into raindrops. McDonough uses custom-­made, remotely operated machines on the ground to heat up a powdered form of the silver iodide that’s released into the air. Dust—or sometimes table salt—can also be released from planes. 

Old tech, new urgency: The precipitation-­catalyzing properties of silver iodide were first explored in the 1940s by American chemists and engineers, but the field remained a small niche. Now, with 40% of people worldwide affected by water scarcity and a growing number of reservoirs facing climate stress, cloud seeding is receiving global interest. “It’s becoming almost like, hey, we have to do this, because there’s just too many people and too many demands on these water resources,” says McDonough. A growing number of government-­run cloud-seeding programs around the world are now working to increase rainfall and snowpack, and even manipulating the timing of precipitation to prevent large hailstorms, reduce air pollution, and minimize flood risk. The private sector is also taking note: One cloud-seeding startup, Rainmaker, recently raised millions.

Generating results: At the end of each winter, the snowmakers dig into the data to see what impact they’ve had. In the past, McDonough says, his seeding has increased snowpack by 5% to 10%. That’s not enough to end a drought, but the DRI estimates that the cloud seeding around Reno, Nevada, alone adds enough precipitation to keep about 40,000 households supplied. And for some hydroelectric projects, “a 1% increase is worth millions of dollars,” McDonough says. “Water is really valuable out here in the West.”

Will computers ever feel responsible?

“If a machine is to interact intelligently with people, it has to be endowed with an understanding of human life.” 

—Dreyfus and Dreyfus

Bold technology predictions pave the road to humility. Even titans like Albert Einstein own a billboard or two along that humbling freeway. In a classic example, John von Neumann, who pioneered modern computer architecture, wrote in 1949, “It would appear that we have reached the limits of what is possible to achieve with computer technology.” Among the myriad manifestations of computational limit-busting that have defied von Neumann’s prediction is the social psychologist Frank Rosenblatt’s 1958 model of a human brain’s neural network. He called his device, based on the IBM 704 mainframe computer, the “Perceptron” and trained it to recognize simple patterns. Perceptrons eventually led to deep learning and modern artificial intelligence.

In a similarly bold but flawed prediction, brothers Hubert and Stuart Dreyfus—professors at UC Berkeley with very different specialties, Hubert’s in philosophy and Stuart’s in engineering—wrote in a January 1986 story in Technology Review that “there is almost no likelihood that scientists can develop machines capable of making intelligent decisions.” The article drew from the Dreyfuses’ soon-to-be-published book, Mind Over Machine (Macmillan, February 1986), which described their five-stage model for human “know-how,” or skill acquisition. Hubert (who died in 2017) had long been a critic of AI, penning skeptical papers and books as far back as the 1960s. 

Stuart Dreyfus, who is still a professor at Berkeley, is impressed by the progress made in AI. “I guess I’m not surprised by reinforcement learning,” he says, adding that he remains skeptical and concerned about certain AI applications, especially large language models, or LLMs, like ChatGPT. “Machines don’t have bodies,” he notes. And he believes that being disembodied is limiting and creates risk: “It seems to me that in any area which involves life-and-death possibilities, AI is dangerous, because it doesn’t know what death means.”

According to the Dreyfus skill acquisition model, an intrinsic shift occurs as human know-how advances through five stages of development: novice, advanced beginner, competent, proficient, and expert. “A crucial difference between beginners and more competent performers is their level of involvement,” the researchers explained. “Novices and beginners feel little responsibility for what they do because they are only applying the learned rules.” If they fail, they blame the rules. Expert performers, however, feel responsibility for their decisions because as their know-how becomes deeply embedded in their brains, nervous systems, and muscles—an embodied skill—they learn to manipulate the rules to achieve their goals. They own the outcome.

That inextricable relationship between intelligent decision-­making and responsibility is an essential ingredient for a well-­functioning, civilized society, and some say it’s missing from today’s expert systems. Also missing is the ability to care, to share concerns, to make commitments, to have and read emotions—all the aspects of human intelligence that come from having a body and moving through the world.

As AI continues to infiltrate so many aspects of our lives, can we teach future generations of expert systems to feel responsible for their decisions? Is responsibility—or care or commitment or emotion—something that can be derived from statistical inferences or drawn from the problematic data used to train AI? Perhaps, but even then machine intelligence would not equate to human intelligence—it would still be something different, as the Dreyfus brothers also predicted nearly four decades ago. 

Bill Gourgey is a science writer based in Washington, DC.

From the publisher: Commemorating 125 years

The magazine you now hold in your hands is 125 years old. Not this actual issue, of course, but the publication itself, which launched in 1899. Few other titles can claim this kind of heritage—the Atlantic, Harper’s, Audubon (which is also turning 125 this year), National Geographic, and Popular Science among them.

MIT Technology Review was born four years before the Wright brothers took flight. Thirty-three before we split the atom, 59 ahead of the integrated circuit, 70 before we would walk on the moon, and 90 before the invention of the World Wide Web. It has survived two world wars, a depression, recessions, eras of tech boom and bust. It has chronicled the rise of computing from the time of room-size mainframes until today, when they have become ubiquitous, not just carried in our pockets but deeply embedded in nearly all aspects of our lives. 

As I sit in my air-conditioned home office writing this letter on my laptop, Spotify providing a soundtrack to keep me on task, I can’t help but consider the vast differences between my life and those of the MIT graduates who founded MIT Technology Review and laid out its pages by hand. My life—all of our lives—would amaze Arthur D. Little in countless ways.

(Not least is that I am the person to write this letter. When MITTR was founded, US women’s suffrage was still 20 years in the future. There were women at the Institute, but their numbers were small. Today, it is my honor to be the CEO and publisher of this storied title. And I’m proud to serve at an institution whose president and provost are both women.)

I came to MIT Technology Review to guide its digital transformation. Yet despite the pace of change in these past 125 years, my responsibilities are not vastly different from those of my predecessors. I’m here to ensure this publication—in all its digital, app-enabled, audio-supporting, livestreaming formats—carries on. I have a deep commitment to its mission of empowering its readers with trusted insights and information about technology’s potential to change the world.

During some chapters of its history, MIT Technology Review served as little more than an alumni magazine; through others, it leaned more heavily toward academic or journal-style publishing. During the dot-com era, MIT Technology Review invested large sums to increase circulation in pursuit of advertising pages comparable to the number in its counterparts of the time, the Industry Standard, Wired, and Business 2.0.

Through each of these chapters, I like to think, certain core principles remained consistent—namely, a focus on innovation and creativity in the face of new challenges and opportunities in publishing.

Today, MIT Technology Review sits in a privileged but precarious position in an industry struggling for viability. Print and online media is, frankly, in a time of crisis. We are fortunate to receive support from the Institute, enabling us to report the technology stories that matter most to our readers. We are driven to create impact, not profits for investors. 

We appreciate our advertisers very much, but they are not why we are here. Instead, we are focused on our readers. We’re here for people who care deeply about how tech is changing the world. We hope we make you think, imagine, discern, dream. We hope to both inspire you and ground you in reality. We hope you find enough value in our journalism to subscribe and support our mission. 

Operating MIT Technology Review is not an inexpensive endeavor. Our editorial team is made up of some of the most talented reporters and editors working in media. They understand at a deep level how technologies work and ask tough questions of tech leaders and creators. They’re skilled storytellers.

Even from its very start, MIT Technology Review faced funding challenges. In a letter to the Association of Class Secretaries in December 1899, Walter B. Snow, an 1882 MIT graduate who was secretary and leader of the association and one of MITTR’s cofounders, laid out a plan for increasing revenue and reducing costs to ensure “the continuation of the publication.” Oof, Walter—have I got some stories for you. But his goal remains my goal today. 

We hope you experience the thrill and possibility of being a human alive in 2024. This is a time when we face enormous challenges, yes, and sometimes it feels overwhelming. But today we also possess many of the tools and technologies that can improve life as we know it.

And so if you’re a subscriber, thank you. Help us continue to grow and learn: Tell us what you like and what you don’t like (feedback@technologyreview.com; I promise you will receive a reply). Consider a gift subscription for a friend or relative by visiting www.technologyreview.com/subscribe. If you bought this on the newsstand or are reading it over the shoulder of a friend, I hope you’ll subscribe for yourself.

The next 125 years seem unimaginable—although in this issue we will try our best to help you see where things may be headed. I’ve never been an avid reader of science fiction. But by nature I’m an optimist who believes in the power of science and technology to make the world better. Whatever path these next years take, I know that MIT Technology Review is the vantage point from which I want to view it. I hope you’ll be here alongside me.