How to measure the returns on R&D spending

MIT Technology Review Explains: Let our writers untangle the complex, messy world of technology to help you understand what’s coming next. You can read more from the series here.

Given the draconian cuts to US federal funding for science, including the administration’s proposal to reduce the 2026 budgets of the National Institutes of Health by 40% and the National Science Foundation by 57%, it’s worth asking some hard-nosed money questions: How much should we be spending on R&D? How much value do we get out of such investments, anyway? To answer that, it’s important to look at both successful returns and investments that went nowhere.

Sure, it’s easy to argue for the importance of spending on science by pointing out that many of today’s most useful technologies had their origins in government-funded R&D. The internet, CRISPR, GPS—the list goes on and on. All true. But this argument ignores all the technologies that received millions in government funding and haven’t gone anywhere—at least not yet. We still don’t have DNA computers or molecular electronics. Never mind the favorite examples cited by contrarian politicians of seemingly silly or frivolous science projects (think shrimp on treadmills).

While cherry-picking success stories help illustrate the glories of innovation and the role of science in creating technologies that have changed our lives, it provides little guidance for how much we should spend in the future—and where the money should go.

A far more useful approach to quantifying the value of R&D is to look at its return on investment (ROI). A favorite metric for stock pickers and PowerPoint-wielding venture capitalists, ROI weighs benefits versus costs. If applied broadly to the nation’s R&D funding, the same kind of thinking could help account for both the big wins and all the money spent on research that never got out of the lab.

The problem is that it’s notoriously difficult to calculate returns for science funding—the payoffs can take years to appear and often take a circuitous route, so the eventual rewards are distant from the original funding. (Who could have predicted Uber as an outcome of GPS? For that matter, who could have predicted that the invention of ultra-precise atomic clocks in the late 1940s and 1950s would eventually make GPS possible?) And forget trying to track the costs of countless failures or apparent dead ends.

But in several recent papers, economists have approached the problem in clever new ways, and though they ask slightly different questions, their conclusions share a bottom line: R&D is, in fact, one of the better long-term investments that the government can make.

This story is part of MIT Technology Review’s “America Undone” series, examining how the foundations of US success in science and innovation are currently under threat. You can read the rest here.

That might not seem very surprising. We’ve long thought that innovation and scientific advances are key to our prosperity. But the new studies provide much-needed details, supplying systematic and rigorous evidence for the impact that R&D funding, including public investment in basic science, has on overall economic growth.

And the magnitude of the benefits is surprising.

Bang for your buck

In “A Calculation of the Social Returns to Innovation,” Benjamin Jones, an economist at Northwestern University, and Lawrence Summers, a Harvard economist and former US Treasury secretary, calculate the effects of the nation’s total R&D spending on gross domestic product and our overall standard of living. They’re taking on the big picture, and it’s ambitious because there are so many variables. But they are able to come up with a convincing range of estimates for the returns, all of them impressive.

On the conservative end of their estimates, says Jones, investing $1 in R&D yields about $5 in returns—defined in this case as additional GDP per person (basically, how much richer we become). Change some of the assumptions—for example, by attempting to account for the value of better medicines and improved health care, which aren’t fully captured in GDP—and you get even larger payoffs.

While the $5 return is at the low end of their estimates, it’s still “a remarkably good investment,” Jones says. “There aren’t many where you put in $1 and get $5 back.”

That’s the return for the nation’s overall R&D funding. But what do we get for government-funded R&D in particular? Andrew Fieldhouse, an economist at Texas A&M, and Karel Mertens at the Federal Reserve Bank of Dallas looked specifically at how changes in public R&D spending affect the total factor productivity (TFP) of businesses. A favorite metric of economists, TFP is driven by new technologies and innovative business know-how—not by adding more workers or machines—and is the main driver of the nation’s prosperity over the long term.

The economists tracked changes in R&D spending at five major US science funding agencies over many decades to see how the shifts eventually affected private-sector productivity. They found that the government was getting a huge bang for its nondefense R&D buck.

The benefits begin kicking in after around five to 10 years and often have a long-lasting impact on the economy. Nondefense public R&D funding has been responsible for 20% to 25% of all private-sector productivity growth in the country since World War II, according to the economists. It’s an astonishing number, given that the government invests relatively little in nondefense R&D. For example, its spending on infrastructure, another contributor to productivity growth, has been far greater over those years.

The large impact of public R&D investments also provides insight into one of America’s most troubling economic mysteries: the slowdown in productivity growth that began in the 1970s, which has roiled the country’s politics as many people face stunted living standards and limited financial prospects. Their research, says Fieldhouse, suggests that as much as a quarter of that slowdown was caused by a decline in public R&D funding that happened roughly over the same time.

After reaching a high of 1.86% of GDP in 1964, federal R&D spending began dropping. Starting in the early 1970s, TFP growth also began to decline, from above 2% a year in the late 1960s to somewhere around 1% since the 1970s (with the exception of a rise during the late 1990s), roughly tracking the spending declines with a lag of a few years.

If in fact the productivity slowdown was at least partially caused by a drop in public R&D spending, it’s evidence that we would be far richer today if we had kept up a higher level of science investment. And it also flags the dangers of today’s proposed cuts. “Based on our research,” says Fieldhouse, “I think it’s unambiguously clear that if you actually slash the budget of the NIH by 40%, if you slash the NSF budget by 50%, there’s going to be a deceleration in US productivity growth over the next seven to 10 years that will be measurable.”

Out of whack

Though the Trump administration’s proposed 2026 budget would slash science budgets to an unusual degree, public funding of R&D has actually been in slow decline for decades. Federal funding of science is at its lowest rate in the last 70 years, accounting for only around 0.6% of GDP.

Even as public funding has dropped, business R&D investments have steadily risen. Today businesses spend far more than the government; in 2023, companies invested about $700 billion in R&D while the US government spent $172 billion, according to data from the NSF’s statistical agency. You might think, Good—let companies do research. It’s more efficient. It’s more focused. Keep the government out of it.

But there is a big problem with that argument. Publicly funded research, it turns out, tends to lead to relatively more productivity growth over time because it skews more toward fundamental science than the applied work typically done by companies.

In a new working paper called “Public R&D Spillovers and Productivity Growth,” Arnaud Dyèvre, an assistant professor at of economics at HEC Paris, documents the broad and often large impacts of so-called knowledge spillovers—the benefits that flow to others from work done by the original research group. Dyèvre found that the spillovers of public-funded R&D have three times more impact on productivity growth across businesses and industries than those from private R&D funding.

The findings are preliminary, and Dyèvre is still updating the research—much of which he did as a postdoc at MIT—but he says it does suggest that the US “is underinvesting in fundamental R&D,” which is heavily funded by the government. “I wouldn’t be able to tell you exactly which percentage of R&D in the US needs to be funded by the government or what percent needs to be funded by the private sector. We need both,” he says. But, he adds, “the empirical evidence” suggests that “we’re out of balance.”

The big question

Getting the balance of funding for fundamental science and applied research right is just one of the big questions that remain around R&D funding. In mid-July, Open Philanthropy and the Alfred P. Sloan Foundation, both nonprofit organizations, jointly announced that they planned to fund a five-year “pop-up journal” that would attempt to answer many of the questions still swirling around how to define and optimize the ROI of research funding.

“There is a lot of evidence consistent with a really high return to R&D, which suggests we should do more of it,” says Matt Clancy, a senior program officer at Open Philanthropy. “But when you ask me how much more, I don’t have a good answer. And when you ask me what types of R&D should get more funding, we don’t have a good answer.”

Pondering such questions should keep innovation economists busy for the next several years. But there is another mystifying piece of the puzzle, says Northwestern’s Jones. If the returns on R&D investments are so high—the kind that most venture capitalists or investors would gladly take—why isn’t the government spending more?

“I think it’s unambiguously clear that if you actually slash the budget of the NIH by 40%, if you slash the NSF budget by 50%, there’s going to be a deceleration in US productivity growth over the next seven to 10 years that will be measurable.”

Jones, who served as a senior economic advisor in the Obama administration, says discussions over R&D budgets in Washington are often “a war of anecdotes.” Science advocates cite the great breakthroughs that resulted from earlier government funding, while budget hawks point to seemingly ludicrous projects or spectacular failures. Both have plenty of ammunition. “People go back and forth,” says Jones, “and it doesn’t really lead to anywhere.”

The policy gridlock is rooted in in the very nature of fundamental research. Today’s science will lead to great advances. And there will be countless failures; a lot of money will be wasted on fruitless experiments. The problem, of course, is that when you’re deciding to fund new projects, it’s impossible to predict which the outcome will be, even in the case of odd, seemingly silly science. Guessing just what research will or will not lead to the next great breakthrough is a fool’s errand.

Take the cuts in the administration’s proposed fiscal 2026 budget for the NSF, a leading funder of basic science. The administration’s summary begins with the assertion that its NSF budget “is prioritizing investments that complement private-sector R&D and offer strong potential to drive economic growth and strengthen U.S. technological leadership.” So far, so good. It cites the government’s commitment to AI and quantum information science. But dig deeper and you will see the contradictions in the numbers.

Not only is NSF’s overall budget cut by 57%, but funding for physical sciences like chemistry and materials research—fields critical to advancing AI and quantum computers—has also been blown apart. Funding for the NSF’s mathematical and physical sciences program was reduced by 67%. The directorate for computer and information science and engineering fared little better; its research funding was cut by 66%.

There is a great deal of hope among many in the science community that Congress, when it passes the actual 2026 budget, will at least partially reverse these cuts. We’ll see. But even if it does, why attack R&D funding in the first place? It’s impossible to answer that without plunging into the messy depths of today’s chaotic politics. And it is equally hard to know whether the recent evidence gathered by academic economists on the strong returns to R&D investments will matter when it comes to partisan policymaking.

But at least those defending the value of public funding now have a far more productive way to make their argument, rather than simply touting past breakthroughs. Even for fiscal hawks and those pronouncing concerns about budget deficits, the recent work provides a compelling and simple conclusion: More public funding for basic science is a sound investment that makes us more prosperous.

How Trump’s policies are affecting early-career scientists—in their own words

This story is part of MIT Technology Review’s “America Undone” series, examining how the foundations of US success in science and innovation are currently under threat. You can read the rest here.

Every year MIT Technology Review celebrates accomplished young scientists, entrepreneurs, and inventors from around the world in our Innovators Under 35 list. We’ve just published the 2025 edition. This year, though, the context is pointedly different: The US scientific community finds itself in an unprecedented position, with the very foundation of its work under attack

Since Donald Trump took office in January, his administration has fired top government scientists, targeted universities individually and academia more broadly, and made substantial funding cuts to the country’s science and technology infrastructure. It has also upended longstanding rights and norms related to free speech, civil rights, and immigration—all of which further affects the overall environment for research and innovation in science and technology. 

We wanted to understand how these changes are affecting the careers and work of our most recent classes of innovators. The US government is the largest source of research funding at US colleges and universities, and many of our honorees are new professors and current or recent graduate or PhD students, while others work with government-funded entities in other ways. Meanwhile, about 16% of those in US graduate programs are international students. 

We sent surveys to the six most recent cohorts, which include 210 people. We asked people about both positive and negative impacts of the administration’s new policies and invited them to tell us more in an optional interview. Thirty-seven completed our survey, and we spoke with 14 of them in follow-up calls. Most respondents are academic researchers (about two-thirds) and are based in the US (81%); 11 work in the private sector (six of whom are entrepreneurs). Their responses provide a glimpse into the complexities of building their labs, companies, and careers in today’s political climate. 

Twenty-six people told us that their work has been affected by the Trump administration’s changes; only one of them described those effects as “mostly positive.” The other 25 reported primarily negative effects. While a few agreed to be named in this story, most asked to be identified only by their job titles and general areas of work, or wished to remain anonymous, for fear of retaliation. “I would not want to flag the ire of the US government,” one interviewee told us. 

Across interviews and surveys, certain themes appeared repeatedly: the loss of jobs, funding, or opportunities; restrictions on speech and research topics; and limits on who can carry out that research. These shifts have left many respondents deeply concerned about the “long-term implications in IP generation, new scientists, and spinout companies in the US,” as one respondent put it. 

One of the things we heard most consistently is that the uncertainty of the current moment is pushing people to take a more risk-averse approach to their scientific work—either by selecting projects that require fewer resources or that seem more in line with the administration’s priorities, or by erring on the side of hiring fewer people. “We’re not thinking so much about building and enabling … we’re thinking about surviving,” said one respondent. 

Ultimately, many are worried that all the lost opportunities will result in less innovation overall—and caution that it will take time to grasp the full impact. 

“We’re not going to feel it right now, but in like two to three years from now, you will feel it,” said one entrepreneur with a PhD who started his company directly from his area of study. “There are just going to be fewer people that should have been inventing things.”

The money: “Folks are definitely feeling the pressure”

The most immediate impact has been financial. Already, the Trump administration has pulled back support for many areas of science—ending more than a thousand awards by the National Institutes of Health and over 100 grants for climate-related projects by the National Science Foundation. The rate of new awards granted by both agencies has slowed, and the NSF has cut the number of graduate fellowships it’s funding by half for this school year. 

The administration has also cut or threatened to cut funding from a growing number of universities, including Harvard, Columbia, Brown, and UCLA, for supposedly not doing enough to combat antisemitism.

As a result, our honorees said that finding funding to support their work has gotten much harder—and it was already a big challenge before. 

A biochemist at a public university told us she’d lost a major NIH grant. Since it was terminated earlier this year, she’s been spending less time in the lab and more on fundraising. 

Others described uncertainty about the status of grants from a wide range of agencies, including NSF, the Advanced Research Projects Agency for Health, the Department of Energy, and the Centers for Disease Control and Prevention, which collectively could pay out more than $44 million to the researchers we’ve recognized. Several had waited months for news on an application’s status or updates on when funds they had already won would be disbursed. One AI researcher who studies climate-related issues is concerned that her multiyear grant may not be renewed, even though renewal would have been “fairly standard” in the past.

Two individuals lamented the cancellation of 24 awards in May by the DOE’s Office of Clean Energy Demonstrations, including grants for carbon capture projects and a clean cement plant. One said the decision had “severely disrupted the funding environment for climate-tech startups” by creating “widespread uncertainty,” “undermining investor confidence,” and “complicating strategic planning.” 

Climate research and technologies have been a favorite target of the Trump administration: The recently passed tax and spending bill put stricter timelines in place that make it harder for wind and solar installations to qualify for tax credits via the Inflation Reduction Act. Already, at least 35 major commercial climate-tech projects have been canceled or downsized this year. 

In response to a detailed list of questions, a DOE spokesperson said, “Secretary [Chris] Wright and President Trump have made it clear that unleashing American scientific innovation is a top priority.” They pointed to “robust investments in science” in the president’s proposed budget and the spending bill and cited special areas of focus “to maintain America’s global competitiveness,” including nuclear fusion, high-performance computing, quantum computing, and AI. 

Other respondents cited tighter budgets brought on by a change in how the government calculates indirect costs, which are funds included in research grants to cover equipment, institutional overhead, and in some cases graduate students’ salaries. In February, the NIH instituted a 15% cap on indirect costs—which ran closer to 28% of the research funds the NIH awarded in 2023. The DOE, DOD, and NSF all soon proposed similar caps. This collective action has sparked lawsuits, and indirect costs remain in limbo. (MIT, which owns MIT Technology Review, is involved in several of these lawsuits; MIT Technology Review is editorially independent from the university.) 

Looking ahead, an academic at a public university in Texas, where the money granted for indirect costs funds student salaries, said he plans to hire fewer students for his own lab. “It’s very sad that I cannot promise [positions] at this point because of this,” he told us, adding that the cap could also affect the competitiveness of public universities in Texas, since schools elsewhere may fund their student researchers differently. 

At the same time, two people with funding through the Defense Department—which could see a surge of investment under the president’s proposed budget—said their projects were moving forward as planned. A biomedical engineer at a public university in the Midwest expressed excitement about what he perceives as a fresh surge of federal interest in industrial and defense applications of synthetic biology. Still, he acknowledged colleagues working on different projects don’t feel as optimistic: “Folks are definitely feeling the pressure.”

Many who are affected by cuts or delays are now looking for new funding sources in a bid to become less reliant on the federal government. Eleven people said they are pursuing or plan to pursue philanthropic and foundation funding or to seek out industry support. However, the amount of private funding available can’t begin to make up the difference in federal funds lost, and investors often focus more on low-risk, short-term applications than on open scientific questions. 

The NIH responded to a detailed list of questions with a statement pointing to unspecified investments in early-career researchers. “Recent updates to our priorities and processes are designed to broaden scientific opportunity rather than restrict it, ensuring that taxpayer-funded research is rigorous, reproducible, and relevant to all Americans,” it reads. The NSF declined a request for comment from MIT Technology Review

Further complicating this financial picture are tariffs—some of which are already in effect, and many more of which have been threatened. Nine people who responded to our survey said their work is already being affected by these taxes imposed on goods imported into the US. For some scientists, this has meant higher operating costs for their labs: An AI researcher said tariffs are making computational equipment more expensive, while the Texas academic said the cost of buying microscopes from a German firm had gone up by thousands of dollars since he first budgeted for them. (Neither the White House press office nor the White House Office of Science and Technology Policy responded to requests for comment.) 

One cleantech entrepreneur saw a positive impact on his business as more US companies reevaluated their supply chains and sought to incorporate more domestic suppliers. The entrepreneur’s firm, which is based in the US, has seen more interest for its services from potential customers seeking “tariff-proof vendors.”  

“Everybody is proactive on tariffs and we’re one of these solutions—we’re made in America,” he said. 

Another person, who works for a European firm, is factoring potential tariffs into decisions about where to open new production facilities. Though the Trump administration has said the taxes are meant to reinvigorate US manufacturing, she’s now less inclined to build out a significant presence in the US because, she said, tariffs may drive up the costs of importing raw materials that are required to make the company’s product. 

What’s more, financial backers have encouraged her company to stay rooted abroad because of the potential impact of tariffs for US-based facilities: “People who invest worldwide—they are saying it’s reassuring for them right now to consider investing in Europe,” she said.

The climate of fear: “It will impact the entire university if there is retaliation” 

Innovators working in both academia and the private sector described new concerns about speech and the politicization of science. Many have changed how they describe their work in order to better align with the administration’s priorities—fearing funding cuts, job terminations, immigration action, and other potential retaliation. 

This is particularly true for those who work at universities. The Trump administration has reached deals with some institutions, including Columbia and Brown, that would restore part of the funding it slashed—but only after the universities agreed to pay hefty fines and abide by terms that, critics say, hand over an unprecedented level of oversight to administration officials. 

Some respondents had received guidance on what they could or couldn’t say from program managers at their funding agencies or their universities or investors; others had not received any official guidance but made personal decisions on what to say and share publicly based on recent news of grant cancellations.

Both on and off campus, there is substantial pressure on diversity, equity, and inclusion (DEI) initiatives, which have been hit particularly hard as the administration seeks to eliminate what it called “illegal and immoral discrimination programs” in one of the first executive orders of President Trump’s second term.  

One respondent, whose work focuses on fighting child sexual abuse materials, recalled rewriting a grant abstract “3x to remove words banned” by Senator Ted Cruz of Texas, an administration ally; back in February, Cruz identified 3,400 NSF grants as “woke DEI” research advancing “neo-Marxist class warfare propaganda.” (His list includes grants to research self-driving cars and solar eclipses. His office did not respond to a request for comment.) 

Many other researchers we spoke with are also taking steps to avoid being put in the DEI bucket. A technologist at a Big Tech firm whose work used to include efforts to provide more opportunities for marginalized communities to get into computing has stopped talking about those recruiting efforts. One biologist described hearing that grant applications for the NIH now have to avoid words like “cell type diversity” for “DEI reasons”—no matter that “cell type diversity” is, she said, a common and “neutral” scientific term in microbiology. (In its statement, the NIH said: “To be clear, no scientific terms are banned, and commonly used terms like ‘cell type diversity’ are fully acceptable in applications and research proposals.”) 

Plenty of other research has also gotten caught up in the storm

One person who works in climate technology said that she now talks about “critical minerals,” “sovereignty,” and “energy independence” or “dominance” rather than “climate” or “industrial decarbonization.” (Trump’s Energy Department has boosted investment in critical minerals, pledging nearly $1 billion to support related projects.) Another individual working in AI said she has been instructed to talk less about “regulation,” “safety,” or “ethics” as they relate to her work. One survey respondent described the language shift as “definitely more red-themed.”

Some said that shifts in language won’t change the substance of their work, but others feared they will indeed affect the research itself. 

Emma Pierson, an assistant professor of computer science at the University of California, Berkeley, worried that AI companies may kowtow to the administration, which could in turn “influence model development.” While she noted that this fear is speculative, the Trump administration’s AI Action Plan contains language that directs the federal government to purchase large language models that generate “truthful responses” (by the administration’s definition), with a goal of “preventing woke AI in the federal government.” 

And one biomedical researcher fears that the administration’s effective ban on DEI will force an end to outreach “favoring any one community” and hurt efforts to improve the representation of women and people of color in clinical trials. The NIH and the Food and Drug Administration had been working for years to address the historic underrepresentation of these groups through approaches including specific funding opportunities to address health disparities; many of these efforts have recently been cut

Respondents from both academia and the private sector told us they’re aware of the high stakes of speaking out. 

“As an academic, we have to be very careful about how we voice our personal opinion because it will impact the entire university if there is retaliation,” one engineering professor told us. 

“I don’t want to be a target,” said one cleantech entrepreneur, who worries not only about reprisals from the current administration but also about potential blowback from Democrats if he cooperates with it. 

“I’m not a Trumper!” he said. “I’m just trying not to get fined by the EPA.” 

The people: “The adversarial attitude against immigrants … is posing a brain drain”

Immigrants are crucial to American science, but what one respondent called a broad “persecution of immigrants,” and an increasing climate of racism and xenophobia, are matters of growing concern. 

Some people we spoke with feel vulnerable, particularly those who are immigrants themselves. The Trump administration has revoked 6,000 international student visas (causing federal judges to intervene in some cases) and threatened to “aggressively” revoke the visas of Chinese students in particular. In recent months, the Justice Department has prioritized efforts to denaturalize certain citizens, while similar efforts to revoke green cards granted decades ago were shut down by court order. One entrepreneur who holds a green card told us, “I find myself definitely being more cognizant of what I’m saying in public and certainly try to stay away from anything political as a result of what’s going on, not just in science but in the rest of the administration’s policies.” 

On top of all this, federal immigration raids and other enforcement actions—authorities have turned away foreign academics upon arrival to the US and detained others with valid academic visas, sometimes because of their support for Palestine—have created a broad climate of fear.  

Four respondents said they were worried about their own immigration status, while 16 expressed concerns about their ability to attract or retain talent, including international students. More than a million international students studied in the US last year, with nearly half of those enrolling in graduate programs, according to the Institute of International Education

“The adversarial attitude against immigrants, especially those from politically sensitive countries, is posing a brain drain,” an AI researcher at a large public university on the West Coast told us. 

This attack on immigration in the US can be compounded by state-level restrictions. Texas and Florida both restrict international collaborations with and recruitment of scientists from countries including China, even though researchers told us that international collaborations could help mitigate the impacts of decreased domestic funding. “I cannot collaborate at this point because there’s too many restrictions and Texas also can limit us from visiting some countries,” the Texas academic said. “We cannot share results. We cannot visit other institutions … and we cannot give talks.”

All this is leading to more interest in positions outside the United States. One entrepreneur, whose business is multinational, said that their company has received a much higher share of applications from US-based candidates to openings in Europe than it did a year ago, despite the lower salaries offered there. 

“It is becoming easier to hire good people in the UK,” confirmed Karen Sarkisyan, a synthetic biologist based in London. 

At least one US-based respondent, an academic in climate technology, accepted a tenured position in the United Kingdom. Another said that she was looking for positions in other countries, despite her current job security and “very good” salary. “I can tell more layoffs are coming, and the work I do is massively devalued. I can’t stand to be in a country that treats their scientists and researchers and educated people like this,” she told us. 

Some professors reported in our survey and interviews that their current students are less interested in pursuing academic careers because graduate and PhD students are losing offers and opportunities as a result of grant cancellations. So even as the number of international students dwindles, there may also be “shortages in domestic grad students,” one mechanical engineer at a public university said, and “research will fall behind.”  

Have more information on this story or a tip for something else that we should report? Using a non-work device, reach the reporter on Signal at eileenguo.15 or tips@technologyreview.com.

In the end, this will affect not just academic research but also private-sector innovation. One biomedical entrepreneur told us that academic collaborators frequently help his company generate lots of ideas: “We hope that some of them will pan out and become very compelling areas for us to invest in.” Particularly for small startups without large research budgets, having fewer academics to work with will mean that “we just invest less, we just have fewer options to innovate,” he said. “The level of risk that industry is willing to take is generally lower than academia, and you can’t really bridge that gap.” 

Despite it all, a number of researchers and entrepreneurs who generally expressed frustration about the current political climate said they still consider the US the best place to do science. 

Pierson, the AI researcher at Berkeley, described staying committed to her research into social inequities despite the political backlash: “I’m an optimist. I do believe this will pass, and these problems are not going to pass unless we work on them.” 

And a biotech entrepreneur pointed out that US-based scientists can still command more resources than those in most other countries. “I think the US still has so much going for it. Like, there isn’t a comparable place to be if you’re trying to be on the forefront of innovation—trying to build a company or find opportunities,” he said.

Several academics and founders who came to the US to pursue scientific careers spoke about still being drawn to America’s spirit of invention and the chance to advance on their own merits. “For me, I’ve always been like, the American dream is something real,” said one. They said they’re holding fast to those ideals—for now.

An EPA rule change threatens to gut US climate regulations

This story is part of MIT Technology Review’s “America Undone” series, examining how the foundations of US success in science and innovation are currently under threat. You can read the rest here.

The mechanism that allows the US federal government to regulate climate change is on the chopping block.

On Tuesday, US Environmental Protection Agency administrator Lee Zeldin announced that the agency is taking aim at the endangerment finding, a 2009 rule that’s essentially the tentpole supporting federal greenhouse-gas regulations.

This might sound like an obscure legal situation, but it’s a really big deal for climate policy in the US. So buckle up, and let’s look at what this rule says now, what the proposed change looks like, and what it all means.

To set the stage, we have to go back to the Clean Air Act of 1970, the law that essentially gave the EPA the power to regulate air pollution. (Stick with me—I promise I’ll keep this short and not get too into the legal weeds.)

There were some pollutants explicitly called out in this law and its amendments, including lead and sulfur dioxide. But it also required the EPA to regulate new pollutants that were found to be harmful. In the late 1990s and early 2000s, environmental groups and states started asking for the agency to include greenhouse-gas pollution.

In 2007, the Supreme Court ruled that greenhouse gases qualify as air pollutants under the Clean Air Act, and that the EPA should study whether they’re a danger to public health. In 2009, the incoming Obama administration looked at the science and ruled that greenhouse gases pose a threat to public health because they cause climate change. That’s the endangerment finding, and it’s what allows the agency to pass rules to regulate greenhouse gases.  

The original case and argument were specifically about vehicles and the emissions from tailpipes, but this finding was eventually used to allow the agency to set rules around power plants and factories, too. It essentially underpins climate regulations in the US.

Fast-forward to today, and the Trump administration wants to reverse the endangerment finding. In a proposed rule released on Tuesday, the EPA argues that the Clean Air Act does not, in fact, authorize the agency to set emissions standards to address global climate change. Zeldin, in an appearance on the conservative politics and humor podcast Ruthless that preceded the official announcement, called the proposal the “largest deregulatory action in the history of America.”

The administration was already moving to undermine the climate regulations that rely on this rule. But this move directly targets a “fundamental building block of EPA’s climate policy,” says Deborah Sivas, an environmental-law professor at Stanford University.

The proposed rule will go up for public comment, and the agency will then take that feedback and come up with a final version. It’ll almost certainly get hit with legal challenges and will likely wind up in front of the Supreme Court.

One note here is that the EPA makes a mostly legal argument in the proposed rule reversal rather than focusing on going after the science of climate change, says Madison Condon, an associate law professor at Boston University. That could make it easier for the Supreme Court to eventually uphold it, she says, though this whole process is going to take a while. 

If the endangerment finding goes down, it would have wide-reaching ripple effects. “We could find ourselves in a couple years with no legal tools to try and address climate change,” Sivas says.

To take a step back for a moment, it’s wild that we’ve ended up in this place where a single rule is so central to regulating emissions. US climate policy is held up by duct tape and a dream. Congress could have, at some point, passed a law that more directly allows the EPA to regulate greenhouse-gas emissions (the last time we got close was a 2009 bill that passed the House but never made it to the Senate). But here we are.

This move isn’t a surprise, exactly. The Trump administration has made it very clear that it is going after climate policy in every way that it can. But what’s most striking to me is that we’re not operating in a shared reality anymore when it comes to this subject. 

While top officials tend to acknowledge that climate change is real, there’s often a “but” followed by talking points from climate denial’s list of greatest hits. (One of the more ridiculous examples is the statement that carbon dioxide is good, actually, because it helps plants.) 

Climate change is real, and it’s a threat. And the US has emitted more greenhouse gases into the atmosphere than any other country in the world. It shouldn’t be controversial to expect the government to be doing something about it. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.