4 technologies that could power the future of energy

Where can you find lasers, electric guitars, and racks full of novel batteries, all in the same giant room? This week, the answer was the 2025 ARPA-E Energy Innovation Summit just outside Washington, DC.

Energy innovation can take many forms, and the variety in energy research was on display at the summit. ARPA-E, part of the US Department of Energy, provides funding for high-risk, high-reward research projects. The summit gathers projects the agency has funded, along with investors, policymakers, and journalists.

Hundreds of projects were exhibited in a massive hall during the conference, featuring demonstrations and research results. Here are four of the most interesting innovations MIT Technology Review spotted on site. 

Steel made with lasers

Startup Limelight Steel has developed a process to make iron, the main component in steel, by using lasers to heat iron ore to super-high temperatures. 

Steel production makes up roughly 8% of global greenhouse gas emissions today, in part because most steel is still made with blast furnaces, which rely on coal to hit the high temperatures that kick off the required chemical reactions. 

Limelight instead shines lasers on iron ore, heating it to temperatures over 1,600 °C. Molten iron can then be separated from impurities, and the iron can be put through existing processes to make steel. 

The company has built a small demonstration system with a laser power of about 1.5 kilowatts, which can process between 10 and 20 grams of ore. The whole system is made up of 16 laser arrays, each just a bit larger than a postage stamp.

The components in the demonstration system are commercially available; this particular type of laser is used in projectors. The startup has benefited from years of progress in the telecommunications industry that has helped bring down the cost of lasers, says Andy Zhao, the company’s cofounder and CTO. 

The next step is to build a larger-scale system that will use 150 kilowatts of laser power and could make up to 100 tons of steel over the course of a year.

Rocks that can make fuel

The hunks of rock at a booth hosted by MIT might not seem all that high-tech, but someday they could help produce fuels and chemicals. 

A major topic of conversation at the ARPA-E summit was geologic hydrogen—there’s a ton of excitement about efforts to find underground deposits of the gas, which can be used as a fuel across a wide range of industries, including transportation and heavy industry. 

Last year, ARPA-E funded a handful of projects on the topic, including one in Iwnetim Abate’s lab at MIT. Abate is among the researchers who are aiming not just to hunt for hydrogen, but to actually use underground conditions to help produce it. Earlier this year, his team published research showing that by using catalysts and conditions common in the subsurface, scientists can produce hydrogen as well as other chemicals, like ammonia. Abate cofounded a spinout company, Addis Energy, to commercialize the research, which has since also received ARPA-E funding

All the rocks on the table, from the chunk of dark, hard basalt to the softer talc, could be used to produce these chemicals. 

An electric guitar powered by iron nitride magnets

The sound of music drifted from the Niron Magnetics booth across nearby walkways. People wandering by stopped to take turns testing out the company’s magnets, in the form of an electric guitar. 

Most high-powered magnets today contain neodymium—demand for them is set to skyrocket in the coming years, especially as the world builds more electric vehicles and wind turbines. Supplies could stretch thin, and the geopolitics are complicated because most of the supply comes from China. 

Niron is making new magnets that don’t contain rare earth metals. Instead, Niron’s technology is based on more abundant materials: nitrogen and iron. 

The guitar is a demonstration product—today, magnets in electric guitars typically contain aluminum, nickel, and cobalt-based magnets that help translate the vibrations from steel strings into an electric signal that is broadcast through an amplifier. Niron made an instrument using its iron nitride magnets instead. (See photos of the guitar from an event last year here.)

Niron opened a pilot commercial facility in late 2024 that has the capacity to produce 10 tons of magnets annually. Since we last covered Niron, in early 2024, the company has announced plans for a full-scale plant, which will have an annual capacity of about 1,500 tons of magnets once it’s fully ramped up. 

Batteries for powering high-performance data centers

The increasing power demand from AI and data centers was another hot topic at the summit, with server racks dotting the showcase floor to demonstrate technologies aimed at the sector. One stuffed with batteries caught my eye, courtesy of Natron Energy. 

The company is making sodium-ion batteries to help meet power demand from data centers. 

Data centers’ energy demands can be incredibly variable—and as their total power needs get bigger, those swings can start to affect the grid. Natron’s sodium-ion batteries can be installed at these facilities to help level off the biggest peaks, allowing computing equipment to run full out without overly taxing the grid, says Natron cofounder and CTO Colin Wessells. 

Sodium-ion batteries are a cheaper alternative to lithium-based chemistries. They’re also made without lithium, cobalt, and nickel, materials that are constrained in production or processing. We’re seeing some varieties of sodium-ion batteries popping up in electric vehicles in China.

Natron opened a production line in Michigan last year, and the company plans to open a $1.4 billion factory in North Carolina

This artificial leaf makes hydrocarbons out of carbon dioxide

For many years, researchers have been working to build devices that can mimic photosynthesis—the process by which plants use sunlight and carbon dioxide to make their fuel. These artificial leaves use sunlight to separate water into oxygen and hydrogen, which could then be used to fuel cars or generate electricity. Now a research team has taken aim at creating more energy-dense fuels.

Companies have been manufacturing synthetic fuels for nearly a century by combining carbon monoxide (which can be sourced from carbon dioxide) and hydrogen under high temperatures. But the hope is that artificial leaves can eventually do a similar kind of synthesis in a more sustainable and efficient way, by tapping into the power of the sun.

The group’s device produces ethylene and ethane, proving that artificial leaves can create hydrocarbons. The development could offer a cheaper, cleaner way to make fuels, chemicals, and plastics. 

For research lead Virgil Andrei at the University of Cambridge, the ultimate goal is to use this technology to create fuels that don’t leave a harmful carbon footprint after they’re burned. If the process uses carbon dioxide captured from the air or power plants, the resulting fuels could be carbon neutral—and ease the need to keep digging up fossil fuels.

“Eventually we want to be able to source carbon dioxide to produce the fuels and chemicals that we need for industry and for everyday lives,” says Andrei, who coauthored a study published in Nature Catalysis in February. “You end up mimicking nature’s own carbon cycle, so you don’t need additional fossil resources.”

Copper nanoflowers

Like other artificial leaves, the team’s device harnesses energy from the sun to create chemical products. But producing hydrocarbons is more complicated than making hydrogen because the process requires more energy.

To accomplish this feat, the researchers introduced a few innovations. The first was to use a specialized catalyst made up of tiny flower-like copper structures, produced in the lab of coauthor Peidong Yang at the University of California, Berkeley. On one side of the device, electrons accumulated on the surfaces of these nanoflowers. These electrons were then used to convert carbon dioxide and water into a range of molecules including ethylene and ethane, hydrocarbons that each contain two carbon atoms. 

An image showing top views of the copper nanoflowers at different magnifications.
Microscope images of the device’s copper nanoflowers.
ANDREI, V., ROH, I., LIN, JA. ET AL. / NAT CATAL (2025)

These nanoflower structures are tunable and could be adjusted to produce a wide range of molecules, says Andrei: “Depending on the nanostructure of the copper catalyst you can get wildly different products.” 

On the other side of the device, the team also developed a more energy-efficient way to source electrons by using light-absorbing silicon nanowires to process glycerol rather than water, which is more commonly used. An added benefit is that the glycerol-based process can produce useful compounds like glycerate, lactate, and acetate, which could be harvested for use in the cosmetic and pharmaceutical industries. 

Scaling up

Even though the trial system worked, the advance is only a stepping stone toward creating a commercially viable source of fuel. “This research shows this concept can work,” says Yanwei Lum, a chemical and biomolecular engineering assistant professor at the National University of Singapore. But, he adds, “the performance is still not sufficient for practical applications. It’s still not there yet.”

Andrei says the device needs to be significantly more durable and efficient in order to be adopted for fuel production. But the work is moving in the right direction. 

“We have been making this progress because we looked at more unconventional concepts and state-of-the-art techniques that were not really available,” he says. “I’m quite optimistic that this technology could take off in the next five to 10 years.”

This startup just hit a big milestone for green steel production

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Green-steel startup Boston Metal just showed that it has all the ingredients needed to make steel without emitting gobs of greenhouse gases. The company successfully ran its largest reactor yet to make steel, producing over a ton of metal, MIT Technology Review can exclusively report.

The latest milestone means that Boston Metal just got one step closer to commercializing its technology. The company’s process uses electricity to make steel, and depending on the source of that electricity, it could mean cleaning up production of one of the most polluting materials on the planet. The world produces about 2 billion metric tons of steel each year, emitting over 3 billion metric tons of carbon dioxide in the process.

While there are still a lot of milestones left before reaching the scale needed to make a dent in the steel industry, the latest run shows that the company can scale up its process.

Boston Metal started up its industrial reactor for steelmaking in January, and after it had run for several weeks, the company siphoned out roughly a ton of material on February 17. (You can see a video of the molten metal here. It’s really cool.)

Work on this reactor has been underway for a while. I got to visit the facility in Woburn, Massachusetts, in 2022, when construction was nearly done. In the years since, the company has been working on testing it out to make other metals before retrofitting it for steel production. 

Boston Metal’s approach is very different from that of a conventional steel plant. Steelmaking typically involves a blast furnace, which uses a coal-based fuel called coke to drive the reactions needed to turn iron ore into iron (the key ingredient in steel). The carbon in coke combines with oxygen pulled out of the iron ore, which gets released as carbon dioxide.

Instead, Boston Metal uses electricity in a process called molten oxide electrolysis (MOE). Iron ore gets loaded into a reactor, mixed with other ingredients, and then electricity is run through it, heating the mixture to around 1,600 °C (2,900 °F) and driving the reactions needed to make iron. That iron can then be turned into steel. 

Crucially for the climate, this process emits oxygen rather than carbon dioxide (that infamous greenhouse gas). If renewables like wind and solar or nuclear power are used as the source of electricity, then this approach can virtually cut out the climate impact from steel production. 

MOE was developed at MIT, and Boston Metal was founded in 2013 to commercialize the technology. Since then, the company has worked to take it from lab scale, with reactors roughly the size of a coffee cup, to much larger ones that can produce tons of metal at a time. That’s crucial for an industry that operates on the scale of billions of tons per year.

“The volumes of steel everywhere around us—it’s immense,” says Adam Rauwerdink, senior vice president of business development at Boston Metal. “The scale is massive.”

factory view of Boston Metal and MOE Green Steel

BOSTON METAL

Making the huge amounts of steel required to be commercially relevant has been quite the technical challenge. 

One key component of Boston Metal’s design is the anode. It’s basically a rounded metallic bit that sticks into the reactor, providing a way for electricity to get in and drive the reactions required. In theory, this anode doesn’t get used up, but if the conditions aren’t quite right, it can degrade over time.

Over the past few years, the company has made a lot of progress in preventing inert anode degradation, Rauwerdink says. The latest phase of work is more complicated, because now the company is adding multiple anodes in the same reactor. 

In lab-scale reactors, there’s one anode, and it’s quite small. Larger reactors require bigger anodes, and at a certain point it’s necessary to add more of them. The latest run continues to prove how Boston Metal’s approach can scale, Rauwerdink says: making reactors larger, adding more anodes, and then adding multiple reactors together in a single plant to make the volumes of material needed.

Now that the company has completed its first run of the multi-anode reactor for steelmaking, the plan is to keep exploring how the reactions happen at this larger scale. These runs will also help the company better understand what it will cost to make its products.

The next step is to build an even bigger system, Rauwerdink says—something that won’t fit in the Boston facility. While a reactor of the current size can make a ton or two of material in about a month, the truly industrial-scale equipment will make that amount of metal in about a day. That demonstration plant should come online in late 2026 and begin operation in 2027, he says. Ultimately, the company hopes to license its technology to steelmakers. 

In steel and other heavy industries, the scale can be mind-boggling. Boston Metal has been at this for over a decade, and it’s fascinating to see the company make progress toward becoming a player in this massive industry. 


Now read the rest of The Spark

Related reading

We named green steel one of our 2025 Breakthrough Technologies. Read more about why here.

I visited Boston Metal’s facility in Massachusetts in 2022—read more about the company’s technology in this story (I’d say it pretty much holds up). 

Climate tech companies like Boston Metal have seen a second boom period for funding and support following the cleantech crash a decade ago. Read more in this 2023 feature from David Rotman

High voltage towers at sunset background. Power lines against the sky

GETTY

Another thing

Electricity demand is rising faster in the US than it has in decades, and meeting it will require building new power plants and expanding grid infrastructure. That could be a problem, because it’s historically been expensive and slow to get new transmission lines approved. 

New technologies could help in a major way, according to Brian Deese and Rob Gramlich. Read more in this new op-ed

And one more

Plants have really nailed the process of making food from sunlight in photosynthesis. For a very long time, researchers have been trying to mimic this process and make an artificial leaf that can make fuels using the sun’s energy.

Now, researchers are aiming to make energy-dense fuels using a specialized, copper-containing catalyst. Read more about the innovation in my colleague Carly Kay’s latest story

Keeping up with climate

Energy storage is still growing quickly in the US, with 18 gigawatts set to come online this year. That’s up from 11 GW in 2024. (Canary Media)

Oil companies including Shell, BP, and Equinor are rolling back climate commitments and ramping up fossil-fuel production. Oil and gas companies were accounting for only a small fraction of clean energy investment, so experts say that’s not a huge loss. But putting money toward new oil and gas could be bad for emissions. (Grist)

Butterfly populations are cratering around the US, dropping by 22% in just the last 20 years. Check out this visualization to see how things are changing where you live. (New York Times)

New York City’s congestion pricing plan, which charges cars to enter the busiest parts of the city, is gaining popularity: 42% of New York City residents support the toll, up from 32% in December. (Bloomberg)

Here’s a reality check for you: Ukraine doesn’t have minable deposits of rare earth metals, experts say. While tensions between US and Ukraine leaders ran high in a meeting to discuss a minerals deal, IEEE Spectrum reports that the reality doesn’t match the political theater here. (IEEE Spectrum)

Quaise Energy has a wild drilling technology that it says could unlock the potential for geothermal energy. In a demonstration, the company recently drilled several inches into a piece of rock using its millimeter-wave technology. (Wall Street Journal)

Here’s another one for the “weird climate change effects” file: greenhouse-gas emissions could mean less capacity for satellites. It’s getting crowded up there. (Grist)

The Biden administration funded agriculture projects related to climate change, and now farmers are getting caught up in the Trump administration’s efforts to claw back the money. This is a fascinating case of how the same project can be described with entirely different language depending on political priorities. (Washington Post)

You and I are helping to pay for the electricity demands of big data centers. While some grid upgrades are needed just to serve big projects like those centers, the cost of building and maintaining the grid is shared by everyone who pays for electricity. (Heatmap)

The cheapest way to supercharge America’s power grid

US electricity consumption is rising faster than it has in decades, thanks in part to the boom in data center development, the resurgence in manufacturing, and the increasing popularity of electric vehicles. 

Accommodating that growth will require building wind turbines, solar farms, and other power plants faster than we ever have before—and expanding the network of wires needed to connect those facilities to the grid.


Heat Exchange

MIT Technology Review’s guest opinion series, offering expert commentary on legal, political and regulatory issues related to climate change and clean energy. You can read the rest of the pieces here.


But one major problem is that it’s expensive and slow to secure permits for new transmission lines and build them across the country. This challenge has created one of the biggest obstacles to getting more electricity generation online, reducing investment in new power plants and stranding others in years-long “interconnection queues” while they wait to join the grid.

Fortunately, there are some shortcuts that could expand the capacity of the existing system without requiring completely new infrastructure: a suite of hardware and software tools known as advanced transmission technologies (ATTs), which can increase both the capacity and the efficiency of the power sector.

ATTs have the potential to radically reduce timelines for grid upgrades, avoid tricky permitting issues, and yield billions in annual savings for US consumers. They could help us quickly bring online a significant portion of the nearly 2,600 gigawatts of backlogged generation and storage projects awaiting pathways to connect to the electric grid. 

The opportunity to leverage advanced transmission technologies to update the way we deliver and consume electricity in America is as close to a $20 bill sitting on the sidewalk as policymakers may ever encounter. Promoting the development and use of these technologies should be a top priority for politicians in Washington, DC, as well as electricity market regulators around the country.

That includes the new Trump administration, which has clearly stated that building greater electricity supply and keeping costs low for consumers are high priorities. 

In the last month, Washington has been consumed by the Trump team’s efforts to test the bounds of executive power, fire civil servants, and disrupt the basic workings of the federal government. But when or if the White House and Congress get around to enacting new energy policies, they would be wise to pick up the $20 bill by enacting bipartisan measures to accelerate the rollout of these innovative grid technologies.

ATTs generally fall into four categories: dynamic line ratings, which combine local weather forecasts and measurements on or near the transmission line to safely increase their capacity when conditions allow; high-performance conductors, which are advanced wires that use carbon fiber, composite cores, or superconducting materials to carry more electricity than traditional steel-core conductors; topology optimization, which uses software to model fluctuating conditions across the grid and identify the most efficient routes to distribute electricity from moment to moment; and advanced power flow control devices, which redistribute electricity to lines with available capacity. 


“This would allow utilities to earn a profit for saving money, not just spending it, and could save consumers billions on their electricity bills every year.”


Other countries from Belgium to India to the United Kingdom are already making large-scale use of these technologies. Early projects in the United States have been remarkably successful as well. One recent deployment of dynamic line ratings increased capacity by more than 50% for only $45,000 per mile—roughly 1% of the price of building new transmission.

So why are we not seeing an explosion in ATT investment and deployment in the US? Because despite their potential to unlock 21st-century technology, the 20th-century structure of the nation’s electricity markets discourages adoption of these solutions. 

For one thing, under the current regulatory system, utilities generally make money by passing the cost of big new developments along to customers (earning a fixed annual return on their investment). That comes in the form of higher electricity rates, which local public utility commissions often approve after power companies propose such projects.

That means utilities have financial incentives to make large and expensive investments, but not to save consumers money. When ATTs are installed in place of building new transmission capacity, the smaller capital costs mean that utilities make lower profits. For example, utilities might earn $600,000 per year after building a new mile of transmission, compared with about $4,500 per mile annually after installing the equipment and software necessary for line ratings. While these state regulatory agencies are tasked with ensuring that utilities act in the best interest of consumers, they often lack the necessary information to identify the best approach for doing so.

Overcoming these structural barriers will require action from both state and federal governments, and it should appeal to Democrats and Republicans alike. We’ve already seen some states, including Minnesota and Montana, move in this direction, but policy interventions to date remain insufficient. In a recent paper, we propose a new approach for unlocking the potential of these technologies.

First, we suggest requiring transmission providers to use ATTs in some “no regrets” contexts, where possible downsides are minor or nonexistent. The Federal Energy Regulatory Commission, for example, is already considering requiring dynamic line ratings on certain highly congested lines. Given the low cost of dynamic line ratings, and their clear benefit in cases of congestion, we believe that FERC should quickly move forward with, and strengthen, such a rule. Likewise, the Department of Energy or Congress should adopt an efficiency standard for the wires that carry electricity around the country. Every year, approximately 5% of electricity generated is lost in the transmission and distribution process. The use of high-performance conductors can reduce those losses by 30%.

In addition, federal agencies and state lawmakers should require transmission providers to evaluate the potential for using ATTs on their grid, or provide support to help them do so. FERC has recently taken steps in this direction, and it should continue to strengthen those actions. 

Regulators should also provide financial incentives to transmission providers to encourage the installation of ATTs. The most promising approach is a “shared savings” incentive, such as that proposed in the recent Advancing GETS Act. This would allow utilities to earn a profit for saving money, not just spending it, and could save consumers billions on their electricity bills every year.

Finally, we should invest in building digital tools so transmission owners can identify opportunities for these technologies and so regulators can hold them accountable. Developing these systems will require transmission providers to share information about electricity supply and demand as well as grid infrastructure. Ideally, with such data in hand, researchers can develop a “digital twin” of the current transmission system to test different configurations of ATTs and help improve the performance and efficiency of our grids. 

We are all too aware that the world often faces difficult policy trade-offs. But laws or regulations that facilitate the use of ATTs can quickly expand the grid and save consumers money. They should be an easy yes on both sides of the aisle.

Brian Deese is an innovation fellow at the Massachusetts Institute of Technology and served as director of the White House National Economic Council from 2021 to 2023. Rob Gramlich is founder and president of Grid Strategies and was economic advisor to the chairman of the Federal Energy Regulatory Commission during the George W. Bush administration.

The best time to stop a battery fire? Before it starts.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Flames erupted last Tuesday amid the burned wreckage of the battery storage facility at Moss Landing Power Plant. It happened after a major fire there burned for days and then went quiet for weeks.

The reignition is yet another reminder of how difficult fires in lithium-ion batteries can be to deal with. They burn hotter than other fires—and even when it looks as if the danger has passed, they can reignite.

As these batteries become more prevalent, first responders are learning a whole new playbook for what to do when they catch fire, as a new story from our latest print magazine points out. Let’s talk about what makes battery fires a new challenge, and what it means for the devices, vehicles, and grid storage facilities that rely on them.

“Fires in batteries are pretty nasty,” says Nadim Maluf, CEO and cofounder of Qnovo, a company that develops battery management systems and analytics.

While first responders might be able to quickly douse a fire in a gas-powered vehicle with a hose, fighting an EV fire can require much more water. Often, it’s better to just let battery fires burn out on their own, as Maya Kapoor outlines in her story for MIT Technology Review. And as one expert pointed out in that story, until a battery is dismantled and recycled, “it’s always going to be a hazard.”

One very clear example of that is last week’s reignition at Moss Landing, the world’s biggest battery storage project. In mid-January, a battery fire destroyed a significant part of a 300-megawatt grid storage array. 

The site has been quiet for weeks, but residents in the area got an alert last Tuesday night urging them to stay indoors and close windows. Vistra, the owner of Moss Landing Power Plant, didn’t respond to written questions for this story but said in a public statement that flames were spotted at the facility on Tuesday and the fire had burned itself out by Wednesday morning.

Even after a battery burns, some of the cells can still hold charge, Maluf says, and in a large storage installation on the grid, there can be a whole lot of stored energy that can spark new blazes or pose a danger to cleanup crews long after the initial fire.

Vistra is currently in the process of de-linking batteries at Moss Landing, according to a website the company set up to share information about the fire and aftermath. The process involves unhooking the electrical connections between batteries, which reduces the risk of future problems. De-linking work began on February 22 and should take a couple of weeks to complete.

Even as crews work to limit future danger from the site, we still don’t know why a fire started at Moss Landing in the first place. Vistra’s site says an investigation is underway and that it’s working with local officials to learn more.

Battery fires can start when cells get waterlogged or punctured, but they can also spark during normal use, if a small manufacturing defect goes unnoticed and develops into a problem. 

Remember when Samsung Galaxy Note phones were banned from planes because they kept bursting into flames? That was the result of a manufacturing defect that could lead to short-circuiting in some scenarios. (A short-circuit basically happens when the two separate electrodes of a battery come into contact, allowing an uncontrolled flow of electricity that can release heat and start fires.)

And then there’s the infamous Chevy Bolt—those vehicles were all recalled because of fire risk. The issues were also traced back to a manufacturing issue that caused cells to short-circuit. 

One piece of battery safety is designing EV packs and large stationary storage arrays so that fires can be slowed down and isolated when they do occur. There have been major improvements in fire suppression measures in recent years, and first responders are starting to better understand how to deal with battery fires that get out of hand. 

Ultimately, though, preventing fires before they occur is the goal. It’s a hard job. Identifying manufacturing defects can be like searching for a needle in a haystack, Maluf says. Battery chemistry and cell design are complicated, and the tiniest problem can lead to a major issue down the road. 

But fire prevention is important to gain public trust, and investing in safety improvements is worth it, because we need these devices more than ever. Batteries are going to be crucial in efforts to clean up our power grid and the transportation sector.

“I don’t believe the answer is stopping these projects,” Maluf says. “That train has left the station.”


Now read the rest of The Spark

Related reading

For more on the Moss Landing Power Plant fire, catch up with my newsletter from a couple of weeks ago

Batteries are a “master key” technology, meaning they can unlock other tech that helps cut emissions, according to a 2024 report from the International Energy Agency. Read more about the current state of batteries in this story from last year

New York City is interested in battery swapping as a solution for e-bike fires, as I covered last year

Keeping up with climate

BP Is dropping its target of increasing renewables by 20-fold by 2030. The company is refocusing on fossil fuels after concerns about earnings. Booooo. (Reuters)

This refinery planned to be a hub for alternative jet fuels in the US. Now the project is on shaky ground after the Trump administration has begun trying to claw back funding from the Inflation Reduction Act. (Wired)
→ Alternative jet fuels are one of our 10 Breakthrough Technologies of 2025. As I covered, the fuels will be a challenge to scale, and that’s even more true if federal funding falls through. (MIT Technology Review)

Chinese EVs are growing in popularity in Nigeria. Gas-powered cars are getting more expensive to run, making electric ones attractive, even as much of the country struggles to get consistent access to electricity. (Bloomberg)

EV chargers at federal buildings are being taken out of service—the agency that runs federal buildings says they aren’t “mission critical.” This one boggles my mind—these chargers are already paid for and installed. What a waste. (The Verge)

Congestion pricing that charges drivers entering the busiest parts of Manhattan has cut traffic, and now the program is hitting revenue goals, raising over $48 million in the first month. Expect more drama to come, though, as the Trump administration recently revoked authorization for the plan, and the MTA followed up with a lawsuit. (New York Times)

New skyscrapers are designed to withstand hurricanes, but the buildings may fare poorly in less intense wind storms, according to a new study. (The Guardian)

Ten new battery factories are scheduled to come online this year in the US. The industry is entering an uncertain time, especially with the new administration—will this be a battery boom or a battery bust? (Inside Climate News)

Proposed renewable-energy projects in northern Colombia are being met with opposition from Indigenous communities in the region. The area could generate 15 gigawatts of electricity, but local leaders say that they haven’t been consulted about development. (Associated Press)

This farm in Virginia is testing out multiple methods designed to pull carbon out of the air at once. Spreading rock dust, compost, and biochar on fields can help improve yields and store carbon. (New Scientist)

What’s driving electricity demand? It isn’t just AI and data centers.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Electricity demand rose by 4.3% in 2024 and will continue to grow at close to 4% annually through 2027, according to a new report from the International Energy Agency. 

If that sounds familiar, it may be because there’s been a constant stream of headlines about energy demand recently, largely because of the influx of data centers—especially those needed to power the AI that’s spreading seemingly everywhere. These technologies are sucking up more power from the grid, but they’re just a small part of a much larger story. 

What’s actually behind this demand growth is complicated. Much of the increase comes from China, India, and Southeast Asia. Air-conditioning, electric vehicles, and factories all play a role. And of course, we can’t entirely discount the data centers. Here are a few key things to know about global electricity in 2025, and where things are going next.

China, India, and Southeast Asia are the ones to watch.

Between now and 2027, about 85% of electricity demand growth is expected to come from developing and emerging economies. China is an especially major force, having accounted for over half of global electricity demand growth last year.

The influence of even individual sectors in China is staggering. For example, in 2024, about 300 terawatt-hours’ worth of electricity was used just to produce solar modules, batteries, and electric vehicles. That’s as much electricity as Italy uses in a year. And this sector is growing quickly. 

A boom in heavy industry, an increase in the number of air conditioners, and a robust electric-vehicle market are all adding to China’s power demand. India and Southeast Asia are also going to have above-average increases in demand, driven by economic growth and increased adoption of air conditioners. 

And there’s a lot of growth yet to come, as 600 million people across Africa still don’t have access to reliable electricity.

Data centers are a somewhat minor factor globally, but they can’t be counted out.

According to another IEA projection published last year, data centers are expected to account for less than 10% of global electricity demand growth between now and 2030. That’s less than the expected growth due to other contributors like electric vehicles, air conditioners, and heavy industry.

However, data centers are a major storyline for advanced economies like the US and many countries in Europe. As a group, these nations have largely seen flat or declining electricity demand for the last 15 years, in part because of efficiency improvements. Data centers are reversing that trend.

Take the US, for example. The IEA report points to other research showing that the 10 states hosting the most data center growth saw a 10% increase in electricity demand between 2019 and 2023. Demand in the other 40 states declined by about 3% over the same period.

One caveat here is that nobody knows for sure what’s going to happen with data centers in the future, particularly those needed to run AI. Projections are all over the place, and small changes could drastically alter the amount of energy required for the technology. (See the DeepSeek drama.)

One bit I found interesting here is that China could see data centers emerge as yet another source of growing electricity demand in the future, with demand projected to double between now and 2027 (though, again, it’s all quite uncertain).

What this all means for climate change is complicated.

Growth in electricity demand can be seen as a good thing for our climate. Using a heat pump rather than a natural-gas heating system can help reduce emissions even as it increases electricity use. But as we add demand to the grid, it’s important to remember that in many places, it’s still largely reliant on fossil fuels.

The good news in all this is that there’s enough expansion in renewable and low-emissions electricity sources to cover the growth in demand. The rapid deployment of solar power alone contributes enough energy to cover half the demand growth expected through 2027. Nuclear power is also expected to see new heights soon, with recovery in France, restarts in Japan, and new reactors in China and India adding to a stronger global industry.

However, just adding renewables to meet electricity demand doesn’t automatically pull fossil fuels off the grid; existing coal and natural-gas plants are still chugging along all over the world. To make a dent in emissions, low-carbon sources need to grow fast enough not only to meet new demand, but to replace existing dirtier sources.

It isn’t inherently bad that the grid is growing. More people having air-conditioning and more factories making solar panels are all firmly in the “positive” column, I’d argue. But keeping up with this breakneck pace of demand growth is going to be a challenge—one that could have major effects on our ability to cut emissions. 


Now read the rest of The Spark

Related reading

Transmission equipment is key to getting more power to more people. Here’s why one developer won’t quit fighting to connect US grids, as reported by my colleague James Temple.

Virtual power plants could help meet growing electricity demand for EVs in China, as Zeyi Yang lays out in this story.

Power demand from data centers is rising, and so are emissions. They’re set to climb even higher, as James O’Donnell explains in this story from December.

robot made with humanoid head, car engine, chassis, wheels and industrial robot arms holds an electric drill and smaller car.

STEPHANIE ARNETT/MIT TECHNOLOGY REVIEW

Another thing

Competition is stiff in China’s EV market, so some automakers are pivoting to humanoid robots. With profit margins dropping for electrified vehicles, financial necessity is driving creativity, as my new colleague Caiwei Chen explains in her latest story

Keeping up with climate

The Trump administration has frozen funds and set hiring restrictions, and that could leave the US vulnerable to wildfire. (ProPublica)

US tariffs on imported steel and aluminum are set to go into effect next month, and they could be a problem for key grid equipment. The metals are used in transformers, which are in short supply. (Heatmap)

A maker of alternative jet fuel will get access to a $1.44 billion loan it was promised earlier this year. The Trump administration is exploring canceling promised financing, but this loan went ahead after a local representative pressured the White House. (Canary Media)

A third-generation oil and gas worker has pivoted to focus on drilling for geothermal systems. This Q&A is a fascinating look at what it might look like for more workers to move from fossil fuels to renewables. (Inside Climate News)

The Trump administration is working to fast-track hundreds of fossil-fuel projects. The US Army Corps of Engineers is speeding up permits using an emergency designation. (New York Times)

Japan’s government is adopting new climate targets. The country aims to cut greenhouse-gas emissions by more than 70% from 2013 levels over the next 15 years and reach net zero by 2050. Expansion of renewables and nuclear power will be key in the plan. (Associated Press)

A funding freeze has caused a whole lot of confusion about the state of federal financing for EV chargers in the US. But there’s still progress on building chargers, both from government funds already committed and from the private sector. (Wired)

The US National Oceanic and Atmospheric Administration (NOAA) is the latest target of the Trump administration’s cuts. NOAA provides weather forecasts, and private industry is reliant on the agency’s data. (Bloomberg)

What a major battery fire means for the future of energy storage

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

A few weeks ago, a fire broke out at the Moss Landing Power Plant in California, the world’s largest collection of batteries on the grid. Although the flames were extinguished in a few days, the metaphorical smoke is still clearing.

Some residents in the area have reported health issues that they claim are related to the fire, and some environmental tests revealed pollutants in the water and ground near where the fire burned. One group has filed a lawsuit against the company that owns the site.

In the wake of high-profile fires like Moss Landing, there are very understandable concerns about battery safety. At the same time, as more wind, solar power, and other variable electricity sources come online, large energy storage installations will be even more crucial for the grid. 

Let’s catch up on what happened in this fire, what the lingering concerns are, and what comes next for the energy storage industry.

The Moss Landing fire was spotted in the afternoon on January 16, according to local news reports. It started small but quickly spread to a huge chunk of batteries at the plant. Over 1,000 residents were evacuated, nearby roads were closed, and a wider emergency alert warned those nearby to stay indoors.

The fire hit the oldest group of batteries installed at Moss Landing, a 300-megawatt array that came online in 2020. Additional installations bring the total capacity at the site to about 750 megawatts, meaning it can deliver as much energy to the grid as a standard coal-fired power plant for a few hours at a time.

According to a statement that site owner Vistra Energy gave to the New York Times, most of the batteries inside the affected building (the one that houses the 300MW array) burned. However, the company doesn’t have an exact tally, because crews are still prohibited from going inside to do a visual inspection.

This isn’t the first time that batteries at Moss Landing have caught fire—there have been several incidents at the plant since it opened. However, this event was “much more significant” than previous fires, says Dustin Mulvaney, a professor of environmental studies at San Jose State University, who’s studied the plant.

Residents are worried about the potential consequences.The US Environmental Protection Agency monitored the nearby air for hydrogen fluoride, a dangerous gas that can be produced in lithium-ion battery fires, and didn’t detect levels higher than California’s standards. But some early tests detected elevated levels of metals including cobalt, nickel, copper, and manganese in soil around the plant. Tests also detected metals in local drinking water, though at levels considered to be safe.

Citing some of those tests, a group of residents filed a lawsuit against Vistra last week, alleging that the company (along with a few other named defendants) failed to implement adequate safety measures despite previous incidents at the facility. The suit’s legal team includes Erin Brockovich, the activist famous for her work on a 1990s case against Pacific Gas & Electric Company involving contaminated groundwater from oil and gas equipment in California.

The lawsuit, and Brockovich’s involvement in particular, raises a point that I think is worth recognizing here: Technologies that help us address climate change still have the potential to cause harm, and taking that seriously is crucial. 

The oil and gas industry has a long history of damaging local environments and putting people in harm’s way. That’s evident in local accidents and long-term pollution, and in the sense that burning fossil fuels drives climate change, which has widespread effects around the world. 

Low-carbon energy sources like wind, solar, and batteries don’t add to the global problem of climate change. But many of these projects are industrial sites, and their effects can still be felt by local communities, especially when things go wrong as they did in the Moss Landing fire. 

The question now is whether those concerns and lawsuits will affect the industry more broadly. In a news conference, one local official called the fire “a Three Mile Island event for this industry,” referring to the infamous 1979 accident at a Pennsylvania nuclear power plant. That was a turning point for nuclear power, after which public support declined sharply

With the growing number of electric vehicles and batteries for energy storage on the grid, more high-profile fires have hit the news, like last year’s truck fire in LA, the spate of e-bike battery fires in New York City, or one at a French recycling plant last year

“Battery energy storage systems are complex machines,” Mulvaney says. “Complex systems have a lot of potential failures.” 

When it comes to large grid-scale installations, battery safety has already improved since Moss Landing was built in 2020, as Canary Media’s Julian Spector points out in a recent story. One reason is that many newer sites use a different chemistry that’s considered safer. Newer energy storage facilities also tend to isolate batteries better, so small fires won’t spread as dramatically as they did in this case. 

There’s still a lot we don’t know about this fire, particularly when it comes to how it started.  Learning from the results of the ongoing investigations will be important, because we can only expect to see more batteries coming online in the years ahead. 

In 2023, there were roughly 54 gigawatts’ worth of utility-scale batteries on the grid globally. If countries follow through on stated plans for renewables, that number could increase tenfold by the end of the decade. 

Energy storage is a key tool in transforming our grid and meeting our climate goals, and the industry is moving quickly. Safety measures need to keep up. 


Now read the rest of The Spark

Related reading

E-bike battery fires, including ones started by delivery drivers’ vehicles, have plagued New York City. A battery-swapping system could help address the problem

Insulating materials layered inside EV batteries could help reduce fire risk. A company making them just got a big boost in the form of a loan from the US Department of Energy. 

New chemistries, like iron-air batteries, promise safer energy storage. Read our profile of Form Energy, which we named one of our 15 Climate Tech Companies to Watch in 2024. 

Keeping up with climate

Data centers are expected to be a major source of growth in electricity demand. Being flexible may help utilities meet that demand, according to a new study. (Inside Climate News)

The world’s first lab-grown meat for pets just went on sale in the UK. Meatly is selling limited quantities of its treats, which are a blend of plant-based ingredients and cultivated chicken cells. (The Verge)

Kore Power scrapped plans for a $1.2 billion battery plant in Arizona, but the company isn’t giving up just yet. The new CEO said the new plan is to look for an existing factory that can be transformed into a battery manufacturing facility. (Canary Media)

The auto industry is facing a conundrum: Customers in the US want bigger vehicles, but massive EVs might not make much economic sense. New extended-range electric vehicles that combine batteries and a gas-powered engine that acts as a generator could be the answer. (Heatmap)

Officials at the National Oceanic and Atmospheric Administration were told to search grants for words related to climate change. It’s not clear what comes next. (Axios)

It might be officially time to call it on the 1.5 °C target. Two new studies suggest that the world has already entered into the runway to surpass the point where global temperatures increase 1.5 °C over preindustrial levels. (Bloomberg)

States are confused over a Trump administration order to freeze funding for EV chargers. Some have halted work on projects under the $5 billion program, while others are forging on. (New York Times)

Cold weather can affect the EV batteries. Criticisms likely portray something way worse than the reality, but in any case, here’s how to make the most of your EV in the winter. (Canary Media)

What a return to supersonic flight could mean for climate change

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

As I’ve admitted in this newsletter before, I love few things more than getting on an airplane. I know, it’s a bold statement from a climate reporter because of all the associated emissions, but it’s true. So I’m as intrigued as the next person by efforts to revive supersonic flight.  

Last week, Boom Supersonic completed its first supersonic test flight of the XB-1 test aircraft. I watched the broadcast live, and the vibe was infectious, watching the hosts’ anticipation during takeoff and acceleration, and then their celebration once it was clear the aircraft had broken the sound barrier.

And yet, knowing what I know about the climate, the promise of a return to supersonic flight is a little tarnished. We’re in a spot with climate change where we need to drastically cut emissions, and supersonic flight would likely take us in the wrong direction. The whole thing has me wondering how fast is fast enough. 

The aviation industry is responsible for about 4% of global warming to date. And right now only about 10% of the global population flies on an airplane in any given year. As incomes rise and flight becomes more accessible to more people, we can expect air travel to pick up, and the associated greenhouse gas emissions to rise with it. 

If business continues as usual, emissions from aviation could double by 2050, according to a 2019 report from the International Civil Aviation Organization. 

Supersonic flight could very well contribute to this trend, because flying faster requires a whole lot more energy—and consequently, fuel. Depending on the estimate, on a per-passenger basis, a supersonic plane will use somewhere between two and nine times as much fuel as a commercial jet today. (The most optimistic of those numbers comes from Boom, and it compares the company’s own planes to first-class cabins.)

In addition to the greenhouse gas emissions from increased fuel use, additional potential climate effects may be caused by pollutants like nitrogen oxides, sulfur, and black carbon being released at the higher altitudes common in supersonic flight. For more details, check out my latest story.

Boom points to sustainable aviation fuels (SAFs) as the solution to this problem. After all, these alternative fuels could potentially cut out all the greenhouse gases associated with burning jet fuel.

The problem is, the market for SAFs is practically embryonic. They made up less than 1% of the jet fuel supply in 2024, and they’re still several times more expensive than fossil fuels. And currently available SAFs tend to cut emissions between 50% and 70%—still a long way from net-zero.

Things will (hopefully) progress in the time it takes Boom to make progress on reviving supersonic flight—the company plans to begin building its full-scale plane, Overture, sometime next year. But experts are skeptical that SAF will be as available, or as cheap, as it’ll need to be to decarbonize our current aviation industry, not to mention to supply an entirely new class of airplanes that burn even more fuel to go the same distance.

The Concorde supersonic jet, which flew from 1969 to 2003, could get from New York to London in a little over three hours. I’d love to experience that flight—moving faster than the speed of sound is a wild novelty, and a quicker flight across the pond could open new options for travel. 

One expert I spoke to for my story, after we talked about supersonic flight and how it’ll affect the climate, mentioned that he’s actually trying to convince the industry that planes should actually be slowing down a little bit. By flying just 10% slower, planes could see outsized reductions in emissions. 

Technology can make our lives better. But sometimes, there’s a clear tradeoff between how technology can improve comfort and convenience for a select group of people and how it will contribute to the global crisis that is climate change. 

I’m not a Luddite, and I certainly fly more than the average person. But I do feel like, maybe we should all figure out how to slow down, or at least not tear toward the worst impacts of climate change faster. 


Now read the rest of The Spark

Related reading

We named sustainable aviation fuel as one of our 10 Breakthrough Technologies this year. 

The world of alternative fuels can be complicated. Here’s everything you need to know about the wide range of SAFs

Rerouting planes could help reduce contrails—and aviation’s climate impacts. Read more in this story from James Temple.  

A glowing deepseek logo

SARAH ROGERS / MITTR | PHOTO GETTY

Another thing

DeepSeek has crashed onto the scene, upending established ideas about the AI industry. One common claim is that the company’s model could drastically reduce the energy needed for AI. But the story is more complicated than that, as my colleague James O’Donnell covered in this sharp analysis

Keeping up with climate

Donald Trump announced a 10% tariff on goods from China. Plans for tariffs on Mexico and Canada were announced, then quickly paused, this week as well. Here’s more on what it could mean for folks in the US. (NPR)
→ China quickly hit back with mineral export curbs on materials including tellurium, a key ingredient in some alternative solar panels. (Mining.com)
→ If the tariffs on Mexico and Canada go into effect, they’d hit supply chains for the auto industry, hard. (Heatmap News)

Researchers are scrambling to archive publicly available data from agencies like the National Oceanic and Atmospheric Administration. The Trump administration has directed federal agencies to remove references to climate change. (Inside Climate News)
→ As of Wednesday morning, it appears that live data that tracks carbon dioxide in the atmosphere is no longer accessible on NOAA’s website. (Try for yourself here)

Staffers with Elon Musk’s “department of government efficiency” entered the NOAA offices on Wednesday morning, inciting concerns about plans for the agency. (The Guardian)

The National Science Foundation, one of the US’s leading funders of science and engineering research, is reportedly planning to lay off between 25% and 50% of its staff. (Politico)

Our roads aren’t built for the conditions being driven by climate change. Warming temperatures and changing weather patterns are hammering roads, driving up maintenance costs. (Bloomberg)

Researchers created a new strain of rice that produces much less methane when grown in flooded fields. The variant was made with traditional crossbreeding. (New Scientist)

Oat milk maker Oatly is trying to ditch fossil fuels in its production process with industrial heat pumps and other electrified technology. But getting away from gas in food and beverage production isn’t easy. (Canary Media)

A new 3D study of the Greenland Ice Sheet reveals that crevasses are expanding faster than previously thought. (Inside Climate News)

In other ice news, an Arctic geoengineering project shut down over concerns for wildlife. The nonprofit project was experimenting with using glass beads to slow melting, but results showed it was a threat to food chains. (New Scientist)

Supersonic planes are inching toward takeoff. That could be a problem.

Boom Supersonic broke the sound barrier in a test flight of its XB-1 jet last week, marking an early step in a potential return for supersonic commercial flight. The small aircraft reached a top speed of Mach 1.122 (roughly 750 miles per hour) in a flight over southern California and exceeded the speed of sound for a few minutes. 

“XB-1’s supersonic flight demonstrates that the technology for passenger supersonic flight has arrived,” said Boom founder and CEO Blake Scholl in a statement after the test flight.

Boom plans to start commercial operation with a scaled-up version of the XB-1, a 65-passenger jet called Overture, before the end of the decade, and it has already sold dozens of planes to customers including United Airlines and American Airlines. But as the company inches toward that goal, experts warn that such efforts will come with a hefty climate price tag. 

Supersonic planes will burn significantly more fuel than current aircraft, resulting in higher emissions of carbon dioxide, which fuels climate change. Supersonic jets also fly higher than current commercial planes do, introducing atmospheric effects that may warm the planet further.

In response to questions from MIT Technology Review, Boom pointed to alternative fuels as a solution, but those remain in limited supply—and they could have limited use in cutting emissions in supersonic aircraft. Aviation is a significant and growing contributor to human-caused climate change, and supersonic technologies could grow the sector’s pollution, rather than make progress toward shrinking it.

XB-1 follows a long history of global supersonic flight. Humans first broke the sound barrier in 1947, when Chuck Yeager hit 700 miles per hour in a research aircraft (the speed of sound at that flight’s altitude is 660 miles per hour). Just over two decades later, in 1969, the first supersonic commercial airliner, the Concorde, took its first flight. That aircraft regularly traveled at supersonic speeds until the last one was decommissioned in 2003.

Among other issues (like the nuisance of sonic booms), one of the major downfalls of the Concorde was its high operating cost, due in part to the huge amounts of fuel it required to reach top speeds. Experts say today’s supersonic jets will face similar challenges. 

Flying close to the speed of sound changes the aerodynamics required of an aircraft, says Raymond Speth, associate director of the MIT Laboratory for Aviation and the Environment. “All the things you have to do to fly at supersonic speed,” he says, “they reduce your efficiency … There’s a reason we have this sweet spot where airplanes fly today, around Mach 0.8 or so.”

Boom estimates that one of its full-sized Overture jets will burn two to three times as much fuel per passenger as a subsonic plane’s first-class cabin. The company chose this comparison because its aircraft is “designed to deliver an enhanced, productive cabin experience,” similar to what’s available in first- and business-class cabins on today’s aircraft. 

That baseline, however, isn’t representative of the average traveler today. Compared to standard economy-class travel, first-class cabins tend to have larger seats with more space between them. Because there are fewer seats, more fuel is required per passenger, and therefore more emissions are produced for each person. 

When passengers crammed into coach are considered in addition to those in first class, each passenger on a Boom Supersonic flight will burn somewhere between five and seven times more fuel per passenger than the average subsonic plane passenger today, according to research from the International Council on Clean Transportation. 

It’s not just carbon dioxide from burning fuel that could add to supersonic planes’ climate impact. All jet engines release other pollutants as well, including nitrogen oxides, black carbon, and sulfur.

The difference is that while commercial planes today top out in the troposphere, supersonic aircraft tend to fly higher in the atmosphere, in the stratosphere. The air is less dense at higher altitudes, creating less drag on the plane and making it easier to reach supersonic speeds.

Flying in the stratosphere, and releasing pollutants there, could increase the climate impacts of supersonic flight, Speth says. For one, nitrogen oxides released in the stratosphere damage the ozone layer through chemical reactions at that altitude.

It’s not all bad news, to be fair. The drier air in the stratosphere means supersonic jets likely won’t produce significant contrails. That could be a benefit for climate, since contrails contribute to aviation’s warming.

Boom has also touted plans to make up for its expected climate impacts by making its aircraft compatible with 100% sustainable aviation fuel (SAF), a category of alternative fuels made from biological sources, waste products, or even captured carbon from the air. “Going faster requires more energy, but it doesn’t need to emit more carbon. Overture is designed to fly on net-zero carbon sustainable aviation fuel (SAF), eliminating up to 100% of carbon emissions,” a Boom spokesperson said via email in response to written questions from MIT Technology Review

However, alternative fuels may not be a saving grace for supersonic flight. Most commercially available SAF today is made with a process that cuts emissions between 50% and 70% compared to fossil fuels. So a supersonic jet running on SAFs may emit less carbon dioxide than one running on fossil fuels, but alternative fuels will likely still come with some level of carbon pollution attached, says Dan Rutherford, senior director of research at the International Council on Clean Transportation. 

“People are pinning a lot of hope on SAFs,” says Rutherford. “But the reality is, today they remain scarce [and] expensive, and they have sustainability concerns of their own.”

Of the 100 billion gallons of jet fuel used last year, only about 0.5% of it was SAF. Companies are building new factories to produce larger volumes of the fuels and expand the available options, but the fuel is likely going to continue to make up a small fraction of the existing fuel supply, Rutherford says. That means supersonic jets will be competing with other, existing planes for the same supply, and aiming to use more of it. 

Boom Supersonic has secured 10 million gallons of SAF annually from Dimensional Energy and Air Company for the duration of the Overture test flight program, according to the company spokesperson’s email. Ultimately, though, if and when Overture reaches commercial operation, it will be the airlines that purchase its planes hunting for a fuel supply—and paying for it. 

There’s also a chance that using SAFs in supersonic jets could come with unintended consequences, as the fuels have a slightly different chemical makeup than fossil fuels. For example, fossil fuels generally contain sulfur, which has a cooling effect, as sulfur aerosols formed from jet engine exhaust help reflect sunlight. (Intentional release of sulfur is one strategy being touted by groups aiming to start geoengineering the atmosphere.) That effect is stronger in the stratosphere, where supersonic jets are likely to fly. SAFs, however, typically have very low sulfur levels, so using the alternative fuels in supersonic jets could potentially result in even more warming overall.

There are other barriers that Boom and others will need to surmount to get a new supersonic jet industry off the ground. Supersonic travel over land is largely banned, because of the noise and potential damage that comes from the shock wave caused by breaking the sound barrier. While some projects, including one at NASA, are working on changes to aircraft that would result in a less disruptive shock wave, these so-called low-boom technologies are far from proven. NASA’s prototype was revealed last year, and the agency is currently conducting tests of the aircraft, with first flight anticipated sometime this year.  

Boom is planning a second supersonic test flight for XB-1, as early as February 10, according to the spokesperson. Once testing in that small aircraft is done, the data will be used to help build Overture, the full-scale plane. The company says it plans to begin production on Overture in its factory in roughly 18 months. 

In the meantime, the world continues to heat up. As MIT’s Speth says, “I feel like it’s not the time for aviation to be coming up with new ways of using even more energy, with where we are in the climate crisis.”

Three questions about the future of US climate tech under Trump

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Donald Trump has officially been in office for just over a week, and the new administration has hit the ground running with a blizzard of executive orders and memos.

Some of the moves could have major effects for climate change and climate technologies—for example, one of the first orders Trump signed signaled his intention to withdraw from the Paris Agreement, the major international climate treaty.

The road map for withdrawing from the Paris agreement is clear, but not all the effects of these orders are quite so obvious. There’s a whole lot of speculation about how far these actions reach, which ones might get overturned, and generally what comes next. Here are some of the crucial threads that I’m going to be following.

Will states be able to set their own rules on electric vehicles? 

It’s clear that Donald Trump isn’t a fan of electric vehicles. One of the executive orders issued on his first day in office promised to eliminate the “electric vehicle (EV) mandate.” 

The federal government under Biden didn’t actually have an EV mandate in place—rather, Trump is targeting national support programs, including subsidies that lower the cost of EVs for drivers and support building public chargers. But that’s just the beginning, because the executive order will go after states that have set their own rules on EVs. 

While the US Environmental Protection Agency does set some rules around EVs through what are called tailpipe standards, last year California was granted a waiver that allows the state to set its own, stricter rules. The state now requires that all vehicles sold there must be zero-emissions by 2035. More than a dozen states quickly followed suit, setting a target to transition to zero-emissions vehicles within the next decade. That commitment was a major signal to automakers that there will be demand for EVs, and a lot of it, soon.

Trump appears to be coming after that waiver, and with it California’s right to set its own targets on EVs. We’ll likely see court battles over this, and experts aren’t sure how it’s going to shake out.

What will happen to wind projects?

Wind energy was one of the most explicit targets for Trump on the campaign trail and during his first few days in office. In one memo, the new administration paused all federal permits, leases, and loans for all offshore and onshore wind projects.

This doesn’t just affect projects on federal lands or waters—nearly all wind projects typically require federal permits, so this could have a wide effect.

Even if the order is temporary or doesn’t hold up in court, it could be enough to chill investment in a sector that’s already been on shaky ground. As I reported last year, rising costs and slow timelines were already throwing offshore wind projects off track in the US. Investment has slowed since I published that story, and now, with growing political opposition, things could get even rockier.

One major question is how much this will slow down existing projects, like the Lava Ridge Wind Project in Idaho, which got the green light from the Biden administration before he left office. As one source told the Washington Post, the new administration may try to go after leases and permits that have already been issued, but “there may be insufficient authority to do so.”

What about the money?

In an executive order last week, the Trump administration called for a pause on handing out the funds that are legally set aside under the Inflation Reduction Act and the Bipartisan Infrastructure Law. That includes hundreds of billions of dollars for climate research and infrastructure.

This week, a memo from the White House called for a wider pause on federal grants and loans. This goes way beyond climate spending and could affect programs like Medicaid. There’s been chaos since that was first reported; nobody seems to agree on what exactly will be affected or how long the pause was supposed to last, and as of Tuesday evening, a federal judge had blocked that order.

In any case, all these efforts to pause, slow, or stop federal spending will be a major source of fighting going forward. As for effects on climate technology, I think the biggest question is how far the new administration can and will go to block spending that’s already been designated by Congress. There could be political consequences—most funds from the Inflation Reduction Act have gone to conservative-leaning states.  

As I wrote just after the election in November, Donald Trump’s return to office means a sharp turn for the US on climate policy, and we’re seeing that start to play out very quickly. I’ll be following it all, but I’d love to hear from you. What do you most want to know more about? What questions do you have? If you work in the climate sector, how are you seeing your job affected? You can email me at casey.crownhart@technologyreview.com, message me on Bluesky, or reach me on Signal: @casey.131.


Now read the rest of The Spark

Related reading

EVs are mostly set for solid growth this year, but what happens in the US is still yet to be seen, as my colleague James Temple covered in a recent story

The Inflation Reduction Act set aside hundreds of billions of dollars for climate spending. Here’s how the law made a difference, two years in.

For more on Trump’s first week in office, check out this news segment from Science Friday (featuring yours truly). 

small chip rises away from large chip

STEPHANIE ARNETT/ MIT TECHNOLOGY REVIEW | RAWPIXEL

Another thing

DeepSeek has stormed onto the AI scene. The company released a new reasoning model, called DeepSeek R1, which it claims can surpass the performance of OpenAI’s ChatGPT o1. The model appears to be incredibly efficient, which upends the idea that huge amounts of computing power, and energy, are needed to drive the AI revolution. 

For more, check out this story on the company and its model from my colleague Caiwei Chen, and this look at what it means for the AI industry and its energy claims from James O’Donnell. 

Keeping up with climate

A huge surge in clean energy caused China’s carbon emissions to level off in 2024. Whether the country’s emissions peak and begin to fall for good depends on what wins in a race between clean-energy additions and growth in energy demand. (Carbon Brief)

In a bit of good news, heat pumps just keep getting hotter. The appliances outsold gas furnaces in the US last year by a bigger margin than ever. (Canary Media)
→ Here’s everything you need to know about heat pumps and how they work. (MIT Technology Review)

People are seeking refuge from floods in Kentucky’s old mountaintop mines. Decades ago, the mines were a cheap source of resources but devastated local ecosystems. Now people are moving in. (New York Times)

An Australian company just raised $20 million to use AI to search for key minerals. Earth AI has already discovered significant deposits of palladium, gold, and molybdenum. (Heatmap News)

Some research suggests a key ocean current system is slowing down, but a new study adds to the case that there’s no cause to panic … yet. The new work suggests that the Atlantic Meridional Overturning Circulation, or AMOC, hasn’t shown long-term weakening over the past 60 years. (Washington Post)
→ Efforts to observe and understand the currents have shown they’re weirder and more unpredictable than expected. (MIT Technology Review)

Floating solar panels could be a major resource in US energy. A new report finds that federal reservoirs could hold enough floating solar to produce nearly 1,500 terawatt-hours of electricity, enough to power 100 million homes each year. (Canary Media)

What sparked the LA wildfires is still a mystery, but AI is hunting for clues. Better understanding of what causes fires could be key in efforts to stop future blazes. (Grist)