Addressing climate change impacts

The reality of climate change has spurred enormous public and private investment worldwide, funding initiatives to mitigate its effects and to adapt to its impacts. That investment has spawned entire industries and countless new businesses, resulting in the creation of new green jobs and contributions to economic growth. In the United States, this includes the single largest climate-related investment in the country’s history, made in 2022 as part of the Inflation Reduction Act.

For most US businesses, however, the costs imposed by climate change and the future risks it poses will outweigh growth opportunities afforded by the green sector. In a survey of 300 senior US executives conducted by MIT Technology Review, every respondent agrees that climate change is either harming the economy today or will do so in the future. Most expect their organizations to contend with extreme weather, such as severe storms, flooding, and extreme heat, in the near term. Respondents also report their businesses are already incurring costs related to climate change.

This research examines how US businesses view their climate change risk and the steps they are taking to adapt to climate change’s impacts. The results make clear that climate considerations, such as frequency of extreme weather and access to natural resources, are now a prime factor in businesses’ site location decisions. As climate change accelerates, such considerations are certain to grow in importance.

Key findings include the following:

Businesses are weighing relocation due to climate risks. Most executives in the survey (62%) deem their physical infrastructure (some or all of it) exposed to the impacts of climate change, with 20% reporting it is “very exposed.” A full 75% of respondents report their organization has considered relocating due to climate risk, with 6% indicating they have concrete plans to relocate facilities within the next five years due to climate factors. And 24% report they have already relocated physical infrastructure to prepare for climate change impacts.

Companies must lock in the costs of climate change adaptation. Nearly all US businesses have already suffered from the effects of climate change, judging by the survey. Weighing most heavily thus far, and likely in the future, are increases in operational costs (affecting 64%) and insurance premiums (63%), as well as disruption to operations (61%) and damage to infrastructure (55%).

Executives know climate change is here, and many are planning for it. Four-fifths (81%) of survey respondents deem climate planning and preparedness important to their business, and one-third describe it as very important. There is a seeming lag at some companies, however, at translating this perceived importance into actual planning: only 62% have developed a climate change adaptation plan, and 52% have conducted a climate risk assessment.

Climate-planning resources are a key criterion in site location. When judging a potential new business site on its climate mitigation features, 71% of executives highlight the availability of climate-planning resources as among their top criteria. Nearly two-thirds (64%) also cite the importance of a location’s access to critical natural resources.

Though climate change will affect everyone, its risks and impacts vary by region. No US region is immune to climate change: a majority of surveyed businesses in every region have experienced at least some negative climate change impacts. However, respondents believe the risks are lowest in the Midwest, with nearly half of respondents (47%) naming that region as least exposed to climate change risk.

Download the full report.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

How AI can help spot wildfires

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

In February 2024, a broken utility pole brought down power lines near the small town of Stinnett, Texas. In the following weeks, the fire reportedly sparked by that equipment grew to burn over 1 million acres, the biggest wildfire in the state’s history.

Anything from stray fireworks to lightning strikes can start a wildfire. While it’s natural for many ecosystems to see some level of fire activity, the hotter, drier conditions brought on by climate change are fueling longer fire seasons with larger fires that burn more land.

This means that the need to spot wildfires earlier is becoming ever more crucial, and some groups are turning to technology to help. My colleague James Temple just wrote about a new effort from Google to fund an AI-powered wildfire-spotting satellite constellation. Read his full story for the details, and in the meantime, let’s dig into how this project fits into the world of fire-detection tech and some of the challenges that lie ahead.

The earliest moments in the progression of a fire can be crucial. Today, many fires are reported to authorities by bystanders who happen to spot them and call emergency services. Technologies could help officials by detecting fires earlier, well before they grow into monster blazes.

One such effort is called FireSat. It’s a project from the Earth Fire Alliance, a collaboration between Google’s nonprofit and research arms, the Environmental Defense Fund, Muon Space (a satellite company), and others. This planned system of 52 satellites should be able to spot fires as small as five by five meters (about 16 feet by 16 feet), and images will refresh every 20 minutes.

These wouldn’t be the first satellites to help with wildfire detection, but many existing efforts can either deliver high-resolution images or refresh often—not both, as the new project is aiming to do.

A startup based in Germany, called OroraTech, is also working to launch new satellites that specialize in wildfire detection. The small satellites (around the size of a shoebox) will orbit close to Earth and use sensors that detect heat. The company’s long-term goal is to launch 100 of the satellites into space and deliver images every 30 minutes.

Other companies are staying on Earth, deploying camera stations that can help officials identify, confirm, and monitor fires. Pano AI is using high-tech camera stations to try to spot fires earlier. The company mounts cameras on high vantage points, like the tops of mountains, and spins them around to get a full 360-degree view of the surrounding area. It says the tech can spot wildfire activity within a 15-mile radius. The cameras pair up with algorithms to automatically send an alert to human analysts when a potential fire is detected.

Having more tools to help detect wildfires is great. But whenever I hear about such efforts, I’m struck by a couple of major challenges for this field. 

First, prevention of any sort can often be undervalued, since a problem that never happens feels much less urgent than one that needs to be solved.

Pano AI, which has a few camera stations deployed, points to examples in which its technology detected fires earlier than bystander reports. In one case in Oregon, the company’s system issued a warning 14 minutes before the first emergency call came in, according to a report given to TechCrunch.

Intuitively, it makes sense that catching a blaze early is a good thing. And modeling can show what might have happened if a fire hadn’t been caught early. But it’s really difficult to determine the impact of something that didn’t happen. These systems will need to be deployed for a long time, and researchers will need to undertake large-scale, systematic studies, before we’ll be able to say for sure how effective they are at preventing damaging fires. 

The prospect of cost is also a tricky piece of this for me to wrap my head around. It’s in the public interest to prevent wildfires that will end up producing greenhouse-gas emissions, not to mention endangering human lives. But who’s going to pay for that?

Each of PanoAI’s stations costs something like $50,000 per year. The company’s customers include utilities, which have a vested interest in making sure their equipment doesn’t start fires and watching out for blazes that could damage its infrastructure.

The electric utility Xcel, whose equipment allegedly sparked that fire in Texas earlier this year, is facing lawsuits over its role. And utilities can face huge costs after fires. Last year’s deadly blazes in Hawaii caused billions of dollars in damages, and Hawaiian Electric recently agreed to pay roughly $2 billion for its role in those fires. 

The proposed satellite system from the Earth Fire Alliance will cost more than $400 million all told. The group has secured about two-thirds of what it needs for the first phase of the program, which includes the first four launches, but it’ll need to raise a lot more money to make its AI-powered wildfire-detecting satellite constellation a reality.


Now read the rest of The Spark

Related reading

Read more about how an AI-powered satellite constellation can help spot wildfires faster here

Other companies are aiming to use balloons that will surf on wind currents to track fires. Urban Sky is deploying balloons in Colorado this year

Satellite images can also be used to tally up the damage and emissions caused by fires. Earlier this year I wrote about last year’s Canadian wildfires, which produced more emissions than the fossil fuels in most countries in 2023. 

Another thing

We’re just two weeks away from EmTech MIT, our signature event on emerging technologies. I’ll be on stage speaking with tech leaders on topics like net-zero buildings and emissions from Big Tech. We’ll also be revealing our 2024 list of Climate Tech Companies to Watch. 

For a preview of the event, check out this conversation I had with MIT Technology Review executive editor Amy Nordrum and editor in chief Mat Honan. You can register to join us on September 30 and October 1 at the MIT campus or online—hope to see you there!

Keeping up with climate  

The US Postal Service is finally getting its long-awaited electric vehicles. They’re funny-looking, and the drivers seem to love them already. (Associated Press)

→ Check out this timeline I made in December 2022 of the multi-year saga it took for the agency to go all in on EVs. (MIT Technology Review)

Microsoft is billing itself as a leader in AI for climate innovation. At the same time, the tech giant is selling its technology to oil and gas companies. Check out this fascinating investigation from my former colleague Karen Hao. (The Atlantic)

Imagine solar panels that aren’t affected by a cloudy day … because they’re in space. Space-based solar power sounds like a dream, but advances in solar tech and falling launch costs have proponents arguing that it’s a dream closer than ever to becoming reality. Many are still skeptical. (Cipher)

Norway is the first country with more EVs on the road than gas-powered cars. Diesel vehicles are still the most common, though. (Washington Post

The emissions cost of delivering Amazon packages keeps ticking up. A new report from Stand.earth estimates that delivery emissions have increased by 75% since just 2019. (Wired)

BYD has been dominant in China’s EV market. The company is working to expand, but to compete in the UK and Europe, it will need to win over wary drivers. (Bloomberg)

Some companies want to make air-conditioning systems in big buildings smarter to help cut emissions. Grid-interactive efficient buildings can cut energy costs and demand at peak hours. (Canary Media)

Google is funding an AI-powered satellite constellation that will spot wildfires faster

Early next year, Google and its partners plan to launch the first in a series of satellites that together would provide close-up, frequently refreshed images of wildfires around the world, offering data that could help firefighters battle blazes more rapidly, effectively, and safely.

The online search giant’s nonprofit and research arms have collaborated with the Moore Foundation, the Environmental Defense Fund, the satellite company Muon Space, and others to deploy 52 satellites equipped with custom-developed sensors over the coming years. 

The FireSat satellites will be able to spot fires as small as 5 by 5 meters (16 by 16 feet) on any speck of the globe. Once the full constellation is in place, the system should be capable of updating those images about every 20 minutes, the group says.

Those capabilities together would mark a significant upgrade over what’s available from the satellites that currently provide data to fire agencies. Generally, they can provide either high-resolution images that aren’t updated rapidly enough to track fires closely or frequently refreshed images that are relatively low-resolution.

The Earth Fire Alliance collaboration will also leverage Google’s AI wildfire tools, which have been trained to detect early indications of wildfires and track their progression, to draw additional insights from the data.

The images and analysis will be provided free to fire agencies around the world, helping to improve understanding of where fires are, where they’re moving, and how hot they’re burning. The information could help agencies stamp out small fires before they turn into raging infernos, place limited firefighting resources where they’ll do the most good, and evacuate people along the safest paths.

“In the satellite image of the Earth, a lot of things can be mistaken for a fire: a glint, a hot roof, smoke from another fire,” says Chris Van Arsdale, climate and energy research lead at Google Research and chairman of the Earth Fire Alliance. “Detecting fires becomes a game of looking for needles in a world of haystacks. Solving this will enable first responders to act quickly and precisely when a fire is detected.”

Some details of FireSat were unveiled earlier this year. But the organizations involved will announce additional information about their plans today, including the news that Google.org, the company’s charitable arm, has provided $13 million to the program and that the inaugural launch is scheduled to occur next year. 

Reducing the fog of war

The news comes as large fires rage across millions of acres in the western US, putting people and property at risk. The blazes include the Line Fire in Southern California, the Shoe Fly Fire in central Oregon, and the Davis Fire south of Reno, Nevada.

Wildfires have become more frequent, extreme, and dangerous in recent decades. That, in part, is a consequence of climate change: Rising temperatures suck the moisture from trees, shrubs, and grasses. But fires increasingly contribute to global warming as well. A recent study found that the fires that scorched millions of acres across Canada last year pumped out 3 billion tons of carbon dioxide, four times the annual pollution produced by the airline industry.

GOOGLE

Humans have also increased fire risk by suppressing natural fires for decades, which has allowed fuel to build up in forests and grasslands, and by constructing communities on the edge of wilderness boundaries without appropriate rules, materials, and safeguards

Observers say that FireSat could play an important role in combating fires, both by enabling fire agencies to extinguish small ones before they grow into large ones and by informing effective strategies for battling them once they’re crossed that point.

“What these satellites will do is reduce the fog of war,” says Michael Wara, director of the climate and energy policy program at Stanford University’s Woods Institute for the Environment, who is focused on fire policy issues. “Like when a situation is really dynamic and very dangerous for firefighters and they’re trying to make decisions very quickly about whether to move in to defend structures or try to evacuate people.” 

(Wara serves on the advisory board of the Moore Foundation’s Wildfire Resilience Initiative.)

Some areas, like California, already have greater visibility into the current state of fires or early signs of outbreaks, thanks to technology like Department of Defense satellites, remote camera networks, and planes, helicopters, and drones. But FireSat will be especially helpful for “countries that have less-well-resourced wildland fighting capability,” Wara adds.

Better images, more data, and AI will not be able to fully counter the increased fire dangers. Wara and other fire experts argue that regions need to use prescribed burns and other efforts to more aggressively reduce the buildup of fuel, rethink where and how we build communities in fire-prone areas, and do more to fund and support the work of firefighters on the ground. 

Sounding an earlier alarm for fires will only help reduce dangers when regions have, or develop, the added firefighting resources needed to combat the most dangerous ones quickly and effectively. Communities will also need to put in place better policies to determine what types of fires should be left to burn, and under what conditions.

‘A game changer’

Kate Dargan Marquis, a senior wildfire advisor to the Moore Foundation who previously served as state fire marshal for California, says she can “personally attest” to the difference that such tools will make to firefighters in the field.

“It is a game changer, especially as wildfires are becoming more extreme, more frequent, and more dangerous for everyone,” she says. “Information like this will make a lifesaving difference for firefighters and communities around the globe.”

Kate Dargan Marquis, senior advisor, Moore Foundation.
GOOGLE

Google Research developed the sensors for the satellite and tested them as well as the company’s AI fire detection models by conducting flights over controlled burns in California. Google intends to work with Earth Fire Alliance “to ensure AI can help make this data as useful as possible, and also that wildfire information is shared as widely as possible,” the company said.

Google’s Van Arsdale says that providing visual images of every incident around the world from start to finish will be enormously valuable to scientists studying wildfires and climate change. 

“We can combine this data with Google’s existing models of the Earth to help advance our understanding of fire behavior and fire dynamics across all of Earth’s ecosystems,” he says. “All this together really has the potential to help mitigate the environmental and social impact of fire while also improving people’s health and safety.”

Specifically, it could improve assessments of fire risk, as well as our understanding of the most effective means of preventing or slowing the spread of fires. For instance, it could help communities determine where it would be most cost-effective to remove trees and underbrush. 

Figuring out the best ways to conduct such interventions is another key goal of the program, given their high cost and the limited funds available for managing wildlands, says Genny Biggs, the program director for the Moore Foundation’s Wildfire Resilience Initiative.

The launch

The idea for FireSat grew out of a series of meetings that began with a 2019 workshop hosted by the Moore Foundation, which provided the first philanthropic funding for the program. 

The first satellite, scheduled to be launched aboard a SpaceX rocket early next year, will be fully functional aside from some data transmission features. The goals of the “protoflight” mission include testing the onboard systems and the data they send back. The Earth Fire Alliance will work with a handful of early-adopter agencies to prepare for the next phases. 

The group intends to launch three fully operational satellites in 2026, with additional deployments in the years that follow. Muon Space will build and operate the satellites. 

Agencies around the world should be able to receive hourly wildfire updates once about half of the constellation is operational, says Brian Collins, executive director of the Earth Fire Alliance. It hopes to launch all 52 satellites by around the end of this decade.

Each satellite is designed to last about five years, so the organization will eventually need to deploy 10 more each year to maintain the constellation.

The Earth Fire Alliance has secured about two-thirds of the funding it needs for the first phase of the program, which includes the first four launches. The organization will need to raise additional money from government agencies, international organizations, philanthropies, and other groups  to deploy, maintain, and operate the full constellation. It estimates the total cost will exceed $400 million, which Collins notes “is 1/1000th of the economic losses due to extreme wildfires annually in the US alone.”

Asked if commercial uses of the data could also support the program, including potentially military ones, Collins said in an email: “Adjacent applications range from land use management and agriculture to risk management and industrial impact and mitigation.” 

“At the same time, we know that as large agencies and government agencies adopt FireSat data to support a broad public safety mandate, they may develop all-hazard, emergenc[y] management, and security related uses of data,” he added. “As long as opportunities are in balance with our charter to advance a global approach to wildfire and climate resilience, we welcome new ideas and applications of our data.”

‘Living with fire’

A wide variety of startups have emerged in recent years promising to use technology to reduce the frequency and severity of wildfires—for example, by installing cameras and sensors in forests and grasslands, developing robots to carry out controlled burns, deploying autonomous helicopters that can drop suppressant, and harnessing AI to predict wildfire behavior and inform forest and fire management strategies

So far, even with all these new tools, it’s still been difficult for communities to keep pace with the rising dangers.

Dargan Marquis—who founded her own wildfire software company, Intterra—says she is confident the incidence of disastrous fires can be meaningfully reduced with programs like FireSat, along with other improved technologies and policies. But she says it’s likely to take decades to catch up with the growing risks, as the world continues warming up.

“We’re going to struggle in places like California, these Mediterranean climates around the world, while our technology and our capabilities and our inventions, etc., catch up with that level of the problem,” she says. 

“We can turn that corner,” she adds. “If we work together on a comprehensive strategy with the right data and a convincing plan over the next 50 years, I do think that by the end of the century, we absolutely can be living with fire.”

Meet 2024’s climate innovators under 35

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

One way to know where a field is going? Take a look at what the sharpest new innovators are working on.

Good news for all of us: MIT Technology Review’s list of 35 Innovators Under 35 just dropped. And a decent number of the people who made the list are working in fields that touch climate and energy in one way or another.

Looking through, I noticed a few trends that might provide some hints about the future of climate tech. Let’s dig into this year’s list and consider what these innovators’ work might mean for efforts to combat climate change.

Power to the people

Perhaps unsurprisingly, quite a few innovators on this list are working on energy—and many of them have an interest in making energy consistently available where and when it’s needed. Wind and solar are getting cheap, but we need solutions for when the sun isn’t shining and the wind isn’t blowing.

Tim Latimer cofounded Fervo Energy, a geothermal company hoping to provide consistently available, carbon-free energy using Earth’s heat. You may be familiar with his work, since Fervo was on our list of 15 Climate Tech Companies to Watch in 2023.

Another energy-focused innovator on the list is Andrew Ponec of Antora Energy, a company working to build thermal energy storage systems. Basically, the company’s technology heats up blocks when cheap renewables are available, and then stores that heat and delivers it to industrial processes that need constant power. (You, the readers, named thermal energy storage the readers’ choice on this year’s 10 Breakthrough Technologies list.)

Rock stars

While new ways of generating electricity and storing energy can help cut our emissions in the future, other people are focused on how to clean up the greenhouse gases already in the atmosphere. At this point, removing carbon dioxide from the atmosphere is basically required for any scenario where we limit warming to 1.5 °C over preindustrial levels. A few of the new class of innovators are turning to rocks for help soaking up and locking away atmospheric carbon. 

Noah McQueen cofounded Heirloom Carbon Technologies, a carbon removal company. The technology works by tweaking the way minerals soak up carbon dioxide from the air (before releasing it under controlled conditions, so they can do it all again). The company has plans for facilities that could remove hundreds of thousands of tons of carbon dioxide each year. 

Another major area of research focuses on how we might store captured carbon dioxide. Claire Nelson is the cofounder of Cella Mineral Storage, a company working on storage methods to better trap carbon dioxide underground once it’s been mopped up.  

Material world

Finally, some of the most interesting work on our new list of innovators is in materials. Some people are finding new ones that could help us address our toughest problems, and others are trying to reinvent old ones to clean up their climate impacts.

Julia Carpenter found a way to make a foam-like material from metal. Its high surface area makes it a stellar heat sink, meaning it can help cool things down efficiently. It could be a huge help in data centers, where 40% of energy demand goes to cooling.

And I spoke with Cody Finke, cofounder and CEO of Brimstone, a company working on cleaner ways of making cement. Cement alone is responsible for nearly 7% of global greenhouse-gas emissions, and about half of those come from chemical reactions necessary to make it. Finke and Brimstone are working to wipe out the need for these reactions by using different starting materials to make this crucial infrastructural glue.

Addressing climate change is a sprawling challenge, but the researchers and founders on this list are tackling a few of the biggest issues I think about every day. 

Ensuring that we can power our grid, and all the industrial processes that we rely on for the stuff in our daily lives, is one of the most substantial remaining challenges. Removing carbon dioxide from the atmosphere in an efficient, cheap process could help limit future warming and buy us time to clean up the toughest sectors. And finding new materials, and new methods of producing old ones, could be a major key to unlocking new climate solutions. 

To read more about the folks I mentioned here and other innovators working in climate change and beyond, check out the full list.


Now read the rest of The Spark

Related reading

Fervo Energy (cofounded by 2024 innovator Tim Latimer) showed last year that its wells can be used like a giant underground battery.

A growing number of companies—including Antora Energy, whose CEO Andrew Ponec is a 2024 innovator—are working to bring thermal energy storage systems to heavy industry.

Cement is one of our toughest challenges, as Brimstone CEO and 2024 innovator Cody Finke will tell you. I wrote about Brimstone and other efforts to reinvent cement earlier this year.

A plant with yellow flowers

Another thing

We need a whole lot of metals to address climate change, from the copper in transmission lines to the nickel in lithium-ion batteries that power electric vehicles. Some researchers think plants might be able to help. 

Roughly 750 species of plants are so-called hyperaccumulators, meaning they naturally soak up and tolerate relatively high concentrations of metal. A new program is funding research into how we might use this trait to help source nickel, and potentially other metals, in the future. Read the full story here.

Keeping up with climate  

A hurricane that recently formed in the Gulf of Mexico is headed for Louisiana, ending an eerily quiet few weeks of the season. (Scientific American)

→ After forecasters predicted a particularly active season, the lull in hurricane activity was surprising. (New Scientist)

Rising sea levels are one of the symptoms of a changing climate, but nailing down exactly what “sea level” means is more complicated than you might think. We’ve gotten better at measuring sea level over the past few centuries, though. (New Yorker)

The US Department of Energy’s Loan Programs Office has nearly $400 million in lending authority. This year’s election could shift the focus of that office drastically, making it a bellwether of how the results could affect energy priorities. (Bloomberg)

What if fusion power ends up working, but it’s too expensive to play a significant role on the grid? Some modelers think the technology will remain expensive and could come too late to make a dent in emissions. (Heatmap)

Electric-vehicle sales are up overall, but some major automakers are backing away from goals on zero-emissions vehicles. Even though sales are increasing, uptake is slower than many thought it would be, contributing to the nervous energy in the industry. (Canary Media)

It’s a tough time to be in the business of next-generation batteries. The woes of three startups reveal that difficult times are here, likely for a while. (The Information)

A brief guide to the greenhouse gases driving climate change

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

For the last week or so, I’ve been obsessed with a gas that I’d never given much thought to before. Sulfur hexafluoride (SF6) is used in high-voltage equipment on the grid. It’s also, somewhat inconveniently, a monster greenhouse gas. 

Greenhouse gases are those that trap heat in the atmosphere. SF6 and other fluorinated gases can be thousands of times more powerful at warming the planet than carbon dioxide, and yet, because they tend to escape in relatively small amounts, we hardly ever talk about them. Taken alone, their effects might be minor compared with those of carbon dioxide, but together, these gases add significantly to the challenge of addressing climate change. 

For more on the specifics of sulfur hexafluoride, check out my story from earlier this week. And in the meantime, here’s a quick cheat sheet on the most important greenhouse gases you need to know about. 

Carbon dioxide: The leading actor

I couldn’t in good conscience put together a list of greenhouse gases and not at least mention the big one. Human activities released 37.4 billion tons of carbon dioxide into the atmosphere in 2023. It’s the most abundant greenhouse gas we emit, and the most significant one driving climate change. 

It’s difficult to nail down exactly how long CO2 stays in the atmosphere, since the gas participates in a global carbon cycle—some will immediately be soaked up by oceans, forests, or other ecosystems, while the rest lingers in the atmosphere for centuries. 

Carbon dioxide comes from nearly every corner of our economy—the largest source is power plants, followed by transportation and then industrial activities. 

Methane: The flash in the pan

Methane is also a powerful contributor to climate change, making up about 30% of the warming we’ve experienced to date, even though carbon dioxide is roughly 200 times more abundant in the atmosphere. 

What’s most different about methane is that the gas is very short-lived, having a lifetime of somewhere around a decade in the atmosphere before it breaks down. But in that time, methane can cause about 86 times more warming than an equivalent amount of carbon dioxide. (Quick side note: Comparisons of greenhouse gases are usually made over a specific period of time, since gases all have different lifetimes and there’s no one number that can represent the complexity of atmospheric chemistry and physics.)

Methane’s largest sources are the fossil-fuel industry, agriculture, and waste. Cutting down leaks from the process of extracting oil and gas is one of the most straightforward and currently available ways to slim down methane emissions. There’s a growing movement to track methane more accurately—with satellites, among other techniques—and hold accountable the oil and gas companies that are releasing the most. 

Nitrous oxide: No laughing matter

You may have come across nitrous oxide at the dentist, where it might be called “laughing gas.” But its effects on climate change are serious, as the gas makes up about 6% of warming to date

Nitrous oxide emissions come almost entirely from agriculture. Applying certain nitrogen-based fertilizers can release the gas as bacteria break those chemicals down. Emissions can also come from burning certain agricultural wastes. 

Nitrous oxide emissions grew roughly 40% from 1980 to 2020. The gas lasts in the atmosphere for roughly a century, and over that time it can trap over 200 times more heat than carbon dioxide does in the same period. 

Cutting down on these emissions will largely require careful adjustment of soil management practices in agriculture. Decreasing use of synthetic fertilizers, applying the fertilizer we do use more efficiently, and choosing products that eliminate as many emissions as possible will be the main levers we can pull.

Fluorinated gases: The quiet giants

Last but certainly not least, fluorinated gases are some of the most powerful greenhouse gases that we emit. A variety of them fall under this umbrella, including hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and SF6. They last for centuries (or even millennia) in the atmosphere and have some eye-popping effects, with each having at least 10,000 times more global warming potential than carbon dioxide. 

HFCs are refrigerants, used in air conditioners, refrigerators, and similar appliances. One major area of research in heat pumps seeks alternative refrigerants that don’t have the same potential to warm the planet. The chemicals are also used in aerosol cans (think hair spray), as well as in fire retardants and solvents. 

SF6 is used in high-voltage power equipment, and it’s the single worst greenhouse gas that’s been covered by the International Panel on Climate change, clocking in at 23,500 times more powerful than carbon dioxide over the course of a century. Scientists are trying to find alternatives, but it’s turning out to be a difficult switch—as you’ll see if you read my latest story.

The good news is that we know change is possible when it comes to fluorinated gases. We’ve already moved away from one category, chlorofluorocarbons (CFCs). These were generally used in the same industries that use HFCs today, but they had the nasty habit of tearing a hole in the ozone layer. The 1987 Montreal Protocol successfully spurred a phaseout of CFCs, and we would be on track for significantly more warming without the change.


Now read the rest of The Spark

Related reading

Some scientists want to speed up or encourage chemical reactions that remove methane from the atmosphere, including researchers and companies who aim to spray iron particles above the ocean

Methane can come from food waste, and some companies want to capture that gas and use it for energy instead of allowing it to escape into the atmosphere.

Carbon dioxide emissions from aviation are only one source of the industry’s climate impact. Planes also emit clouds of water vapor and particulate matter called contrails, and they’re a huge cause of the warming from air travel. Rerouting planes could help.

Another thing

We’re inching closer to climate tipping points, thresholds where ecosystems and planetary processes can create feedback loops or rapid shifts. A UK research agency just launched a $106 million effort to develop early warning systems that could alert us if we get dangerously close to these tipping points. 

The agency will focus on two main areas: the melting of the Greenland Ice Sheet and the weakening of the North Atlantic Subpolar Gyre. Read more about the program’s goals in my colleague James Temple’s latest story.

Keeping up with climate  

Volkswagen has thrown over $20 billion at EV, battery, and software startups over the past six years. Experts aren’t sure this shotgun approach is helping the automaker compete on electric cars. (The Information)

We’re finally starting to understand how clouds affect climate change. Clouds reflect light back into space, but they also trap heat in the atmosphere. Researchers are starting to puzzle out how this will add up in our future climate. (New Scientist)

Vehicles in the US just keep getting bigger, and the trend is deadly. Larger vehicles are safer for their occupants but more dangerous for everyone around them. (The Economist)

→ Big cars can also be a problem for climate change, since they require bigger batteries and more power to get around. (MIT Technology Review)

The plant-based-meat industry has had trouble converting consumers in the US, and sales are on the decline. Now advocates are appealing to Congress for help. (Vox)

Last Energy wants to build small nuclear reactors, and the startup just secured $40 million in funding. The company is claiming that it can meet aggressive timelines and says it’ll bring its first reactor online as early as 2026 in Europe. (Canary Media)

There could be 43 million tons of wind turbine blades in landfills by 2050. Researchers say they’ve found alternative materials for the blades that could make them recyclable. (New York Times)

→ Other research aims to recycle the fiberglass in current blades using chemical methods. (MIT Technology Review)

The last coal-fired power plant in the UK is set to shut down at the end of the month. The facility just accepted its final fuel delivery. (BBC

How plants could mine metals from the soil

Nickel may not grow on trees—but there’s a chance it could someday be mined using plants. Many plant species naturally soak up metal and concentrate it in their tissues, and new funding will support research on how to use that trait for plant-based mining, or phytomining. 

Seven phytomining projects just received $9.9 million in funding from the US Department of Energy’s Advanced Research Projects Agency for Energy (ARPA-E). The goal is to better understand which plants could help with mining and determine how researchers can tweak them to get our hands on all the critical metals we’ll need in the future.

Metals like nickel, crucial for the lithium-ion batteries used in electric vehicles, are in high demand. But building new mines to meet that demand can be difficult because the mining industry has historically faced community backlash, often over environmental concerns. New mining technologies could help diversify the supply of crucial metals and potentially offer alternatives to traditional mines.  

“Everyone wants to talk about opening a new gigafactory, but no one wants to talk about opening a new mine,” says Philseok Kim, program director at ARPA-E for the phytomining project. The agency saw a need for sustainable, responsible new mining technologies, even if they’re a major departure from what’s currently used in the industry. Phytomining is a prime example. “It’s a crazy idea,” Kim says.

Roughly 750 species of plants are known to be hyperaccumulators, meaning they soak up large amounts of metals and hold them within their tissues, Kim says. The plants, which tend to absorb these metals along with other nutrients in the soil, have adapted to tolerate them.

Of the species known to take in and concentrate metals, more than two-thirds do so with nickel. While nickel is generally toxic to plants at high concentrations, these species have evolved to thrive in nickel-rich soils, which are common in some parts of the world where geologic processes have brought the metal to the surface. 

Even in hyperaccumulators, the overall level of nickel in a plant’s tissues would still be relatively small—something like one milligram of metal for every gram of dried plant material. But burning a dried plant (which largely removes the organic material) can result in ash that’s roughly 25% nickel or even higher.

The sheer number of nickel-tolerant plants, plus the metal’s importance for energy technologies, made it the natural focus for early research, Kim says.

But while plants already have a head start on nickel mining, it wouldn’t be feasible to start commercial operations with them today. The most efficient known hyperaccumulators might be able to produce 50 to 100 kilograms of nickel per hectare of land each year, Kim says. That would yield enough of the metal for just two to four EV batteries, on average, and require more land than a typical soccer field. The research program will aim to boost that yield to at least 250 kilograms per hectare in an attempt to improve the prospects for economical mining.

The seven projects being funded will aim to increase production in several ways. Some of the researchers are hunting for species that accumulate nickel even more efficiently than known species. One candidate is vetiver, a perennial grass that grows deep roots. It’s known to accumulate metals like lead and is often used in cleanup projects, so it could be a good prospect for soaking up other metals like nickel, says Rupali Datta, a biology researcher at Michigan Technological University and head of one of the projects.

Another awardee will examine over 100,000 herbarium samples—preserved and catalogued plant specimens. Using a technique called x-ray fluorescence scanning, the researchers will look for nickel in those plants’ tissues in the hopes of identifying new hyperaccumulator species. 

Other researchers are looking to boost the mining talents of known nickel hyperaccumulators. One problem with many of the established options is that they don’t have very high biomass—in other words, they’re small. So even if the plant has a relatively high concentration of nickel in its tissues, each plant will collect only a small amount of the metal. Researchers want to tweak the known hyperaccumulators to plump them up—for example, by giving them bigger root systems that would allow them to reach deeper into the soil for metal.

Another potential way to improve nickel uptake is to change the plants’ growth cycle. Most perennial plants will basically stop growing once they flower, says Richard Amasino, a biochemistry researcher at the University of Wisconsin–Madison. So one of his goals for the project is figuring out a way to delay flowering in Odontarrhena, a family of plants with bright yellow flowers, so they have more time to soak up nickel before they quit growing for the season.

Researchers are also working with these known target species to make sure they won’t become invasive in the places they’re planted. For example, Odontarrhena are native to Europe, and researchers want to make sure they wouldn’t run wild and disrupt natural ecosystems if they’re brought to the US or other climates where they’d grow well.

Hyperaccumulating plants are already used in mineral exploration, but they likely won’t be able to produce the high volumes of nickel we mine today, Simon Jowitt, director of the Center for Research in Economic Geology at the University of Nevada, Reno, said in an email. But plants might be a feasible solution for dealing with mine waste, he said. 

There’s also the question of what will happen once plants suck up the metals from a given area of soil. According to Jowitt, that layer may need to be removed to access more metal from the lower layers after a crop is planted and harvested. 

In addition to identifying and altering target species, researchers on all these projects need to gain a better understanding where plants might be grown and whether and how natural processes like groundwater movement might replenish target metals in the soil, Kim says. Also, scientists will need to analyze the environmental sustainability of phytomining, he adds. For example, burning plants to produce nickel-rich ash will lead to greenhouse-gas emissions. 

Even so, addressing climate change is all about making and installing things, Kim adds, and we need lots of materials to do that. Phytomining may be able to help in the future. “This is something we believe is possible,” Kim says, “but it’s extremely hard.”

The race to replace the powerful greenhouse gas that underpins the power grid

The power grid is underpinned by a single gas that is used to insulate a range of high-voltage equipment. The problem is, it’s also a super powerful greenhouse gas, a nightmare for climate change.

Sulfur hexafluoride (or SF6) is far from the most common gas that warms the planet, contributing around 1% of warming to date—carbon dioxide and methane are much more well-known and abundant. However, like many other fluorinated gases, SF6 is especially potent: It traps about 20,000 times more energy than carbon dioxide does over the course of a century, and it can last in the atmosphere for 1,000 years or more.

Despite their relatively small contributions so far, emissions of the gas are ticking up, and the growth rate has been climbing every year. SF6 emissions in China nearly doubled between 2011 and 2021, accounting for more than half the world’s emissions of the gas.

Now, companies are looking to do away with equipment that relies on the gas and searching for replacements that can match its performance. Last week, Hitachi Energy announced it’s producing new equipment that replaces SF6 with other materials. And there’s momentum building to ban SF6 in the power industry, including a recently passed plan in the European Union that will phase out the gas’s use in high-voltage equipment by 2032. 

As equipment manufacturers work to produce alternatives, some researchers say that we should go even further and are trying to find solutions that avoid fluorine-containing materials entirely.

High voltage, high stakes

You probably have a circuit-breaker box in your home—if a circuit gets overloaded, the breaker flips, stopping the flow of electricity. The power grid has something similar, called switchgear.  

The difference is, it often needs to handle something like a million times more energy than your home’s equipment does, says Markus Heimbach, executive vice president and managing director of the high-voltage products business unit at Hitachi Energy. That’s because parts of the power grid operate at high voltages, allowing them to move energy around while losing as little as possible. Those high voltages require careful insulation at all times and safety measures in case something goes wrong.

Some switchgear uses the same materials as your home circuit-breaker boxes—there’s air around it to insulate it. But when it’s scaled up to handle high voltage, it ends up being gigantic and requiring a large land footprint, making it inconvenient for larger, denser cities.

The solution today is SF6, “a super gas, from a technology point of view,” Heimbach says. It’s able to insulate equipment during normal operation and help interrupt current when needed. And the whole thing has a much smaller footprint than air-insulated equipment.

The problem is, small amounts of SF6 leak out of equipment during normal operation, and more can be released during a failure or when old equipment isn’t handled properly. When the gas escapes, its strong ability to trap heat and the fact that it has such a long lifetime makes it a menace in the atmosphere.

Some governments will soon ban the gas for the power industry, which makes up the vast majority of the emissions. The European Union agreed to ban SF6-containing medium-voltage switchgear by 2030, and high-voltage switchgear that uses the gas by 2032. Several states in the US have proposed or adopted limits and phaseouts.

Making changes 

Hitachi Energy recently announced it’s producing high-voltage switchgear that can handle up to 550 kilovolts (kV). The model follows products rated for 420 kV the company began installing in 2023—there are more than 250 booked by customers today, Heimbach says.  

Hitachi Energy’s new switchgear substitutes SF6 with a gas mixture that contains mostly carbon dioxide and oxygen. It works as well as SF6 and is as safe and reliable but with a much lower global warming potential, trapping 99% less energy in the atmosphere, Heimbach says. 

However, for some of its new equipment, Hitachi Energy still uses some C4-fluoronitriles, which helps with insulation, Heimbach says. This gas is present at a low fraction, less than 5% of the mixture, and it’s less potent than SF6, Heimbach says. But C4-fluoronitriles are still powerful greenhouse gases, up to a few thousand times more potent than carbon dioxide. These and other fluorinated substances could soon be in trouble too—chemical giant 3M announced in late 2022 that the company would stop manufacturing all fluoropolymers, fluorinated fluids, and PFAS-additive products by 2025.

In order to eliminate the need for fluorine-containing gases, some researchers are looking into the grid’s past for alternatives. “We know that there’s no one-for-one replacement gas that has the properties of SF6,” says Lukas Graber, an associate professor in electrical engineering at Georgia Institute of Technology.

SF6 is both extremely stable and extremely electronegative, meaning it tends to grab onto free electrons, and nothing else can quite match it, Graber says. So he’s working on a research project that aims to replace SF6 gas with supercritical carbon dioxide. (Supercritical fluids are those at temperatures and pressures so high that distinct liquid and gas phases don’t quite exist.) The inspiration came from equipment that used to use oil-based materials—instead of trying to grab electrons like SF6, supercritical carbon dioxide can basically slow them down.

Graber and his research team received project funding from the US Department of Energy’s Advanced Research Projects Agency for Energy. The first small-scale prototype is nearly finished, he adds, and the plan is to test out a full-scale prototype in 2025.

Utilities are known for being conservative, since the safety and reliability of the electrical grid have high stakes, Hitachi Energy’s Heimbach says. But with more SF6 bans coming, they’ll need to find and adopt solutions that don’t rely on the gas.

The UK is building an alarm system for climate tipping points

The UK’s new moonshot research agency just launched an £81 million ($106 million) program to develop early warning systems to sound the alarm if Earth gets perilously close to crossing climate tipping points.

A climate tipping point is a threshold beyond which certain ecosystems or planetary processes begin to shift from one stable state to another, triggering dramatic and often self-reinforcing changes in the climate system. 

The Advanced Research and Invention Agency (ARIA) will announce today that it’s seeking proposals to work on systems for two related climate tipping points. One is the accelerating melting of the Greenland Ice Sheet, which could raise sea levels dramatically. The other is the weakening of the North Atlantic Subpolar Gyre, a huge current rotating counterclockwise south of Greenland that may have played a role in triggering the Little Ice Age around the 14th century. 

The goal of the five-year program will be to reduce scientific uncertainty about when these events could occur, how they would affect the planet and the species on it, and over what period those effects might develop and persist. In the end, ARIA hopes to deliver a proof of concept demonstrating that early warning systems can be “affordable, sustainable, and justified.” No such dedicated system exists today, though there’s considerable research being done to better understand the likelihood and consequences of surpassing these and other climate tipping points.

Sarah Bohndiek, a program director for the tipping points research program, says we underappreciate the possibility that crossing these points could significantly accelerate the effects of climate change and increase the dangers, possibly within the next few decades.

By developing an early warning system, “we might be able to change the way that we think about climate change and think about our preparedness for it,” says Bohndiek, a professor of biomedical physics at the University of Cambridge. 

ARIA intends to support teams that will work toward three goals: developing low-cost sensors that can withstand harsh environments and provide more precise and needed data about the conditions of these systems; deploying those and other sensing technologies to create “an observational network to monitor these tipping systems”; and building computer models that harness the laws of physics and artificial intelligence to pick up “subtle early warning signs of tipping” in the data.

But observers stress that designing precise early warning systems for either system would be no simple feat and might not be possible anytime soon. Not only do scientists have limited understanding of these systems, but the data  on how they’ve behaved in the past is patchy and noisy, and setting up extensive monitoring tools in these environments is expensive and cumbersome. 

Still, there’s wide agreement that we need to better understand these systems and the risks that the world may face.

Unlocking breakthroughs

It is clear that the tipping of either of these systems could have huge effects on Earth and its inhabitants.

As the world warmed in recent decades, trillions of tons of ice melted off the Greenland Ice Sheet, pouring fresh water into the North Atlantic, pushing up ocean levels, and reducing the amount of heat that the snow and ice reflected back into space. 

Melting rates are increasing as Arctic warming speeds ahead of the global average and hotter ocean waters chip away at ice shelves that buttress land-based glaciers. Scientists fear that as those shelves collapse, the ice sheet will become increasingly unstable. 

The complete loss of the ice sheet would raise global sea levels by more than 20 feet (six meters), submerging coastlines and kick-starting mass climate migration around the globe.

But at any point along the way, the influx of water into the North Atlantic could also substantially slow down the convection systems that help to drive the Subpolar Gyre, because fresher water isn’t as dense and prone to sinking. (Saltier, cooler water readily sinks.)

The weakening of the Subpolar Gyre could cool parts of northwest Europe and eastern Canada, shift the jet stream northward, create more erratic weather patterns across Europe, and undermine the productivity of agriculture and fisheries, according to one study last year. 

The Subpolar Gyre may also influence the strength of the Atlantic Meridional Overturning Circulation (AMOC), a network of ocean currents that moves massive amounts of heat, salt, and carbon dioxide around the globe. The specifics of how a weakened Subpolar Gyre would affect the AMOC are still the subject of ongoing research, but a dramatic slowdown or shutdown of that system is considered one of the most dangerous climate tipping points. It could substantially cool Northern Europe, among other wide-ranging effects.  

The tipping of the AMOC itself, however, is not the focus of the ARIA research program. 

The agency, established last year to “unlock scientific and technological breakthroughs,” is a UK answer to the US’s DARPA and ARPA-E research programs. Other projects it’s funding include efforts to develop precision neurotechnologies, improve robot dexterity, and build safer and more energy-efficient AI systems. ARIA is also setting up programs for developing synthetic plants and exploring climate interventions that could cool the planet, including solar geoengineering. 

Bohndiek and the other program director of the tipping points program—Gemma Bale, an assistant professor at the University of Cambridge—are both medical physicists who previously focused on developing medical devices. At ARIA, they initially expected to work on efforts to decentralize health care.

But Bohndiek says they soon realized that “a lot of these things that need to change at the individual health level will be irrelevant if climate change truly is going to cross these big thresholds.” She adds, “If we’re going to end up in a society where the world is so much warmer … does the problem of decentralizing health care matter anymore?” 

Bohndiek and Bale stress that they hope the program will draw applications from researchers who haven’t traditionally worked on climate change. They add that any research teams proposing to work in or around Greenland must take appropriate steps to engage with local communities, governments, and other research groups.

Tipping dangers

Efforts are already underway to develop greater understanding of the Subpolar Gyre and the Greenland Ice Sheet, including the likelihood, timing, and consequences of their tipping into different states.

There are, for instance, regular field expeditions to measure and refine modeling of ice loss in Greenland. A variety of research groups have set up sensor networks that cross various points of the Atlantic to more closely monitor the shifting conditions of current systems. And several studies have already highlighted the appearance of some “early warning signals” of a potential collapse of the AMOC in the coming decades.

But the goal of the ARIA program is to accelerate such research efforts and sharpen the field’s focus on improving our ability to predict tipping events. 

William Johns, an oceanographer focused on observation of the AMOC at the University of Miami, says the field is a long way from being able to state confidently that systems like the Subpolar Gyre or AMOC will weaken beyond the bounds of normal natural fluctuations, much less say with any precision when they would do so. 

He stresses that there’s still wide disagreement between models on these sorts of questions and limited evidence of what took place before they tipped in the ancient past, all of which makes it difficult to even know what signals we should be monitoring for most closely.

Jaime Palter, an associate professor of oceanography at the University of Rhode Island, adds that she found it a “puzzling” choice to fund a research program focused on the tipping of the Subpolar Gyre. She notes that researchers believe the wind drives the system more than convection, that its connection to the AMOC isn’t well understood, and that the slowdown of the latter system is the one that more of the field is focused on—and more of the world is worried about.

But she and Johns both said that providing funds to monitor these systems more closely is critical to improve scientific understanding of how they work and the odds that they will tip.

Radical interventions

So what could the world do if ARIA or anyone else does manage to develop systems that can predict, with high confidence, that one of these systems will shift into a new state in, say, the next decade?

Bohndiek stresses that the effects of reaching a tipping point wouldn’t be immediate, and that the world would still have years or even decades to take actions that might prevent the breakdown of such systems, or begin adapting to the changes they’ll bring. In the case of runaway melting of the ice sheet, that could mean building higher seawalls or relocating cities. In the case of the Subpolar Gyre weakening, big parts of Europe might have to look to other areas of the world for their food supplies.

More reliable predictions might also alter people’s thinking about more dramatic interventions, such as massive and hugely expensive engineering projects to prop up ice shelves or to freeze glaciers more stably onto the bedrock they’re sliding upon. 

Similarly, they might shift how some people weigh the trade-offs between the dangers of climate change and the risks of interventions like solar geoengineering, which would involve releasing particles in the atmosphere that could reflect more heat back into space.

But some observers note that if enough fresh water is pouring into the Atlantic to weaken the gyre and substantially slow the broader Atlantic current system, there’s very little the world can do to stop it.

“I’m afraid I don’t really see an action you could take,” Johns says. “You can’t go vacuum up all the fresh water—it’s not going to be feasible—and you can’t stop it from melting on the scale we’d have to.”

Bale readily acknowledges that they’ve selected a very hard problem to solve, but she stresses that the point of ARIA research programs is to work at the “edge of the possible.” 

“We genuinely don’t know if an early warning system for these systems is possible,” she says. “But I think if it is possible, we know that it would be valuable and important for society, and that’s part of our mission.”

Canada’s 2023 wildfires produced more emissions than fossil fuels in most countries

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Last year’s Canadian wildfires smashed records, burning about seven times more land in Canada’s forests than the annual average over the previous four decades. Eight firefighters were killed and 180,000 people displaced. 

Now a new study reveals how these blazes can create a vicious cycle, contributing to climate change even as climate-fueled conditions make for worse wildfire seasons.  Emissions from 2023’s Canadian wildfires reached 647 million metric tons of carbon, according to the study published today in Nature. If the fires were a country, they’d rank as the fourth-highest emitter, following only China, the US, and India. The sky-high emissions from the fires reveals how human activities are pushing natural ecosystems to a place that’s making things tougher for our climate efforts.

“The fact that this was happening over large parts of Canada and went on all summer was really a crazy thing to see,” says Brendan Byrne, a scientist at the NASA Jet Propulsion Laboratory and the lead author of the study.

Digging back into the climate record makes it clear how last year’s conditions contributed to an unusually brutal fire season, Byrne says; 2023 was especially warm and especially dry, both of which allow fires to spread more quickly and burn more intensely.

A few regions were especially notable in the blazes, like parts of Quebec, a typically wet area in the east of Canada that saw half the normal precipitation. These fires were the ones generating smoke that floated down the east coast of the US. But overall, what was so significant about the 2023 fire season was just how widespread the fire-promoting conditions were, Byrne says.

While climate change doesn’t directly spark any one fire, researchers have traced hot, dry conditions that worsen fires to the effects of human-caused climate change. The extreme fire conditions in eastern Canada were over twice as likely because of climate change, according to a 2023 analysis by World Weather Attribution.

And in turn, the fires are releasing massive amounts of greenhouse gases into the atmosphere. By combining satellite images of the burned areas with measurements of some of the gases emitted, Byrne and his team were able to tally up the total carbon released into the atmosphere with more accuracy than estimates that rely on the images alone, he says.

In total, the fires contributed at least four times more carbon to the atmosphere than all fossil-fuel emissions in Canada last year.

Fires are part of natural, healthy ecosystems, and burns on their own don’t necessarily represent a disaster for climate change. After a typical fire season, a forest begins to regrow, capturing carbon dioxide from the atmosphere as it does so. This continues a cycle in which carbon moves around the planet.

The problem comes if and when that cycle gets thrown off—for instance, if fires are too intense and too widespread for too many years. And there’s reason to be nervous about future fire seasons. While 2023’s conditions were unusual compared with the historical record, climate modeling reveals they could be normal by the 2050s.

“I think it’s very likely that we’re going to see more fires in Canada,” Byrne tells me. “But we don’t really understand how that’s going to impact carbon budgets.”

What Byrne means by a carbon budget is the quantity of greenhouse gases we can emit into the atmosphere before we shoot past our climate goals. We have something like seven years left of current emissions levels before we’re more likely than not to pass 1.5 °C of warming over preindustrial levels, according to the 2023 Global Carbon Budget Report

It was already clear that we need to stop emissions from power plants, vehicles, and a huge range of other clearly human activities to address climate change. Last year’s wildfires should increase the urgency of that action, because pushing natural ecosystems beyond what they can handle will only add to the challenge going forward. 


Now read the rest of The Spark

Related reading

This company wants to use balloons to better understand the conditions on the ground before wildfires start in Colorado, as Sarah Scoles covered in a story earlier this summer

Canada isn’t the only country to see unusual fires in recent years. My colleague James Temple covered Australia’s intense 2019-2020 wildfire season

Another thing

Want to try out solar geoengineering? A new AI tool allows you to do just that—sort of. 

Andrew Ng has released an online program that simulates what might happen under different emissions scenarios if technologies that can block out some sunlight are used in an effort to slow warming. Read the story here and give the simulator a try. 

Keeping up with climate  

Scientists want to genetically engineer cows’ microbiomes to cut down on methane emissions. The animals’ digestive systems rely on archaea that emit the powerful greenhouse gas. Tweaking them could be a major help in cutting climate pollution from agriculture. (Washington Post)

Some big tech companies are using tricky math that can obscure the true emissions from rising electricity use, in part due to AI. Buying renewable energy credits can make a company’s energy use look better on paper, but the practice has some problems. (Bloomberg)

→ How companies reach their emissions goals can be more important than how quickly they do so. (MIT Technology Review)

The midwestern US is dealing with hot weather and high humidity, in part because of something called corn sweat. Crops naturally release water into the air when it’s warm, causing higher humidity. (Scientific American)

Hydrogen can provide an alternative to fossil fuels, but it likely won’t have universally positive effects in every industry. Hydrogen will be most useful in sectors like chemical production and least so in buildings and light-duty vehicles, according to a new report. (Latitude Media)

→ Here’s why hydrogen vehicles are losing the race to power cleaner cars. (MIT Technology Review)

Batteries are far outpacing natural gas in new additions to the US grid. In the first half of 2023, 96% of such additions were from renewable sources, batteries, or nuclear power. (Wired)

Tesla agreed to open its Supercharger network to vehicles from other automakers last year, but the plan has been plagued by delays. Drivers should be able to access the network next year, but so far only two companies have gotten past the first step of updating the software needed. (New York Times)

Sage Geosystems, a company using geothermal technology to generate and store energy, announced it has an agreement to supply 150 megawatts of power to Meta. (Canary Media)

Coal powers about 63% of China’s electric grid today, and the country is the world’s largest consumer of the fuel. But progress with technologies like hydropower and nuclear suggests the country could shift to lower-emissions energy sources. (Heatmap)

Want to understand the future of technology? Take a look at this one obscure metal.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

On a sunny morning in late spring, I found myself carefully examining an array of somewhat unassuming-looking rocks at the American Museum of Natural History. 

I’ve gotten to see some cutting-edge technologies as a reporter, from high-tech water treatment plants to test nuclear reactors. Peering at samples of dusty reddish monazite and speckled bastnäsite, I saw the potential for innovation there, too. That’s because all the minerals spread out across the desk contain neodymium, a rare earth metal that’s used today in all sorts of devices, from speakers to wind turbines. And it’s likely going to become even more crucial in the future. 

By the time I came to the museum to see some neodymium for myself, I’d been thinking (or perhaps obsessing) about the metal for months—basically since I’d started reporting a story for our upcoming print issue that is finally out online. The story takes a look at what challenges we’ll face with materials for the next century, and neodymium is center stage. Let’s take a look at why I spent so long thinking about this obscure metal, and why I think it reveals so much about the future of technology. 

In the new issue of our print magazine, MIT Technology Review is celebrating its 125th anniversary. But rather than look back to our 1899 founding, the team decided to look forward to the next 125 years. 

I’ve been fascinated with topics like mining, recycling, and alternative technologies since I’ve been reporting on climate. So when I started thinking about the distant future, my mind immediately went to materials. What kind of stuff will we need? Will there be enough of it? How does tech advancement change the picture?

Zooming out to the 2100s and beyond changed the stakes and altered how I thought about some of the familiar topics I’ve been reporting on for years. 

For example, we have enough of the stuff we need to power our world with renewables. But in theory, there is some future point at which we could burn through our existing resources. What happens then? As it turns out, there’s more uncertainty about the amount of resources available than you might imagine. And we can learn a lot from previous efforts to project when the supply of fossil fuels will begin to run out, a concept known as peak oil. 

We can set up systems to reuse and recycle the metals that are most important for our future. These facilities could eventually help us mine less and make material supply steadier and even cheaper. But what happens when the technology these facilities are designed to recycle inevitably changes, possibly rendering old setups obsolete? Predicting what materials will be important, and adjusting efforts to make and reuse them, is complicated to say the least. 

To try to answer these massive questions, I took a careful look at one particular metal: neodymium. It’s a silvery-white rare earth metal, central to powerful magnets that are at the heart of many different technologies, both in the energy sector and beyond. 

Neodymium can stand in for many of the challenges and opportunities we face with materials in the coming century. We’re going to need a lot more of it in the near future, and we could run into some supply constraints as we race to mine enough to meet our needs. It’s possible to recycle the metal to cut down on the extraction needed in the future, and some companies are already trying to set up the infrastructure to do so. 

The world is well on its way to adapting to conditions that are a lot more neodymium-centric. But at the same time, efforts are already underway to build technologies that wouldn’t need neodymium at all. If companies are able to work out an alternative, it could totally flip all our problems, as well as efforts to solve them, upside down. 

Advances in technology can shift the materials we need, and our material demands can push technology to develop in turn. It’s a loop, one that we need to attempt to understand and untangle as we move forward. I hope you’ll read my attempt to start doing that in my feature story here


Now read the rest of The Spark

Related reading

For a more immediate look at the race to produce rare earth metals, check out this feature story by Mureji Fatunde from January. 

I started thinking more deeply about material demand when I was reporting stories about recycling, including this 2023 feature on the battery recycling company Redwood Materials. 

For one example of how companies are trying to develop new technologies that’ll change the materials we need in the future, check out this story about rare-earth-free magnets from earlier this year. 

Another thing

“If we rely on hope, we give up agency. And that may be seductive, but it’s also surrender.”

So writes Lydia Millet, author of over a dozen books, in a new essay about the emotions behind fighting for a future beyond climate change. It was just published online this week. It’s also featured in our upcoming print issue, and I’d highly recommend it. 

Keeping up with climate  

For a look inside what it’s really like to drive a hydrogen car, this reporter rented one and took it on a road trip, speaking to drivers along the way. (The Verge)

→ Here’s why electric vehicles are beating out hydrogen-powered ones in the race to clean up transportation. (MIT Technology Review)

As temperatures climb, we’ve got a hot steel problem on our hands. Heat can cause steel, as well as other materials like concrete, to expand or warp, which can cause problems from slowing down trains to reducing the amount of electricity that power lines can carry. (The Atlantic)

Oakland is the first city in the US running all-electric school buses. And the vehicles aren’t only ferrying kids around; they’re also able to use their batteries to help the grid when it’s needed. (Electrek)

Form Energy plans to build the largest battery installation in the world in Maine. The system, which will use the company’s novel iron-air chemistry, will be capable of storing 8,500 megawatt-hours’ worth of energy. (Canary Media)

→ We named Form one of our 15 Climate Tech companies to watch in 2023. (MIT Technology Review)

In one of the more interesting uses I’ve seen for electric vehicles, Brussels has replaced horse-drawn carriages with battery-powered ones. They look a little like old-timey cars, and operators say business hasn’t slowed down since the switch. (New York Times)

Homeowners are cashing in on billions of dollars in tax credits in the US. The money, which rewards use of technologies that help make homes more energy efficient and cut emissions, is disproportionately going to wealthier households. (E&E News)

Airlines are making big promises about using new jet fuels that can help cut emissions. Much of the industry aims to reach 10% alternative fuel use by the end of the decade. Actual rates hit 0.17% in 2023. (Bloomberg)

Solar farms can’t get enough sheep—they’re great landscaping partners. Soon, 6,000 sheep will be helping keep the grass in check between panels in what will be the largest solar grazing project in the US. (Canary Media)