Why New York City is testing battery swapping for e-bikes

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Spend enough time in a city and you’ll get to know its unique soundscape. In New York City, it features the echoes of car stereos, the deep grumbles of garbage truck engines, and, increasingly, the high-pitched whirring of electric bikes.

E-bikes and scooters are becoming a staple across the city’s boroughs, and e-bikes in particular are especially popular among the tens of thousands of delivery workers who zip through the streets.

On a recent cloudy afternoon in Manhattan, I joined a few dozen of them at a sign-up event for a new city program that aims to connect delivery drivers with new charging technologies. Drivers who enroll in the pilot will have access to either fast chargers or battery swapping stations for six months.

It’s part of the city’s efforts to cut down on the risk of battery fires, some of which have been sparked by e-bike batteries charging inside apartment buildings, according to the fire department. For more on the program and how it might help address fires, check out my latest story. In the meantime, here’s what I heard from delivery drivers and the startups at the kickoff event.

On a windy late-February day, I wove my way through the lines of delivery workers who showed up to the event in Manhattan’s Cooper Square. Some of them straddled their bikes in line, while others propped up their bikes in clusters. Colorful bags sporting the logos of various delivery services sprouted from their cargo racks.

City officials worked at tables under tents, assigning riders to one of the three startups that are partnering with the city for the new program. One company, Swiftmile, is building fast-charging bike racks for drivers. The other two, Popwheels and Swobbee, are aiming to bring battery swapping to the city.

Battery swapping is a growing technology in some parts of the world, but it’s not common in the US, so I was especially intrigued by the two companies who had set up battery swap cabinets.

Swobbee runs a small network of swapping stations around the world, including at its base in Germany. It is retrofitting bikes to accommodate its battery, which attaches to the rear of the bike. Popwheels is taking a slightly different approach, providing batteries that are already compatible with the majority of e-bikes delivery drivers use today, with little modification required.

I watched a Popwheels employee demonstrate the company’s battery swapping station to several newly enrolled drivers. Each one would approach the Popwheels cabinet, which is roughly the size and shape of a bookcase and has 16 numbered metal doors on the front. After they made a few taps on their smartphone, a door would swing open. Inside, there was space to slide in a used battery and a cord to plug into it. Once the battery was in the cabinet and the door had been shut, another door would open, revealing a fully charged e-bike battery the rider could unplug and slide out. Presto!

The whole process took just a minute or two—much quicker than waiting for a battery to charge. It’s similar to picking up a package from an automated locker in an upscale apartment building.

The crowd seemed to grow during the two hours I spent at the event, and the line stretched and squeezed closer to the edge of the sidewalk. I made a comment about the turnout to Baruch Herzfeld, Popwheels’ CEO and co-founder. “This is nothing,” he said. “There’s demand for 100,000 batteries in New York tomorrow.”

Indeed, New York City has roughly 60,000 delivery workers, many of whom rely on e-bikes to get around. And commuters and tourists might be interested in small, electrified vehicles. Meeting anything close to that sort of demand will take a whole lot more battery cabinets, as one can service just up to 50 riders, according to Popwheels’ estimates.

After they’d signed up and seen the battery swap demo, drivers who were ready to take batteries with them wheeled their bikes over to a few more startup employees, who helped make a slight tweak to a rail under their seats for the company’s batteries to slide into. Some adjustments required a bit of elbow grease, but I watched as one rider slid his new, freshly charged battery into place. He hopped on his bike and darted off into the bike lane, integrating into the flow of traffic.


Now read the rest of The Spark

Related reading

For more on the city’s plans for battery swapping and how they might cut fire risk, give my latest story a read.

Gogoro, one of our 15 Climate Tech Companies to Watch in 2023, operates a huge network of battery swapping stations for electric scooters, largely in Asia.

Some companies think battery swapping is an option for larger electric vehicles, too. Here’s how one startup wants to use modular, swappable batteries to get more EVs on the road.

STEPHANIE ARNETT/MITTR | SCOPEX (BALLOON)

Another thing

Harvard researchers have given up on a long-running effort to conduct a solar geoengineering experiment. 

The idea behind the technique is a simple one: scatter particles in the upper atmosphere to scatter sunlight, counteracting global warming. But related research efforts have sparked controversy. Read more in my colleague James Temple’s latest story.

Keeping up with climate  

The Biden administration finalized strict new rules for vehicle tailpipe emissions. Under the regulations, EVs are expected to make up over half of new vehicle sales by 2030. (NPR)

The first utility-scale offshore wind farm in the US is officially up and running. It’s a bright spot that could signal a turning point for the industry. (Canary Media)

→ Here’s what’s next for offshore wind. (MIT Technology Review)

The UK has big plans for heat pumps, but installations aren’t moving nearly fast enough, according to a new report. Installations need to increase more than tenfold to keep pace with goals. (The Guardian)

States across the US are proposing legislation to ban lab-grown meat. It’s the latest escalation in an increasingly weird battle over a product that basically doesn’t exist yet. (Wired)

Low-cost EVs from Chinese automakers are pushing US-based companies to reconsider their electrification strategy. More affordable EV options? A girl can dream. (Bloomberg)

→ EV prices in the US are inching down, approaching parity with gas-powered vehicles. (Washington Post)

Goodbye greenwashing, hello “greenhushing”! Corporations are increasingly going radio silent on climate commitments. (Inside Climate News)

The Summer Olympics are fast approaching, and organizers in Paris are working to reduce the event’s climate impact. Think fewer new buildings, more bike lanes. (New York Times)

Early springs mean cherry blossoms are blooming earlier than ever. Warmer winters in the future could cause an even bigger problem. (Bloomberg)

New York City’s plan to stop e-bike battery fires

Walk just a few blocks in New York City and you’ll likely spot an electric bike zipping by.

The vehicles have become increasingly popular in recent years, especially among delivery drivers, tens of thousands of whom weave through New York streets. But the e-bike influx has caused a wave of fires sparked by their batteries, some of them deadly.

Now, the city wants to fight those fires with battery swapping. A pilot program will provide a small number of delivery drivers with alternative options to power up their e-bikes, including swapping stations that supply fully charged batteries on demand. 

Proponents say the program could lay the groundwork for a new mode of powering small electric vehicles in the city, one that’s convenient and could reduce the risk of fires. But the road to fire safety will likely be long and winding given the sheer number of batteries we’re integrating into our daily lives, in e-bikes and beyond.

A swapping solution

The number of fires caused by batteries in New York City increased nearly ninefold between 2019 and 2023, according to reporting from The City. Concern over fires has been steadily growing, and in March 2023 Mayor Eric Adams announced a plan to address the problem that included regulations for e-bikes and their batteries, crackdowns on unsafe charging practices, and outreach for delivery drivers.

While batteries can catch fire for a variety of reasons, many incidents appear to have been caused by e-bike drivers charging their batteries in apartment buildings, including a February blaze that killed one person and injured 22.

The city’s most recent effort, designed to address charging, is a pilot program for delivery drivers who use e-bikes. For six months, 100 drivers will be matched with one of three startups that will provide a charging solution that doesn’t involve plugging in batteries in apartment buildings.

One of the startups, Swiftmile, is building fast charging stations that look like bike racks and can charge an e-bike battery within two hours. The other two participating companies, Popwheels and Swobbee, are proposing a different, even quicker solution: battery swapping. Instead of plugging in a battery and waiting for it to power up, a rider can swap out a dead battery for a fresh one.

Battery swapping is already being used for some electric vehicles, largely across Asia. Chinese automaker Nio operates a network of battery swapping stations that can equip a car with a fresh battery in just under three minutes. Gogoro, one of MIT Technology Review’s 2023 Climate Tech Companies to Watch, has a network of battery swapping stations for electric scooters that can accommodate more than 400,000 swaps each day.

The concept will need to be adjusted for New York and for delivery drivers, says Baruch Herzfeld, co-founder and CEO of Popwheels. “But if we get it right,” he says, “we think everybody in New York will be able to use light electric vehicles.”

Existing battery swap networks like Nio’s have mostly included a single company’s equipment, giving the manufacturer control over the vehicle, battery, and swapping equipment. That’s because one of the keys to making battery swapping work is fleet commonality—a base of many vehicles that can all use the same system.

Fortunately, delivery drivers have formed something of a de facto fleet in New York City, says David Hammer, co-founder and president of Popwheels. Roughly half of the city’s 60,000-plus delivery workers rely on e-bikes, according to city estimates. Many of them use bikes from a brand called Arrow, which include removable batteries.

Convenience is key for delivery drivers working on tight schedules. “For a lot of people, battery charging, battery swapping, it’s just technology. But for [delivery workers], it’s their livelihood,” says Irene Figueroa-Ortiz, a policy advisor at the NYC Department of Transportation.

For the New York pilot, Popwheels is building battery cabinets in several locations throughout the city that will include 16 charging slots for e-bike batteries. Riders will open a cabinet door using a smartphone app, plug in the used battery and take a fresh one from another slot. Based on the company’s modeling, each cabinet should be able to support constant use by 40 to 50 riders, Hammer says.

“Maybe it leads to an even larger vision of battery swapping as a part of an urban future,” Hammer says. “But for now, it’s solving a very real and immediate problem that delivery workers have around how they can work a full day, and earn a reasonable living, and do it without having to put their lives at risk for battery fires.”

A growing problem

Lithium-ion batteries power products from laptops and cellphones to electric vehicles, including cars, trucks, and e-bikes. A major benefit of the battery chemistry is its energy density, or ability to pack a lot of energy into a small container. But all that stored energy can also be dangerous.

Batteries can catch fire during charging or use, and even while being stored. Generally, fires happen when temperatures around the battery rise to unsafe levels or if a physical problem in a battery causes a short circuit, allowing current to flow unchecked. These factors can set in motion a dangerous process called thermal runaway.

Most batteries include a battery management system to control charging, which prevents temperatures from spiking and sparking a fire. But if this system malfunctions or if a battery doesn’t include one, charging can lead to fires, says Ben Hoff, who leads fire safety engineering and hardware design at Popwheels.

Some of the delivery drivers who attended a sign-up event for New York’s charging pilot program in late February cited safety as a reason they were looking for alternative solutions for their batteries. “Of course, I worry about that,” Jose Sarmiento, a longtime delivery worker, said at the event. “Even when I’m sleeping, I’m thinking about the battery.”  

Battery swapping could also be a key to safer electric transit, Popwheels’ Hammer says. The company has tight control over the batteries it provides drivers, and its monitoring systems include temperature sensors installed in the charging cabinets. Charging can be shut down immediately if a battery starts to overheat, and an aerosol fire suppression system can slow a fire if one does happen to start inside a cabinet.

The batteries Popwheels provides are also UL-certified, meaning they’re required to pass third-party safety tests. New York City banned the sale of uncertified batteries and e-bikes last year, but many drivers still use them, Hammer says.

Low-quality batteries are more likely to cause fires, a problem that can often be traced to the manufacturing process, says Michael Pecht, a professor at the University of Maryland who studies the reliability and safety of electronic devices.

Battery manufacturing facilities should be as clean as a medical operating room or a semiconductor facility, Pecht explains. Contamination from dust and dirt that wind up in batteries can create problems over time as charging and discharging a battery causes small physical changes. After enough charging cycles, even a tiny dust particle can lead to a short circuit that sparks a fire.

Low-quality manufacturing makes battery fires more likely, but it’s a daunting task to keep tight control over the huge number of cells being made each year. Large manufacturers can produce billions of batteries annually, making the solution to battery fires a complex one, Pecht says: “I think there’s a group who want an easy answer. To me, the answer is not that easy.”

New programs that provide well-manufactured batteries and tightly control charging could make a dent in safety concerns. But real progress will require quick and dramatic scale-up, alongside regulations and continual outreach to communities. 

Popwheels would need to install hundreds of its battery swapping cabinets to support a significant fraction of the city’s delivery drivers. The pilot will help determine whether riders are willing to use new methods of powering their livelihood. As Hammer says, “If they don’t use it, it doesn’t matter.”

Decarbonizing production of energy is a quick win 

Debate around the pace and nature of decarbonization continues to dominate the global news agenda, from the European Scientific Advisory Board on Climate Change warning that the EU must double annual emissions cuts, to forecasts that it could cost more than $1 trillion to decarbonize the global shipping industry. Despite differing opinions on the right path to net zero, all agree that every sector needs to reduce emissions to avoid the worst effects of climate change.

Oil and gas production accounts for 15% of the world’s emissions, according to the International Energy Agency. Some of the largest global companies have embarked on bold plans to cut to zero by 2050 the carbon and methane associated with their production. One player with an ambition to get there five years ahead of the rest is the UAE’s ADNOC, having announced in January 2024 it will lift spending on decarbonization projects to $23 billion from $15 billion.  

In an exclusive interview, Musabbeh Al Kaabi, ADNOC’s Executive Director for Low Carbon Solutions and International Growth, says he is hopeful the industry can make a meaningful contribution while supplying the secure and affordable energy needed to meet growing global demand.

Q: Mr. Al Kaabi, how do you plan to spend the extra $8 billion ADNOC has allocated to decarbonization?

Mr. Mussabeh Al Kaabi: Much of our investment focus is on the technologies and systems that will deliver tangible action in eliminating the emissions from our energy production. At 7 kilograms of CO2 per barrel of oil equivalent, the energy we provide is among the least carbon-intensive in our industry, yet we continue to explore every opportunity for further reductions. For example, we are using clean grid power—from renewable and nuclear sources—to meet the needs of our onshore operations. Meanwhile, we are investing almost $4 billion to electrify our offshore production in order to cut our carbon footprint from those operations by up to 50%.

We also see great potential in carbon capture utilization and sequestration (CCUS), especially where emissions are hard to abate. Last year, we doubled our capacity target to 10 million tonnes per annum by 2030. We currently have close to 4 million tonnes in capacity in development or operation and are working with key players in our industry to create a world-leading carbon management platform.

Additionally, we’re developing nature-based solutions to support our target for net zero by 2045. One of our initiatives is to plant 10 million mangroves, which serve as powerful carbon sinks, along our coastline by 2030. We used drone technology to plant 2.5 million mangrove seeds in 2023.

Q: What about renewables?

Mr. Mussabeh Al Kaabi: It’s in everyone’s interests that we invest in the growth of renewables and low-carbon fuels like hydrogen. Through our shareholding in Masdar and Masdar Green Hydrogen, we are tripling our renewable capacity by supporting a growth target of 100 gigawatts by 2030.

Q: We have been talking about hydrogen and carbon capture and storage (CCS) as the energies and solutions of tomorrow for decades. Why haven’t they broken through yet?

Mr. Mussabeh Al Kaabi: Hydrogen and CCS offer great promise, but, like any other transformative technology, they require R&D attention, investment, and scale-up opportunities.

Hydrogen is an abundant and portable fuel that could help reduce emissions from many sectors, including transport and power. Meanwhile, CCS could abate emissions from heavy, energy-intensive industries like steel and cement.

These technologies are proven, and we expect more improvements to allow wider consumer use. We will continue to develop and invest in them, while continuing to responsibly provide our traditional portfolio of low-carbon energy products that the world needs.

Q: Is there any evidence the costs can come down?

Mr. Mussabeh Al Kaabi: Yes, absolutely. The dramatic fall in the price of solar over recent years—an 89% reduction from 2010 to 2022 according to the International Renewable Energy Agency—just goes to show that clean technologies can become viable, mainstream sources of energy if the right policy and investment mechanisms are in place.

Q: Do you favor a particular decarbonization technology?

Mr. Mussabeh Al Kaabi: We don’t have the luxury of picking winners and losers. The scale of the challenge is too great. World economies consume the equivalent of around 250 million barrels of oil, gas, and coal every single day. We are going to need to invest in every viable clean energy and decarbonization technology. If CCS can do it, let’s do it. If renewables can do it, let’s invest in it.

That said, I am especially optimistic about the role artificial intelligence will play in our decarbonization drive. We’ve been implementing AI and machine learning tools across our value chain for many years; they’ve helped us eliminate around a million tonnes of CO2 emissions over the past two years. As AI technology grows at an exponential rate, we will continue to invest in the latest innovations to ensure we provide maximum energy with minimum emissions.

Q: Can traditional energy companies be part of the solution?

Mr. Mussabeh Al Kaabi: They can and they must be part of the solution. Energy companies have the technical capabilities, the project management experience and, crucially, the financial strength to advance solutions. For example, we’re investing in one of the largest integrated carbon capture projects in the Middle East and North Africa, at our gas processing facility in Habshan. Once complete, it will add 1.5 million tonnes of CCUS capacity. We’ve also just announced an investment into Storegga, the lead developer of the UK’s Acorn CCS project in Scotland, marking our first overseas investment of its kind.

Q: What’s your approach to decarbonization investment?

Mr. Mussabeh Al Kaabi: Our approach is to partner with successful developers of economic technologies and to incubate promising climate solutions so ADNOC and other players can use them to accelerate the path to net zero. There are numerous examples.

Last year, we launched the ADNOC Decarbonization Technology Challenge, a global competition that attracted 650 climate tech startups vying for a million-dollar piloting opportunity with us. The winner was Revterra, a Houston-based startup that will pilot its kinetic battery technology with us over the coming months.  

We’re also working to deploy another cutting-edge battery technology that involves taking used electric vehicle batteries and upcycling them into a battery energy storage system, which we’ll use to help decarbonize our remote production activity by up to 25%.

In the northern regions of the UAE, we’re working closely with another startup company to pilot carbon dioxide mineralization technology. It is a project we are all excited about because it presents opportunities for CO2 removal at a significant scale.

Additionally, we are working with leading industry service providers to explore new ways of producing graphene and low-carbon hydrogen.

Q: Finally, how confident are you that transformation will happen?

Mr. Mussabeh Al Kaabi: I am confident.It can be done. Transformation is happening. It won’t happen overnight, and it needs to be just and equitable for the poorest among us, but I am optimistic.We must focus on taking tangible action and not underestimate the power of human innovation. History has shown that, when we come together, we can innovate and act. I am positive that, over time, we will continue to see progress towards our common goal.

This content was produced by ADNOC. It was not written by MIT Technology Review’s editorial staff.


Why methane emissions are still a mystery

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

If you follow papers in climate and energy for long enough, you’re bound to recognize some patterns. 

There are a few things I’ll basically always see when I’m sifting through the latest climate and energy research: one study finding that perovskite solar cells are getting even more efficient; another showing that climate change is damaging an ecosystem in some strange and unexpected way. And there’s always some new paper finding that we’re still underestimating methane emissions. 

That last one is what I’ve been thinking about this week, as I’ve been reporting on a new survey of methane leaks from oil and gas operations in the US. (Yes, there are more emissions than we thought there were—get the details in my story here.) But what I find even more interesting than the consistent underestimation of methane is why this gas is so tricky to track down. 

Methane is the second most abundant greenhouse gas in the atmosphere, and it’s responsible for around 30% of global warming so far. The good news is that methane breaks down quickly in the atmosphere. The bad news is that while it’s floating around, it’s a super-powerful greenhouse gas, way more potent than carbon dioxide. (Just how much more potent is a complicated question that depends on what time scale you’re talking about—read more in this Q&A.)

The problem is, it’s difficult to figure out where all this methane is coming from. We can measure the total concentration in the atmosphere, but there are methane emissions from human activities, there are natural methane sources, and there are ecosystems that soak up a portion of all those emissions (these are called methane sinks). 

Narrowing down specific sources can be a challenge, especially in the oil and gas industry, which is responsible for a huge range of methane leaks. Some are small and come from old equipment in remote areas. Other sources are larger, spewing huge amounts of the greenhouse gas into the atmosphere but only for short times. 

A lot of stories about tracking methane have been in the news recently, mostly because of a methane-hunting satellite launched earlier this month. It’s designed to track down methane using tools called spectrometers, which measure how light is reflected and absorbed. 

This is just one of a growing number of satellites that are keeping an eye on the planet for methane emissions. Some take a wide view, spotting which regions have high emissions. Other satellites are hunting for specific sources and can see within a few dozen meters where a leak is coming from. (If you want to read more about why there are so many methane satellites, I recommend this story from Emily Pontecorvo at Heatmap.)

But methane tracking isn’t just a space game. In a new study published in Nature, researchers used nearly a million measurements taken from airplanes flown over oil- and gas-producing regions to estimate total emissions. 

The results are pretty staggering: researchers found that, on average, roughly 3% of oil and gas production at the sites they examined winds up as methane emissions. That’s about three times the official government estimates used by the US Environmental Protection Agency. 

I spoke with one of the authors of the study, Evan Sherwin, who completed the research as a postdoc at Stanford. He compared the challenge of understanding methane leaks to the parable of the blind men and the elephant: there are many pieces of the puzzle (satellites, planes, ground-based detection), and getting the complete story requires fitting them all together. 

“I think we’re really starting to see an elephant,” Sherwin told me. 

That picture will continue to get clearer as MethaneSAT and other surveillance satellites come online and researchers get to sift through the data. And that understanding will be crucial as governments around the world race to keep promises about slashing methane emissions. 


Now read the rest of The Spark

Related reading

For more on how researchers are working to understand methane emissions, give my latest story a read

If you’ve missed the news on methane-hunting satellites, check out this story about MethaneSAT from last month

Pulling methane out of the atmosphere could be a major boost for climate action. Some startups hope that spraying iron particles above the ocean could help, as my colleague James Temple wrote in December

five planes flying out of white puffy clouds at different angles across a blue sky, leaving contrails behind

PHOTO ILLUSTRATION | GETTY IMAGES

Another thing

Making minor changes to airplane routes could put a significant dent in emissions, and a new study found that these changes could be cheap to implement. 

The key is contrails, thin clouds that planes produce when they fly. Minimizing contrails means less warming, and changing flight paths can reduce the amount of contrail formation. Read more about how in the latest from my colleague James Temple

Keeping up with climate  

New rules from the US Securities and Exchange Commission were watered down, cutting off the best chance we’ve had at forcing companies to reckon with the dangers of climate change, as Dara O’Rourke writes in a new opinion piece. (MIT Technology Review)

Yes, heat pumps slash emissions, even if they’re hooked up to a pretty dirty grid. Switching to a heat pump is better than heating with fossil fuels basically everywhere in the US. (Canary Media)

Rivian announced its new R2, a small SUV set to go on sale in 2026. The reveal signals a shift to focusing on mass-market vehicles for the brand. (Heatmap)

Toyota has focused on selling hybrid vehicles instead of fully electric ones, and it’s paying off financially. (New York Times)

→ Here’s why I wrote in December 2022 that EVs wouldn’t be fully replacing hybrids anytime soon. (MIT Technology Review)

Some scientists think we should all pay more attention to tiny aquatic plants called azolla. They can fix their own nitrogen and capture a lot of carbon, making them a good candidate for crops and even biofuels. (Wired)

New York is suing the world’s largest meat company. The company has said it’ll produce meat with no emissions by 2040, a claim that is false and misleading, according to the New York attorney general’s office. (Vox)

A massive fire in Texas has destroyed hundreds of homes. Climate change has fueled dry conditions, and power equipment sparked an intense fire that firefighters struggled to contain. (Grist)

→ Many of the homes destroyed in the blaze are uninsured, creating a tough path ahead for recovery. (Texas Tribune)

Methane leaks in the US are worse than we thought

Methane emissions in the US are worse than scientists previously estimated, a new study has found.

The study, published today in Nature, represents one of the most comprehensive surveys yet of methane emissions from US oil- and gas-producing regions. Using measurements taken from planes, the researchers found that emissions from many of the targeted areas were significantly higher than government estimates had found. The undercounting highlights the urgent need for new and better ways of tracking the powerful greenhouse gas.

Methane emissions are responsible for nearly a third of the total warming the planet has experienced so far. While there are natural sources of the greenhouse gas, including wetlands, human activities like agriculture and fossil-fuel production have dumped millions of metric tons of additional methane into the atmosphere. The concentration of methane has more than doubled over the past 200 years. But there are still large uncertainties about where, exactly, emissions are coming from.

Answering these questions is a challenging but crucial first step to cutting emissions and addressing climate change. To do so, researchers are using tools ranging from satellites like the recently launched MethaneSAT to ground and aerial surveys. 

The US Environmental Protection Agency estimates that roughly 1% of oil and gas produced winds up leaking into the atmosphere as methane pollution. But survey after survey has suggested that the official numbers underestimate the true extent of the methane problem.  

For the sites examined in the new study, “methane emissions appear to be higher than government estimates, on average,” says Evan Sherwin, a research scientist at Lawrence Berkeley National Laboratory, who conducted the analysis as a postdoctoral fellow at Stanford University.  

The data Sherwin used comes from one of the largest surveys of US fossil-fuel production sites to date. Starting in 2018, Kairos Aerospace and the Carbon Mapper Project mapped six major oil- and gas-producing regions, which together account for about 50% of onshore oil production and about 30% of gas production. Planes flying overhead gathered nearly 1 million measurements of well sites using spectrometers, which can detect methane using specific wavelengths of light. 

Sherwin et al., Nature

Here’s where things get complicated. Methane sources in oil and gas production come in all shapes and sizes. Some small wells slowly leak the gas at a rate of roughly one kilogram of methane an hour. Other sources are significantly bigger, emitting hundreds or even thousands of kilograms per hour, but these leaks may last for only a short period.

The planes used in these surveys detect mostly the largest leaks, above roughly 100 kilograms per hour (though they catch smaller ones sometimes, down to around one-tenth that size, Sherwin says). Combining measurements of these large leak sites with modeling to estimate smaller sources, researchers estimated that the larger leaks account for an outsize proportion of emissions. In many cases, around 1% of well sites can make up over half the total methane emissions, Sherwin says.

But some scientists say that this and other studies are still limited by the measurement tools available. “This is an indication of the current technology limits,” says Ritesh Gautam, a lead senior scientist at the Environmental Defense Fund.

Because the researchers used aerial measurements to detect large methane leaks and modeled smaller sources, it’s possible that the study may be overestimating the importance of the larger leaks, Gautam says. He pointed to several other recent studies, which found that smaller wells contribute a larger fraction of methane emissions.

The problem is, it’s basically impossible to use just one instrument to measure all these different methane sources. We’ll need all the measurement technologies available to get a clearer picture, Gautam explains.

Ground-based tools attached to towers can keep constant watch over an area and detect small emissions sources, though they generally can’t survey large regions. Aerial surveys using planes can cover more ground but tend to detect only larger leaks. They also represent a snapshot in time, so they can miss sources that only leak methane for periods.

And then there are the satellites. Earlier this month, Google and EDF launched MethaneSAT, which joined the growing constellation of methane-detecting satellites orbiting the planet. Some of the existing satellites map huge areas, getting detail only on the order of kilometers. Others have much higher resolution, with the ability to pin methane emissions down to within a few dozen meters. 

Satellites will be especially helpful in finding out more about the many countries around the world that haven’t been as closely measured and mapped as the US has, Gautham says. 

Understanding methane emissions is one thing; actually addressing them is another matter. After identifying a leak, companies then need to take actions like patching faulty pipelines or other equipment, or closing up the vents and flares that routinely release methane into the atmosphere. Roughly 40% of methane emissions from oil and gas production have no net cost, since the money saved by not losing the methane is more than enough to cover the cost of the abatement, according to estimates from the International Energy Agency.

Over 100 countries joined the Global Methane Pledge in 2021, taking on a goal of cutting methane emissions 30% from 2020 levels by the end of the decade. New rules for oil and gas producers announced by the Biden administration could help the US meet those targets. Earlier this year, the EPA released details of a proposed methane fee for fossil-fuel companies, to be calculated on the basis of excess methane released into the atmosphere.

While researchers are slowly getting a better picture of methane emissions, addressing them will be a challenge, as Sherwin notes: “There’s a long way to go.”

Emissions hit a record high in 2023. Blame hydropower.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Hydropower is a staple of clean energy—the modern version has been around for over a century, and it’s one of the world’s largest sources of renewable electricity.

But last year, weather conditions caused hydropower to fall short in a major way, with generation dropping by a record amount. In fact, the decrease was significant enough to have a measurable effect on global emissions. Total energy-related emissions rose by about 1.1% in 2023, and a shortfall of hydroelectric power accounts for 40% of that rise, according to a new report from the International Energy Agency.

Between year-to-year weather variability and climate change, there could be rocky times ahead for hydropower. Here’s what we can expect from the power source and what it might mean for climate goals. 

Drying up

Hydroelectric power plants use moving water to generate electricity. The majority of plants today use dams to hold back water, creating reservoirs. Operators can allow water to flow through the power plant as needed, creating an energy source that can be turned on and off on demand. 

This dispatchability is a godsend for the grid, especially because some renewables, like wind and solar, aren’t quite so easy to control. (If anyone figures out how to send more sunshine my way, please let me know—I could use more of it.) 

But while most hydroelectric plants do have some level of dispatchability, the power source is still reliant on the weather, since rain and snow are generally what fills up reservoirs. That’s been a problem for the past few years, when many regions around the world have faced major droughts. 

The world actually added about 20 gigawatts of hydropower capacity in 2023, but because of weather conditions, the amount of electricity generated from hydropower fell overall.

The shortfall was especially bad in China, with generation falling by 4.9% there. North America also faced droughts that contributed to hydro’s troubles, partly because El Niño brought warmer and drier conditions. Europe was one of the few places where conditions improved in 2023—mostly because 2022 was an even worse year for drought on the continent.

As hydroelectric plants fell short, fossil fuels like coal and natural gas stepped in to fill the gap, contributing to a rise in global emissions. In total, changes in hydropower output had more of an effect on global emissions than the post-pandemic aviation industry’s growth from 2022 to 2023. 

A trickle

Some of the changes in the weather that caused falling hydropower output last year can be chalked up to expected yearly variation. But in a changing climate, a question looms: Is hydropower in trouble?

The effects of climate change on rainfall patterns can be complicated and not entirely clear. But there are a few key mechanisms by which hydropower is likely to be affected, as one 2022 review paper outlined

  • Rising temperatures will mean more droughts, since warmer air sucks up more moisture, causing rivers, soil, and plants to dry out more quickly. 
  • Winters will generally be warmer, meaning less snowpack and ice, which often fills up reservoirs in the early spring in places like the western US. 
  • There’s going to be more variability in precipitation, with periods of more extreme rainfall that can cause flooding (meaning water isn’t stored neatly in reservoirs for later use in a power plant).

What all this will mean for electricity generation depends on the region of the world in question. One global study from 2021 found that around half of countries with hydropower capacity could expect to see a 20% reduction in generation once per decade. Another report focused on China found that in more extreme emissions scenarios, nearly a quarter of power plants in the country could see that level of reduced generation consistently. 

It’s not likely that hydropower will slow to a mere trickle, even during dry years. But the grid of the future will need to be prepared for variations in the weather. Having a wide range of electricity sources and tying them together with transmission infrastructure over wide geographic areas will help keep the grid robust and ready for our changing climate. 

Related reading

Droughts across the western US have been cutting into hydropower for years. Here’s how changing weather could affect climate goals in California.

While adaptation can help people avoid the worst impacts of climate change, there’s a limit to how much adapting can really help, as I found when I traveled to El Paso, Texas, famously called the “drought-proof city.”

Drought is creating new challenges for herders, who have to handle a litany of threats to their animals and way of life. Access to data could be key in helping them navigate a changing world.

road closed blockade

STEPHANIE ARNETT/MITTR | ENVATO

Another thing

Chinese EVs have entered center stage in the ongoing tensions between the US and China. The vehicles could help address climate change, but the Biden administration is wary of allowing them into the market. There are two major motivations: security and the economy. Read more in my colleague Zeyi Yang’s latest newsletter here

Keeping up with climate  

A new satellite that launched this week will be keeping an eye on methane emissions. Tracking leaks of the powerful greenhouse gas could be key in addressing climate change. (New York Times)

→ This isn’t our first attempt at tracking greenhouse gases from space—but here’s how MethaneSAT is different from other methane-detecting satellites. (Heatmap)

Smarter charging of EVs could be essential to the grid of the future, and California is working on a new program to test it out. (Canary Media)

The magnets that power wind turbines nearly always wind up in a landfill. A new program aims to change that by supporting new methods of recycling. (Grist)

→ One company wants to do without the rare earth metals that are used in today’s powerful magnets. (MIT Technology Review)

Data centers burn through water to keep machinery cool. As more of the facilities pop up, in part to support AI tools like ChatGPT, they could stretch water supplies thin in some places. (The Atlantic)

No US state has been more enthusiastic about heat pumps than Maine. While it might seem an unlikely match—the appliances can lose some of their efficiency in the cold—the state is a success story for the technology. (New York Times)

New rules from the US Securities and Exchange Commission would require companies to report their emissions and expected climate risks. The final version is watered down from an earlier proposal, which would have included a wider variety of emissions. (Associated Press)

The SEC’s new climate rules were a missed opportunity to accelerate corporate action

This week, the US Securities and Exchange Commission enacted a set of long-awaited climate rules, requiring most publicly traded companies to disclose their greenhouse-gas emissions and the climate risks building up on their balance sheets. 

Unfortunately, the federal agency watered down the regulations amid intense lobbying from business interests, undermining their ultimate effectiveness—and missing the best shot the US may have for some time at forcing companies to reckon with the rising dangers of a warming world. 

These new regulations were driven by the growing realization that climate risks are financial risks. Global corporations now face climate-related supply chain disruptions. Their physical assets are vulnerable to storms, their workers will be exposed to extreme heat events, and some of their customers may be forced to relocate. There are fossil-fuel assets on their balance sheets that they may never be able to sell, and their business models will be challenged by a rapidly changing planet.

These are not just coal and oil companies. They are utilities, transportation companies, material producers, consumer product companies, even food companies. And investors—you, me, your aunt’s pension—are buying and holding these fossilized stocks, often unknowingly.

Investors, policymakers, and the general public all need clearer, better information on how businesses are accelerating climate change, what they are doing to address those impacts, and what the cascading effects could mean for their bottom line.

The new SEC rules formalize and mandate what has essentially been a voluntary system of corporate carbon governance, now requiring corporations to report how climate-related risks may affect their business.

They also must disclose their “direct emissions” from sources they own or control, as well as their indirect emissions from the generation of “purchased energy,” which generally means their use of electricity and heat. 

But crucially, companies will have to do so only when they determine that the information is financially “material,” providing companies considerable latitude over whether they do or don’t provide those details.

The original draft of the SEC rules would have also required corporations to report emissions from “upstream and downstream activities” in their value chains. That generally refers to the associated emissions from their suppliers and customers, which can often make up 80% of a company’s total climate pollution.  

The loss of that requirement and the addition of the “materiality” standard both seem attributable to intense pressure from business groups. 

To be sure, these rules should help make it clearer how some companies are grappling with climate change and their contributions to it. Out of legal caution, plenty of businesses are likely to determine that emissions are material.

And clearer information will help accelerate corporate climate action as firms concerned about their reputation increasingly feel pressure from customers, competitors, and some investors to reduce their emissions. 

But the SEC could and should have gone much further. 

After all, the EU’s similar policies are much more comprehensive and stringent. California’s emissions disclosure law, signed this past October, goes further still, requiring both public and private corporations with revenues over $1 billion to report every category of emissions, and then to have this data audited by a third party.

Unfortunately, the SEC rules merely move corporations to the starting line of the process required to decarbonize the economy, at a time when they should already be deep into the race. We know these rules don’t go far enough, because firms already following similar voluntary protocols have shown minimal progress in reducing their greenhouse-gas emissions. 

The disclosure system upon which the SEC rules are based faces two underlying problems that have limited how much and how effectively any carbon accounting and reporting can be put to use. 

First: problems with the data itself. The SEC rules grant firms significant latitude in carbon accounting, allowing them to set different boundaries for their “carbon footprint,” model and measure emissions differently, and even vary how they report their emissions. In aggregate, what we will end up with are corporate reports of the previous year’s partial emissions, without any way to know what a company actually did to reduce its carbon pollution.

Second: limitations in how stakeholders can use this data. As we’ve seen with voluntary corporate climate commitments, the wide variations in reporting make it impossible to compare firms accurately. Or as the New Climate Institute argues, “The rapid acceleration in the volume of corporate climate pledges, combined with the fragmentation of approaches and the general lack of regulation or oversight, means that it is more difficult than ever to distinguish between real climate leadership and unsubstantiated greenwashing.”

Investor efforts to evaluate carbon emissions, decarbonization plans, and climate risks through ESG (environmental, social, and governance) rating schemes have merely produced what some academics call “aggregate confusion.” And corporations have faced few penalties for failing to clearly disclose emissions or even meet their own standards. 

All of which is to say that a new set of SEC carbon accounting and reporting rules that largely replicate the problems with voluntary corporate action, by failing to require consistent and actionable disclosures, isn’t going to drive the changes we need, at the speed we need. 

Companies, investors, and the public require rules that drive changes inside companies and that can be properly assessed from outside them. 

This system needs to track the main sources of corporate emissions and incentivize companies to make real investments in efforts to achieve deep emissions cuts, both within the company and across its supply chain.

The good news is that even though the rules in place are limited and flawed, regulators, regions, and companies themselves can build upon them to move toward more meaningful climate action.

The smartest firms and investors are already going beyond the SEC regulations. They’re developing better systems to track the drivers and costs of carbon emissions, and taking concrete steps to address them: reducing fuel use, building energy-efficient infrastructure, and adopting lower-carbon materials, products, and processes. 

It is now just good business to look for carbon reductions that actually save money.

The SEC has taken an important, albeit flawed, first step in nudging our financial laws to recognize climate impacts and risks. But regulators and corporations need to pick up the pace from here, ensuring that they’re providing a clear picture of how quickly or slowly companies are moving as they take the steps and make the investments needed to thrive in a transitioning economy—and on an increasingly risky planet.

Dara O’Rourke is an associate professor and co-director of the master of climate solutions program at the University of California, Berkeley.

Why concerns over the sustainability of carbon removal are growing

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

There’s a looming problem in the carbon removal space.

By one count, nearly 800 companies around the world are exploring a wide variety of methods for drawing planet-warming greenhouse gas out of the atmosphere and storing it away or putting it to use, a gigantic leap from the five startups I could have named in 2019. Globally, venture investors poured more than $4 billion into this sector between 2020 and the end of last year, according to data provided by PitchBook. 

The trouble is, carbon dioxide removal (CDR) is a very expensive product that, strictly speaking, no one needs right now. It’s not a widget; it’s waste management for invisible garbage, a public good that nobody is eager to pay for.

“CDR is a pure cost, and we’re trying to force it to be something that’s profitable—and the only way you can do that is with public money or through voluntary markets,” says Emily Grubert, an associate professor at Notre Dame, who previously served as deputy assistant secretary in the US Energy Department’s Office of Carbon Management.

Both of those are playing a part to certain degrees. So far, the main markets for carbon removal come from government procurement, which is limited; government subsidies, which don’t cover the cost; and voluntary purchases by corporations and individuals, which are restricted to those willing to pay the true cost of high-quality, reliable removal. You can also use the CO2 as a feedstock in other products, but then you’re generally starting with a high-cost version of a cheap commodity.

Given these market challenges, some investors are scratching their heads as they witness the huge sums flowing into the space.

In a report last summer, the venture capital firm DCVC said that all of the approaches it evaluated faced “multiple feasibility constraints.” It noted that carbon-sucking direct-air-capture factories are particularly expensive, charging customers hundreds of dollars per ton.

“That will still likely be the case in five, seven, even 10 years—which is why we at DCVC are somewhat surprised to see hundreds of millions of dollars in capital flowing into early-stage direct air capture companies,” the authors wrote.

Rachel Slaybaugh, a DCVC partner, said of direct-air capture in the report: “I’m not saying we won’t need it. And I’m not saying there won’t eventually be good businesses here. I’m saying right now the markets are very nascent, and I don’t see how you can possibly make a venture return.” 

In background conversations, several industry insiders I’ve spoken with acknowledge that the number of carbon removal companies is simply unsustainable, and that a sizable share will flame out at some point.

The sector has taken off, in part, because a growing body of studies has found that a huge amount of carbon removal will be needed to keep rising temperatures in check. By some estimates, nations may have to remove 10 billion tons of carbon dioxide a year by midcentury to keep the planet from blowing past 2 °C of warming, or to pull it back into safer terrain.

On top of that, companies are looking for ways to meet their net-zero commitments. For now, some businesses are willing to pay the really high current costs for carbon removal, in part to help the sector scale up. These include Microsoft and companies participating in the $1 billion Frontier program

At the moment, I’m told, corporate demand is outstripping the availability of reliable forms of carbon removal. There are only a handful of direct-air-capture plants, which take years to construct, and companies are still testing out or scaling up other approaches, like burying biochar and pumping bio-oil deep underground.

Costs are sure to come down, but it’s always going to be relatively expensive to do this well, and there are only so many corporate customers that will be willing to pay the true cost, observers say. So as carbon removal capacity catches up with that corporate demand, the fate of the industry will increasingly depend on how much more help governments are willing to provide—and on how thoughtfully they craft any accompanying rules.

Countries may support the emerging industry through carbon trading markets, direct purchases, mandates on polluters, fuel standards, or other measures. 

It seems safe to assume that nations will continue to dangle more carrots or wield bigger sticks to help the sector along. Notably, the European Commission is developing a framework for certifying carbon dioxide removal, which could allow countries to eventually use various approaches to work toward the EU goal of climate neutrality by 2050. But it’s far from clear that such government support will grow as much and as quickly as investors hope or as entrepreneurs need.

Indeed, some observers argue it’s a “fantasy” that nations will ever fund high-quality carbon removal—on the scale of billions of tons a year—just because climate scientists said they should (see: our decades of inaction on climate change). To put it in perspective, the DCVC report notes that removing 100 billion tons at $100 a ton would add up to $10 trillion—“more than a tenth of global GDP.”

Growing financial pressures in the sector could play out in a variety of worrisome ways. 

“One possibility is there’s a bubble and it pops and a lot of investors lose their shirts,” says Danny Cullenward, a climate economist and research fellow with the Institute for Responsible Carbon Removal at American University. 

If so, that could shut down the development of otherwise promising carbon removal methods before we’ve learned how well and affordably they work (or not). 

The other danger is that when an especially frothy sector fizzles, it can turn public or political sentiment against the space and kill the appetite for further investment. This, after all, is precisely what played out after the cleantech 1.0 bubble burst. Conservatives assailed government lending to green startups, and VCs, feeling burned, backed away for the better part of a decade.

But Cullenward fears another possibility even more. As funding runs dry, startups eager to bring in revenue and expand the market may resort to selling cheaper, but less reliable, forms of carbon removal—and lobbying for looser standards to allow them.

He sees a scenario where the sector replicates the sort of widespread credibility problems that have occurred with voluntary carbon offsets, building up big marketplaces that move a lot of money around but don’t achieve all that much for the atmosphere.


Now read the rest of The Spark

Related reading

In December, I highlighted an essay by Grubert and another former DOE staffer, in which they warned that sucking down greenhouse gas to cancel out corporate emissions could come at the expense of more pressing public needs.

In an earlier piece, I explored how the energy, attention, and money flowing into carbon removal could feed unrealistic expectations about how much we can rely on it—and thus how much we can carry on emitting.

My colleague and former editor David Rotman recently dug into the hard lessons of the cleantech 1.0 boom and bust—and the high stakes of the current investment wave.

Keeping up with climate 

In a story out today, Tech Review’s Casey Crownhart explains why hydrogen vehicles may be lurching toward a dead end, as vehicle sales stagnate and fueling stations shut down. (MIT Technology Review)

A Trump victory would be bad news for climate change. In particular, I took a hard look at what it might mean for Joe Biden’s landmark law, the Inflation Reduction Act. (Short answer: nothing good.) (MIT Technology Review)

The Inflation Reduction Act includes a little-known methane fee, which kicks into effect for excess emissions in 2024. Grist reports that the US’s largest oil and gas companies could be on the hook for more than $1 billion, based on recent emissions patterns—marking another reason why, as I reported, Trump would likely try to rescind the provision. (Grist)

The US Securities and Exchange Commission could release long-awaited climate rules as soon as next week, requiring companies to disclose their corporate emissions and exposure to climate risks. Heatmap explores why the SEC is doing this and what it may mean for businesses, climate progress, and the cottage industry forming to conduct emissions accounting.  (Heatmap)

Trump wants to unravel Biden’s landmark climate law. Here is what’s most at risk.

President Joe Biden’s crowning legislative achievement was enacting the Inflation Reduction Act, easily the nation’s largest investment into addressing the rising dangers of climate change. 

Yet Donald Trump’s advisors and associates have clearly indicated that dismantling the landmark law would sit at the top of the Republican front-runner’s to-do list should he win the presidential election. If he succeeds, it could stall the nation’s shift to cleaner industries and stunt efforts to cut the greenhouse-gas pollution warming the planet. 

The IRA unleashes at least hundreds of billions of dollars in federal subsidies for renewable energy sources, electric vehicles, batteries, heat pumps, and more. It is the “backbone” of the Biden administration’s plan to meet the nation’s commitments under the Paris climate agreement, putting the US on track to cut emissions by as much as 42% from 2005 levels by the end of this decade, according to the Rhodium Group, a research firm. 

But the sprawling federal policy package marks the “biggest defeat” conservatives have suffered during Biden’s tenure, according to Myron Ebell, who led the Environmental Protection Agency transition team during Trump’s administration. And repealing the law has become an obsession among many conservatives, including the authors of the Heritage Foundation’s Project 2025, widely seen as a far-right road map for the early days of a second Trump administration. 

The IRA’s tax credits for EVs and clean power projects appear especially vulnerable, climate policy experts say. Losing those provisions alone could reshape the nation’s emissions trajectory, potentially adding back hundreds of millions of metric tons of climate pollution this decade. 

Moreover, Trump’s wide-ranging pledges to weaken international institutions, inflame global trade wars, and throw open the nation’s resources to fossil-fuel extraction could have compounding effects on any changes to the IRA, potentially undermining economic growth, the broader investment climate, and prospects for emerging green industries.

Farewell to EV tax credits

The IRA leverages government funds to accelerate the energy transition through a combination of direct grants and tax credits, which allow companies or individuals to cut their federal obligations in exchange for buying, installing, investing in, or producing cleaner power and products. It is enacted law, not a federal agency regulation or executive order, which means that any substantial changes would need to be achieved through Congress.

But the tax cuts for individuals pushed through during Trump’s time in office are set to expire next year. If he wins a second term, legislators seeking to extend those cuts could crack up the tax code and excise key components of the IRA, particularly if Republicans retain control of the House and pick up seats in the Senate. Eliminating any of those tax credits could help offset the added cost of restoring those Trump-era benefits.

Numerous policy observers believe that the pair of EV tax credits in the IRA, which together lop $7,500 off the cost of electric cars and trucks, would be one of the top targets. Subsidizing the cost of EVs polls terribly among Republicans, and throughout the primaries, most of the party’s candidates for president have fiercely attacked government support for the vehicles—none more than Trump himself. 

Close up of former President Trump pointing directly at camera while speaking at a campaign event in Iowa
Former President Donald Trump speaks at a campaign event in Iowa.
SCOTT OLSON/GETTY IMAGES

On the campaign trail, he has repeatedly, erroneously referred to the policy as a mandate rather than a subsidy, while geographically tailoring the critique to his audience.

At a December rally in Iowa, the nation’s biggest corn producer, he pledged to cancel “Crooked Joe Biden’s insane, ethanol-killing electric-vehicle mandate on day one.”

And in the battleground state of Michigan in September, he pandered to the fears of autoworkers.

“Crooked Joe is siding with the left-wing crazies who will destroy automobile manufacturing and will destroy the country itself,” Trump said. “The damn things don’t go far enough, and they’re too expensive.”

Other Trump targets

Other IRA components likely to fall into Trump’s crosshairs include tax credits for investing in or operating emissions-free power plants that would come online in 2025 or later, says Josh Freed, who leads the climate and energy program at Third Way, a center-left think tank in Washington, DC.

These so-called technology-neutral credits are intended to replace earlier subsidies dedicated to renewables like solar and wind, encompassing a more expansive suite of energy-producing possibilities like nuclear, bioenergy, or power plants with carbon capture capabilities.

Those latter categories are more likely to have Republican support than, say, solar farms. But any policy primarily designed to accelerate the shift away from fossil fuels would likely be a ripe target in a second Trump administration, given the industry’s support for the candidate and his ideological opposition to climate action.

A number of other provisions could also come under attack within the law. Among them:

  • additional measures supporting the growing adoption of EVs, including tax credits for individuals and businesses that install charging infrastructure; 
  • fees on methane emissions from wells, processing plants, and pipelines, when they exceed certain thresholds;
  •  a series of environmental-justice grants and bonus tax credits available for projects that help reduce pollution, provide affordable clean energy, and create jobs in low-income, marginalized areas;
  • a reinstated Superfund excise tax on crude oil and petroleum products, which could raise billions of dollars to fund the cleanup of hazardous-waste sites;
  • and a series of tax credits incentivizing consumers to add solar panels, install heat pumps, and improve the energy efficiency of their homes. 

Pushback

Observers are quick to note, however, that a wholesale repeal of the IRA is unlikely, because—well—it’s working.

By some accounts, the law has helped spur hundreds of billions of dollars in private investment into projects that could create nearly 200,000 jobs—and get this: eight of the 10 congressional districts set to receive the biggest clean-energy investments announced in recent quarters are led by Republicans, according to one analysis (and backed up by others). 

A disproportionate amount of the money is also flowing into low-income areas and “energy communities,” or regions that previously produced fossil fuels, according to data from the MIT Center for Energy and Environmental Policy Research and the Rhodium Group. 

As more and more renewables projects, mineral processing facilities, battery plants, and EV factories bring jobs and tax revenue to red states, the politics around clean energy are shifting, at least behind the scenes if not always in the public debate. 

All of which means some sizable share of Republicans will likely push back on more sweeping changes to the IRA, particularly if they would raise the costs on businesses and reduce the odds that new projects will move forward, says Sasha Mackler, executive director of the energy program at the Bipartisan Policy Center, a Washington, DC, think tank.

“Most of the tax credits are pretty popular within industry and in red states, which are generally the constituency that the Republican Party listens to when they shape their policies,” Mackler says. “When you start to go beyond the top-line political rhetoric and look at the actual tax credits themselves, they’re on much firmer ground than you might initially think just reading the newspaper and looking at what’s being said on the campaign trail.”

That means it might prove more difficult to rescind some of the hit-list items above than Trump would hope. And there are other big parts of the legislative package that Republicans might avoid picking fights over at all, such as the support for processing critical minerals, manufacturing batteries, capturing and storing carbon dioxide, and producing biofuels, given the broader support for these areas.

DC sources also say that clean-energy-focused policy shops and some climate tech companies themselves are already playing defense, stressing the importance of these policies to legislators in the run-up to the election. Meanwhile, if staffers at the Department of Energy and other federal agencies aren’t already rushing to get as much of the grant-based money in the IRA out the door as possible, they should be, says Leah Stokes, an associate professor of environmental politics at the University of California, Santa Barbara, who advised Democrats on crafting the law.

Among other funds, the law appropriates nearly $12 billion for the DOE’s loans office, which provides financing to accelerate the development of clean-energy projects. It also sets aside $5 billion in EPA grants designed to help states, local governments, and tribes implement efforts to cut greenhouse-gas pollution. 

“If DOE and EPA work fast enough, that money should be difficult to somehow claw back, because it will have been spent,” Stokes says.

Impact

Still, there’s no question that Trump and legislators eager to curry his favor could do real damage to the IRA and the clean-energy industries poised to benefit from it.

How much damage depends, of course, on what he succeeds in unraveling.

But take the example of the power sector subsidies. A study last year in the journal Science noted that with the IRA’s support for clean electricity, around 68% of the country’s power generation would come from low-emission sources by 2030, as opposed to 54% without the law. 

The Rhodium Group estimates that the IRA could cut power-sector pollution by nearly 500 million tons in 2030, as a central estimate. 

At an intersection, exhaust pours out of the tailpipes of vehicles.

GETTY IMAGES

How much these projections change would depend on which and how many of the provisions supporting the shift to cleaner power legislators manage to remove. In addition to the technology-neutral credits noted above, the IRA also provides federal support for extending the life of nuclear plants, deploying energy storage, and adding carbon capture and storage capabilities.

Meanwhile, an earlier report from RMI (formerly known as the Rocky Mountain Institute) offered a hint at what’s at stake for the EV sector. The research group noted that the assorted provisions within the IRA, when combined with the EPA’s proposal to tighten tailpipe rules, could propel electric passenger vehicles to 76% of all new sales by 2030. Without it, they will only make up about half such sales by that point. (Notably, however, the Biden administration is now reportedly considering relaxing those rules to give automakers more time to ramp up EV production.)

All told, some 37 million additional EVs could hit the nation’s roads between now and 2032, eliminating more than 830 million tons of transportation emissions by that year and 2.4 billion tons by 2040, RMI estimates.

That adds up to a huge difference in the market prospects for EV makers, and in the economics of building new plants. 

The loss of the EV credits could create another notable ripple effect. For a purchased vehicle to qualify for one of the $3,750 tax credits, at least 60% of the battery components must be manufactured or assembled in North America. The other credit is available only if the batteries include a significant share of critical minerals extracted or processed in the US or through free-trade partners, or recycled in North America.  

The varied goals of these “domestic content requirements,” which helped drive the law past the legislative finish line, included ensuring that the US produces more of materials and components for cleantech industries domestically, creating more jobs, reducing the nation’s reliance on China, and safeguarding US energy security as the country moves away from fossil fuels.

Losing the tax credits could dim hopes for reaching those goals—though some critics argue that trade deals and IRS interpretations have already watered down the credits’ provisions, ensuring that more manufacturers and models qualify.

Trump’s broader agenda

Trump has made clear he intends to hamstring additional climate efforts and bolster the oil and gas sector through numerous other means, potentially including federal regulations, executive orders, and Department of Justice actions. All of these would only magnify any impact from changes he might make to the IRA.

If he wins in November, he’s also likely, for instance, to direct the EPA to eliminate those tailpipe rules altogether. He may work to slow down, cut off, or claw back some of the $7.5 billion allocated under the Bipartisan Infrastructure Law to build out a national EV charging network.

Trump could also remove and refuse to replace the staff necessary to implement and oversee programs and funding throughout the DOE, the EPA, the National Oceanic and Atmospheric Administration, and other federal agencies. And he would very likely pull the US out of the Paris climate agreement again. 

How much of this Trump accomplishes could depend, in part, on how emboldened he feels upon entering office for a second term, when he’d likely still be battling multiple criminal cases against him. 

“It just depends if we assume he’s going to respect the law and color within the lines of our legal system, or if he’s going to be a fascist,” Stokes says. “That’s a huge question—and we should take it very seriously.”

In the end, it may also prove difficult to disentangle the effects of rolling back climate policies from any success he achieves in implementing his broader policy agenda. Trump has pledged to impose a 60% or higher tariff on Chinese goods, as well as a “pro-America system of universal baseline tariffs on most foreign products.” He has said he would encourage Russia to attack NATO allies and is reportedly considering  pulling the US out of the military alliance. He’s discussed deploying military forces to suppress US protests, seal the southern border, and attack drug cartels in Mexico.

The potentially chaotic economic and geopolitical effects of such policies, at a point of spiraling global conflicts, could easily dwarf any direct consequences of altering climate laws and regulations.

As Freed puts it: “A world that is less stable and much more dangerous, economically and militarily, would have incalculable damage on climate and energy issues in a second Trump term.”

And on much else.

Three frequently asked questions about EVs, answered

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

For someone who does not own or drive a car, I sure do have a lot of thoughts about them.

I spend an inordinate amount of time thinking about transportation in general, since it’s one of the biggest areas we need to clean up to address climate change: it accounts for something like a quarter of global emissions. And the vehicles that we use to shuttle around to work, school, and the grocery store in many parts of the world are a huge piece of the problem.

Last week, MIT Technology Review hosted an event where my colleagues and I dug into a conversation about the future of batteries and the materials that go into them. We got so many great questions, and we answered quite a few of them (subscribers should check out the recording of the full event here).

But there were still a lot of questions, particularly about EVs, that we didn’t get to, so let’s take a look at a few. (I’ve edited these for length and clarity, but they came from subscribers, so thank you to everyone who submitted!)

Why is there not a bigger push for plug-in hybrids during the transition to full EVs? Could those play a role?

Hybrids are sometimes relegated to the fringes of the EV discussion, but I think they’re absolutely worth talking about. 

Before we get into this, let’s get a couple of terms straight. All hybrid vehicles use both an internal-combustion engine that burns gasoline and a battery, but there are two key types to know about. Plug-in hybrids can be charged up using an EV charger and run for short distances on electricity. Conventional hybrids have a small battery to help recapture energy that would otherwise be wasted, which boosts gas mileage, but they always run on gasoline.

Any technology that helps reduce emissions immediately can help address climate change, and even a conventional hybrid will cut emissions by something like 20%. 

Personally, I think plug-in hybrids in particular are a great option for people who can’t commit to an EV just yet. These vehicles often have a range of around 50 miles on electricity, so if you’re commuting short distances, nearly all your driving can be zero-emissions. 

Plug-ins aren’t the perfect solution, though. For one thing, the vehicles may have higher rates of problems than both EVs and gas-powered vehicles, and they need a bit more maintenance. And some studies have shown that plug-in hybrids don’t tend to get the full emissions benefits advertised, because people use the electric mode less than expected.

Ultimately, we need to stop burning fossil fuels, so we’ll need to get used to vehicles that run without gasoline at all. But in the meantime, dipping a toe into the world of electric vehicles could be a good option for many drivers. 

Will current charging technology be able to support EVs? How practical is it to bring chargers to remote areas of the country?

These questions hit on one of the biggest potential barriers to EV adoption: charging availability. 

In many parts of the world, there’s a massive need to build more chargers to support the EVs already on the road, not to mention all the new ones being built and sold each year. Some agencies have recommended that there should be one public charger for every 10 EVs on the road, though factors like density and rates of at-home charging mean different communities will have different needs. 

The US had about 24 EVs per charger as of the end of 2022, while the EU is at about 13, and China is among the leading nations with around eight. Improving that ratio is crucial to getting more drivers comfortable with EVs. 

But building out the charging network is a big project, and one that looks different for different communities. In dense cities, many people live in apartments as opposed to single-family homes with garages, so even more public chargers will be needed to make up for the lack of at-home charging. For rural communities, or those that are less wealthy, getting any chargers built at all can be a challenge. 

These so-called charging deserts often suffer from a sort of chicken-and-egg problem: there’s a lack of demand for chargers because people aren’t driving EVs, and people aren’t driving EVs because there are no chargers.

Public funding will be key to filling in gaps left by private companies installing charging networks. In the US, some money is tied to making sure that disadvantaged communities will benefit. 

The bottom line is that it’s possible to make chargers available and equitable, but it’s definitely going to take a while, and it’s going to be expensive. 

What about hydrogen—could that be an alternative to batteries?

I’ve been digging into this question, so stay tuned for a story coming very soon. But I’ll give you a sneak peek: the short answer is that I think there are many reasons to be skeptical of claims that hydrogen will swoop in to save the day for vehicles. 

A small number of vehicles on the road today do use hydrogen as a fuel. The Toyota Mirai is one of the most popular fuel-cell models on the market, though only a few thousand were sold last year.

The big draw is that fueling up such a car looks a lot like fueling up a gas-powered vehicle today, taking just a few minutes at a pump. Even the fastest chargers can take around half an hour to juice up an EV, so hydrogen refueling is generally faster and more convenient.

But for a range of reasons, hydrogen vehicles are more expensive both to buy and to drive, and they’re likely to stay that way. There are better uses for hydrogen, too, in heavy industry and fertilizer and even long-range shipping. So EVs are probably going to be our best option for a long while. 

I hope I’ve piqued your interest—look out for a longer story on this topic soon. In the meantime, check out some of our other transportation coverage. 

Related reading

We put electric vehicles on our 2023 list of breakthrough technologies—see why here.

Hybrids are going to be around for a while, and that might be a good thing, as I wrote in a 2022 story.

Huge EVs are far from perfect, but they can be part of the story on addressing climate change.

Aerial view of electric car parking in charging station with solar panels.

GETTY

Another thing

The EV revolution is happening faster in China than anywhere else in the world. So it’s no wonder that the country is also a center for the world of virtual power plants, which pull together energy resources like EV batteries. Read more about why China needs VPPs in my colleague Zeyi Yang’s latest story.

Keeping up with climate  

Plastic is really difficult to recycle. A new report shows that some companies knew just how extensive the challenges are and obscured the truth for decades. (The Guardian)

→ Think that your plastic is being recycled? Think again. (MIT Technology Review)

The EU is finalizing rules around pulling carbon out of the atmosphere. The certification will favor techniques that work over long time scales and can be measured effectively. (The Verge)

EVs can run into trouble in extreme heat and cold. New materials, especially advancements in a part of the battery called the electrolyte, could help EVs last longer and stand up to tough conditions. (Scientific American)

A growing group of companies wants to enlist the earth to help store energy. Sage Geosystems just raised $17 million for geothermal energy storage. (Canary Media)

→ Fervo Energy demonstrated that its wells can be used like a giant underground battery. (MIT Technology Review)

Restringing power lines could be key in supercharging clean energy. The process can be quicker and cheaper than building new transmission lines, as long as red tape doesn’t get in the way. (Heatmap News)

Farmers are getting better at growing more crops faster on less land. The problem is, the benefits are focused on plants going into cars and cows, not people. (Wired)