The inadvertent geoengineering experiment that the world is now shutting off

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Usually when we talk about climate change, the focus is squarely on the role that greenhouse-gas emissions play in driving up global temperatures, and rightly so. But another important, less-known phenomenon is also heating up the planet: reductions in other types of pollution.

In particular, the world’s power plants, factories, and ships are pumping much less sulfur dioxide into the air, thanks to an increasingly strict set of global pollution regulations. Sulfur dioxide creates aerosol particles in the atmosphere that can directly reflect sunlight back into space or act as the “condensation nuclei” around which cloud droplets form. More or thicker clouds, in turn, also cast away more sunlight. So when we clean up pollution, we also ease this cooling effect. 

Before we go any further, let me stress: cutting air pollution is smart public policy that has unequivocally saved lives and prevented terrible suffering. 

The fine particulate matter produced by burning coal, gas, wood, and other biomatter is responsible for millions of premature deaths every year through cardiovascular disease, respiratory illnesses, and various forms of cancer, studies consistently show. Sulfur dioxide causes asthma and other respiratory problems, contributes to acid rain, and depletes the protective ozone layer. 

But as the world rapidly warms, it’s critical to understand the impact of pollution-fighting regulations on the global thermostat as well. Scientists have baked the drop-off of this cooling effect into net warming projections for the coming decades, but they’re also striving to obtain a clearer picture of just how big a role declining pollution will play.

A new study found that reductions in emissions of sulfur dioxide and other pollutants are responsible for about 38%, as a middle estimate, of the increased “radiative forcing” observed on the planet between 2001 and 2019. 

An increase in radiative forcing means that more energy is entering the atmosphere than leaving it, as Kerry Emanuel, a professor of atmospheric science at MIT, lays out in a handy explainer here. As that balance has shifted in recent decades, the difference has been absorbed by the oceans and atmosphere, which is what is warming up the planet. 

The remainder of the increase is “mainly” attributable to continued rising emissions of heat-trapping greenhouse gases, says Øivind Hodnebrog, a researcher at the Center for International Climate and Environment Research in Norway and lead author of the paper, which relied on climate models, sea-surface temperature readings, and satellite observations.

The study underscores the fact that as carbon dioxide, methane, and other gases continue to drive up temperature​​s, parallel reductions in air pollution are revealing more of that additional warming, says Zeke Hausfather, a scientist at the independent research organization Berkeley Earth. And it’s happening at a point when, by most accounts, global warming is about to begin accelerating or has already started to do so. (There’s ongoing debate over whether researchers can yet detect that acceleration and whether the world is now warming faster than researchers had expected.)

Because of the cutoff date, the study did not capture a more recent contributor to these trends. Starting in 2020, under new regulations from the International Maritime Organization, commercial shipping vessels have also had to steeply reduce the sulfur content in fuels. Studies have already detected a decrease in the formation of “ship tracks,” or the lines of clouds that often form above busy shipping routes. 

Again, this is a good thing in the most important way: maritime pollution alone is responsible for tens of thousands of early deaths every year. But even so, I have seen and heard of suggestions that perhaps we should slow down or alter the implementation of some of these pollution policies, given the declining cooling effect.

A 2013 study explored one way to potentially balance the harms and benefits. The researchers simulated a scenario in which the maritime industry would be required to use very low-sulfur fuels around coastlines, where the pollution has the biggest effect on mortality and health. But then the vessels would double the fuel’s sulfur content when crossing the open ocean. 

In that hypothetical world, the cooling effect was a bit stronger and premature deaths declined by 69% with respect to figures at the time, delivering a considerable public health improvement. But notably, under a scenario in which low-sulfur fuels were required across the board, mortality declined by 96%, a difference of more than 13,000 preventable deaths every year.

Now that the rules are in place and the industry is running on low-sulfur fuels, intentionally reintroducing pollution over the oceans would be a far more controversial matter.

While society basically accepted for well over a century that ships were inadvertently emitting sulfur dioxide into the air, flipping those emissions back on for the purpose of easing global warming would amount to a form of solar geoengineering, a deliberate effort to tweak the climate system.

Many think such planetary interventions are far too powerful and unpredictable for us to muck around with. And to be sure, this particular approach would be one of the more ineffective, dangerous, and expensive ways to carry out solar geoengineering, if the world ever decided it should be done at all. The far more commonly studied concept is emitting sulfur dioxide high in the stratosphere, where it would persist for longer and, as a bonus, not be inhaled by humans. 

On an episode of the Energy vs. Climate podcast last fall, David Keith, a professor at the University of Chicago who has closely studied the topic, said that it may be possible to slowly implement solar geoengineering in the stratosphere as a means of balancing out the reduced cooling occurring from sulfur dioxide emissions in the troposphere.

“The kind of solar geoengineering ideas that people are talking about seriously would be a thin wedge that would, for example, start replacing what was happening with the added warming we have from unmasking the aerosol cooling from shipping,” he said. 

Positioning the use of solar geoengineering as a means of merely replacing a cruder form that the world was shutting down offers a somewhat different mental framing for the concept—though certainly not one that would address all the deep concerns and fierce criticisms.


Now read the rest of The Spark 

Read more from MIT Technology Review’s archive: 

Back in 2018, I wrote a piece about the maritime rules that were then in the works and the likelihood that they would fuel additional global warming, noting that we were “about to kill a massive, unintentional” experiment in solar geoengineering.

Another thing

Speaking of the concerns about solar geoengineering, late last week I published a deep dive into Harvard’s unsuccessful, decade-long effort to launch a high-altitude balloon to conduct a tiny experiment in the stratosphere. I asked a handful of people who were involved in the project or followed it closely for their insights into what unfolded, the lessons that can be drawn from the episode—and their thoughts on what it means for geoengineering research moving forward.

Keeping up with Climate 

Yup, as the industry predicted (and common sense would suggest), this week’s solar eclipse dramatically cut solar power production across North America. But for the most part, grid operators were able to manage their systems smoothly, minus a few price spikes, thanks in part to a steady buildout of battery banks and the availability of other sources like natural gas and hydropower. (Heatmap)

There’s been a pile-up of bad news for Tesla in recent days. First, the company badly missed analyst expectations for vehicle deliveries during the first quarter. Then, Reuters reported that the EV giant has canceled plans for a low-cost, mass-market car. That may have something to do with the move to “prioritize the development of a robotaxi,” which the Wall Street Journal then wrote about. Over on X, Elon Musk denied the Reuters story, sort ofposting that “Reuters is lying (again).” But there’s a growing sense that his transformation into a “far-right activist” is exacting an increasingly high cost on his personal and business brands. (Wall Street Journal)

In a landmark ruling this week, the European Court of Human Rights determined that by not taking adequate steps to address the dangers of climate change, including increasingly severe heat waves that put the elderly at particular risk, Switzerland had violated the human rights of a group of older Swiss women who had brought a case against the country. Legal experts say the ruling creates a precedent that could unleash many similar cases across Europe. (The Guardian)

How to reopen a nuclear power plant

A shut-down nuclear power plant in Michigan could get a second life thanks to a $1.52 billion loan from the US Department of Energy. If successful, it will be the first time a shuttered nuclear power plant reopens in the US.  

Palisades Power Plant shut down on May 20, 2022, after 50 years of generating low-carbon electricity. But the plant’s new owner thinks economic conditions have improved in the past few years and plans to reopen by the end of 2025.

A successful restart would be a major milestone for the US nuclear fleet, and the reactor’s 800 megawatts of capacity could help inch the country closer to climate goals. But reopening isn’t as simple as flipping on a light switch—there are technical, administrative, and regulatory hurdles ahead before Palisades can start operating again. Here’s what it takes to reopen a nuclear power plant.

Step 1: Stay ready

One of the major reasons Palisades has any shot of restarting is that the site’s new owner has been planning on this for years. “Technically, the stars had all aligned for the plant to stay operating,” says Patrick White, research director at the Nuclear Innovation Alliance, a nonprofit think tank.

Holtec International supplies equipment for nuclear reactors and waste and provides services like decommissioning nuclear plants. Holtec originally purchased Palisades with the intention of shutting it down, taking apart the facilities, and cleaning up the site. The company has decommissioned other recently shuttered nuclear plants, including Indian Point Energy Center in New York. 

Changing economic conditions have made continued operation too expensive to justify for many nuclear power plants, especially smaller ones. Those with a single, relatively small reactor, like Palisades, have been the most vulnerable.  

Once a nuclear power plant shuts down, it can quickly become difficult to start it back up. As with a car left out in the yard, White says, “you expect some degradation.” Maintenance and testing of critical support systems might slow down or stop. Backup diesel generators, for example, would need to be checked and tested regularly while a reactor is online, but they likely wouldn’t be treated the same way after a plant’s shutdown, White says.

Holtec took possession of Palisades in 2022 after the reactor shut down and the fuel was removed. Even then, there were already calls to keep the plant’s low-carbon power on the grid, says Nick Culp, senior manager for government affairs and communications at Holtec.

The company quickly pivoted and decided to try to keep the plant open, so records and maintenance work largely continued. “It looks like it shut down yesterday,” Culp says.

Because of the continued investment of time and resources, starting the plant back up will be more akin to restarting after a regular refueling or maintenance outage than starting a fully defunct plant. After maintenance is finished and fresh fuel loaded in, the Palisades reactor could restart and provide enough electricity for roughly 800,000 homes.

Step 2: Line up money and permission

Support has poured in for Palisades, with the state of Michigan setting aside $300 million in funding for the plant’s restart in the last two years. And now, the Department of Energy has issued a conditional loan commitment for $1.52 billion.

Holtec will need to meet certain technical and legal conditions to get the loan money, which will eventually be repaid with interest. (Holtec and the DOE Loan Programs Office declined to give more information about the loan’s conditions or timeline.)

The state funding and federal loan will help support the fixes and upgrades needed for the plant’s equipment and continue paying the approximately 200 workers who have stayed on since its shutdown. The plant employed about 700 people while it was operating, and the company is now working on rehiring additional workers to help with the restart, Culp says.  

One of the major remaining steps in a possible Palisades restart is getting authorization from regulators, as no plant in the US has restarted operations after shutting down. “We’re breaking new ground here,” says Jacopo Buongiorno, a professor of nuclear engineering at MIT. 

The Nuclear Regulatory Commission oversees nuclear power plants in the US, but the agency doesn’t have a specific regulatory framework for restarting operations at a nuclear power plant that has shut down and entered decommissioning, White says. The NRC created a panel that will oversee reopening efforts.

Palisades effectively gave up the legal right to operate when it shut down and took the fuel out of the reactor. Holtec will need to submit detailed plans to the NRC with information about how it plans to reopen and operate the plant safely. Holtec formally began the process of reauthorizing operations with the NRC in October 2023 and plans to submit the rest of its materials this year.

Step 3: Profit?

If regulators sign off, the plan is to have Palisades up and running again by the end of 2025. The fuel supply is already lined up, and the company has long-term buyers committed for the plant’s full power output, Culp says.

If all goes well, the plant could be generating power until at least 2051, 80 years after it originally began operations.

Expanded support for low-carbon electricity sources, and nuclear in particular, have helped make it possible to extend the life of older plants across the US. “This restart of a nuclear plant represents a sea change in support for clean firm power,” says Julie Kozeracki, a senior advisor for the US Department of Energy’s Loan Programs Office.

As of last year, a majority of Americans (57%) support more nuclear power in the country, up from 43% in 2016, according to a poll from the Pew Research Center. There’s growing funding available for the technology as well, including billions of dollars in tax credits for nuclear and other low-carbon energy included in the Inflation Reduction Act

Growing support and funding, alongside rising electricity prices, contribute to making existing nuclear plants much more valuable than they were just a few years ago, says MIT’s Buongiorno. “Everything has changed,” he adds.   

But even a successful Palisades restart wouldn’t mean that we’ll see a wave of other shuttered nuclear plants reopening around the US. “This is a really rare case where you had someone doing a lot of forward thinking,” White says. For other plants that are nearing decommissioning, it would be cheaper, simpler, and more efficient to extend their operations rather than allowing them to shut down in the first place. 

Update: This story has been updated with additional details regarding how the NRC may reauthorize Palisades Nuclear Plant.

The hard lessons of Harvard’s failed geoengineering experiment

In late March of 2017, at a small summit in Washington, DC, two Harvard professors, David Keith and Frank Keutsch, laid out plans to conduct what would have been the first solar geoengineering experiment in the stratosphere.

Instead, it became the focal point of a fierce public debate over whether it’s okay to research such a controversial topic at all.

The basic concept behind solar geoengineering is that by spraying certain particles high above the planet, humans could reflect some amount of sunlight back into space as a means of counteracting climate change. 

The Harvard researchers hoped to launch a high-altitude balloon, tethered to a gondola equipped with propellers and sensors, from a site in Tucson, Arizona, as early as the following year. After initial equipment tests, the plan was to use the aircraft to spray a few kilograms of material about 20 kilometers (12.4 miles) above Earth and then fly back through the plume to measure how reflective the particles were, how readily they dispersed, and other variables. 

But the initial launch didn’t happen the following year, nor the next, the next, or the next—not in Tucson, nor at a subsequently announced site in Sweden. Complications with balloon vendors, the onset of the covid pandemic, and challenges in finalizing decisions between the team, its advisory committee, and other parties at Harvard kept delaying the project—and then fervent critiques from environmental groups, a Northern European Indigenous organization, and other opponents finally scuttled the team’s plans.

Critics, including some climate scientists, have argued that an intervention that could tweak the entire planet’s climate system is too dangerous to study in the real world, because it’s too dangerous to ever use. They fear that deploying such a powerful tool would inevitably cause unpredictable and dangerous side effects, and that the world’s countries could never work together to use it in a safe, equitable, and responsible way.

These opponents believe that even discussing and researching the possibility of such climate interventions eases pressures to rapidly cut greenhouse-gas emissions and increases the likelihood that a rogue actor or solitary nation will one day begin spraying materials into the stratosphere without any broader consensus. Unilateral use of the tool, with its potentially calamitous consequences for some regions, could set nations on a collision course toward violent conflicts.

Harvard’s single, small balloon experiment, known as the Stratospheric Controlled Perturbation Experiment, or SCoPEx, came to represent all of these fears—and, in the end, it was more than the researchers were prepared to take on. Last month, a decade after the project was first proposed in a research paper, Harvard officially announced the project’s termination, as first reported by MIT Technology Review.

“The experiment became this proxy for a kind of debate about whether solar geoengineering research should move forward,” Keith says. “And that’s, I think, the ultimate reason why Frank and I decided to pull the plug. There’s no way, given that weight that SCoPEx had come to hold, it made sense to move forward.”

I’ve been writing about solar geoengineering for more than a decade. I reported on the conference in 2017, and I continued to cover the team’s evolving plans over the following years. So the cancellation of the project left me puzzling over why it failed, and what that failure says about the latitude that researchers have to explore such a controversial subject.

In recent days, I asked a handful of people who were involved in the project or followed it closely for their insights and thoughts on what unfolded, what lessons can be drawn from the episode—and what it means for geoengineering research moving forward.

Few of the people I spoke with believe it spells the end of outdoor experiments in solar geoengineering, but some argue that it should—and others believe any future proposals should proceed in a very different way if researchers hope to avoid the same fate.

A short history of SCoPEx

Nature offered the inspiration for solar geoengineering: massive volcanic eruptions in the past have cooled global temperatures by emitting vast amounts of sulfur dioxide, which eventually form sulfuric acid aerosols that reflect away solar radiation. 

The 1991 eruption of Mount Pinatubo in the Philippines, for instance, blasted nearly 20 million tons of sulfur dioxide into the stratosphere, cooling global surface temperatures by around 0.5 °C for months.

But one concern about relying on the gas for geoengineering is that sulfuric acid also depletes the ozone layer, which shields life on Earth from harmful ultraviolet light. So some researchers, including Keith, have used computer models to explore whether we could reduce or even reverse that side effect by replacing sulfur dioxide with other substances, including diamond dust, alumina, or calcium carbonate

The SCoPEx researchers discussed the possibility of releasing several materials over a series of flights, including sulfuric acid, but they mainly emphasized calcium carbonate.

They hoped that the data from the launches could refine the accuracy of geoengineering simulations and improve our understanding of the technology’s potential benefits and risks.

“You have to go measure things in the real world, because nature surprises you,” Keith said at that conference in 2017.

He has continually stressed that the amount of material involved would represent a small fraction of the particulate pollution already emitted by planes, and that doing the same experiment for any other scientific purpose wouldn’t have raised an eyebrow.

But theirs became a lightning rod. In their effort to be upfront and transparent about their plans, Keith believes, they set off a self-reinforcing cycle of overheated press coverage and fierce attacks from critics, all of which inflated public concerns about what he contends was an ordinary experiment with negligible environmental impact. 

The team’s initial hopes for launching a balloon in Arizona in 2018 never came to fruition because the balloon vendor they were working with, World View, stopped launching payloads of the necessary weight, Keith says. (The company didn’t respond to an inquiry before press time.)

But the researchers continued to develop the equipment and aircraft in the labs at Harvard, and the university set up an oversight panel that began reviewing the team’s plans and developing guidelines for engaging with the public.

Eventually, the researchers shifted their focus to Sweden, where they began planning a launch to test the aircraft’s equipment, working with the Swedish Space Corporation. The balloon was set to lift off from the Esrange Space Center in Kiruna in the summer of 2021.

The aircraft would not have released any materials during that launch. But anti-geoengineering groups, environmental organizations, Swedish environmental activist Greta Thunberg, the Saami Council (which represents the Indigenous Saami peoples of Northern Europe), and the board of the Royal Swedish Academy of Sciences all criticized the plan, putting pressure on the aerospace company, the research team, and the advisors to halt the launch. 

Solar geoengineering “is a technology that entails risks of catastrophic consequences, including the impact of uncontrolled termination, and irreversible sociopolitical effects that could compromise the world’s necessary efforts to achieve zero-carbon societies,” the Saami Council wrote in a letter to the advisory committee. “There are therefore no acceptable reasons for allowing the SCoPEx project to be conducted either in Sweden or elsewhere.”

In response, the advisory committee recommended that the researchers delay their plans until they had conducted conversations about the project with the public and concerned parties. In late March of 2021, the team and the company agreed to stand down.

The project never regained traction from there.

Last spring, Keith moved to the University of Chicago, where he now leads the Climate Systems Engineering initiative, a multidisciplinary research effort dedicated to improving understanding of solar geoengineering, carbon removal, and other interventions that could counteract the effects of climate change.

A few months later, the research team informed the advisory committee that it had “suspended work” on the experiment. Then, last month, Keutsch officially confirmed he’s no longer pursuing the project.

“I felt that it was time to focus on other innovative research avenues in the incredibly important field of [solar radiation modification] that promise impactful results,” he said in an email.

Too dangerous to study

Plenty of observers are pleased with the outcome. 

Hundreds of researchers from a variety of disciplines have signed an open letter calling for an “International Non-Use Agreement on Solar Geoengineering,” stating that governments should commit to “ban outdoor experiments of solar geoengineering.”

Jennie Stephens, a professor of sustainability science and policy at Northeastern University, was one of the letter’s signatories. She argues that the SCoPEx experiment was particularly dangerous, because the funding, attention, and prestige of Harvard conferred legitimacy on planet-scale interventions that, to her mind, can never be safely governed or controlled.

She argues that even if the researchers have the best of intentions, solar geoengineering would ultimately be deployed by people or nations with money and power in ways that most benefit their interests, even if it meant disastrous consequences for other areas. Some research, for instance, suggests that solar geoengineering could significantly reduce rainfall in certain areas and might reduce the yields of some staple crops. While one block of nations might decide to use geoengineering to ease heat waves, what if that reduced the summer monsoons and the food supplies across parts of India or West Africa?

“There’s no way to even imagine deploying it on a global scale so that everybody would benefit,” she says. “Some people would be screwed, and some people may have reduced suffering. So it’s creating one more mechanism by which to interfere with the Earth systems and then privilege some and disadvantage others.”

Openness

But many believe it’s essential to learn more about the role that solar geoengineering could play in easing global warming, and whether the side effects could be moderated. There’s a simple reason: if it does work well, it could save many lives and ease suffering as climate change accelerates. 

For these observers, then, the question is: What lessons can be drawn to ensure that other experiments can go forward? And perhaps of equal importance: What lessons shouldn’t be drawn from SCoPEx?

Some researchers in the field fear that the broader takeaway from the termination of the project will be that the Harvard team chose to be too open about its intentions.

The “organized opposition to even the concept of outdoor experiments” makes it difficult for other research groups to pursue similar work and “may increase the probability of rogue actors,” says Michael Gerrard, faculty director of Columbia University’s Sabin Center for Climate Change Law, who served on the advisory committee. He notes that such activities are largely unregulated.

Immediately following the news that Harvard was no longer pursuing the project, several figures in the cleantech industry took to social media to say that people could, or should, release particles into the stratosphere on their own.

While the Harvard team’s public plans were going nowhere, several other individuals claimed to have simply started launching stratosphere-bound balloons without any announcements in advance. They include the CEO of Make Sunsets, a venture-backed geoengineering startup, as well as Andrew Lockley, an independent researcher in the UK. 

Meanwhile, earlier this week, a University of Washington-led research group conducted a small experiment in marine cloud brightening, another form of solar geoengineering, on a decommissioned aircraft carrier anchored off the coast of Alameda, California, according to the New York Times. The team “kept the details tightly held, concerned that critics would try to stop them,” the newspaper reported.

Keith himself is “strongly opposed” to doing anything “rogue,” in the sense of illegal, or to conducting any such research in this field outside of the normal scientific process. And he says that “not being open at all” isn’t the right strategy.  

But he is wrestling with how up-front researchers should be. The level of early notice and transparency they strived for “maybe really doesn’t work in a conflictual environment,” he observes. “So maybe we should have been significantly less open and had a few limited sets of checks.”

Sikina Jinnah, a professor of environmental studies at the University of California, Santa Cruz, who joined the project’s advisory committee after the Sweden decision, draws the opposite lesson about transparency and engagement. 

She says that the Harvard team never got to the point of engaging with the public about its plans in any formal way in Sweden, and she stresses that such conversations should begin much earlier in the process. (This was also one of the main conclusions in the committees’ final report on the experiment, which was released last month.)

“Early engagement, I think, is one of the big take-home lessons,” she says. “And not just sort of cursory ‘giving a public talk’ kind of engagement, but really moving to iterative engagement with communities about their concerns, about questions they may be interested in, and really starting to reframe that kind of engagement process as one that’s not detrimental to the research effort but can actually enhance research and enrich it in ways that are socially beneficial.”

Scientific merit

Other observers believe there was a more basic problem with SCoPEx.

“Most of the scientists in the field didn’t feel like it was a particularly essential experiment,” said Douglas MacMartin, an associate professor at Cornell University who focuses on solar geoengineering, in an email.

As a result, there wasn’t a rush to defend it, he added.

MacMartin explained that the project was more focused on studying alternative aerosols, mainly calcium carbonate, rather than addressing unknowns concerning the substance that most people think would be used: sulfur dioxide. 

That’s because scientists know much more about its overall effects and can model them more accurately, since volcanoes already add the gas to the stratosphere naturally. Climate models also suggest that the impact on ozone would be minimal “and thus not worrisome enough to justify turning to a less-well-understood material,” he said.

Alan Robock, a climate scientist at Rutgers who has highlighted the potential risks of geoengineering, echoed this concern. 

“I don’t think this project ever had a good science question,” he says. “I think it was more driven by wanting to build something, the engineering.”

MacMartin says the crucial starting questions for experiments in this field are what gaps in our understanding such research could fill and whether that information would help to inform decisions about geoengineering. And it’s the pursuit of those answers that should be communicated as the rationale to the public.

But, he says, too often the SCoPEx researchers articulated their case for the work along the lines of, “Hey, this is small—you should let us do it because we want to.”

In an email, Keutsch noted that one of the things they hoped to better understand through the experiment was how plumes of injected particles spread out and mix in the stratosphere. In addition, Keith noted that they did discuss releasing and studying sulfuric acid as well, though they tended to talk more about calcium carbonate.

Broader scientific program

Another concern about the project from early on was that it was a one-off, privately funded experiment, moving ahead outside of any broader, government-backed research program. (Funding came from grants that Harvard provided the researchers as new professors and through the university’s Solar Geoengineering Research Program, which has raised money from the Alfred P. Sloan Foundation, the Hewlett Foundation, the Pritzker Innovation Fund, and other groups and individuals.) For less touchy subjects, such an experiment might be funded and overseen through a federal scientific body like the US National Science Foundation. 

That meant the university had to set up an advisory board if the institution wanted standard scientific oversight—and it meant that that committee had to craft its own rules for how such experiments should proceed, even as the researchers were taking steps toward an initial launch to test out their hardware.

Given the sensitivity of the topic, some observers believe that outdoor solar geoengineering experiments should only proceed through broader, public research programs involving scientific bodies with established practices for evaluating scientific merit, ethics, and environmental impact. Ideally, such programs would include “society-wide engagement,” tapping a variety of experts to impartially inform significant portions of the public about such interventions, explore their areas of concern, and, crucially, use that input to inform the design of the research program, says Holly Buck, an environmental social scientist at the University at Buffalo and author of After Geoengineering.

“Unless government is convening a serious engagement process where they are going to incorporate what they hear into policy in this area, I would expect any sort of outdoor experiment to meet a similar kind of resistance,” she said in an email.

Several nations have set up small-scale research efforts in the field, including the US and China. But a comprehensive program of this sort would require far more funding than has been allocated to date. A 2021 National Academies report recommended that the US government establish a cross-agency research program in solar geoengineering, backed by $100 million to $200 million over a five-year period. 

Future experiments 

Keith himself owns up to several mistakes in the research effort, including failing to anticipate that opponents would raise concerns over the basic hardware test in Sweden. He also says the team was wrong to move ahead without having a public engagement plan in place. The public failure of SCoPEx, he believes, will probably make it more difficult for other experiments in the stratosphere to go forward.

“Which is really sad,” he says. “And I apologize, and it’s a failure.”

But he also says there is still room for other groups to pursue outdoor experiments, and he believes the odds are strong that someone will.

Indeed, there are numerous indicators of growing interest in researching this field and providing funding for it. As noted, the US government is developing a research program. The Environmental Defense Fund is considering supporting scientists in the area and recently held a meeting to discuss guardrails that should govern such work. And a number of major philanthropies that haven’t supported the field in the past are in advanced discussions to provide funding to research groups, sources tell MIT Technology Review.

Meanwhile, under Keith, the University of Chicago is working to hire 10 faculty researchers in this area.

He says he wouldn’t look to lead an outdoor experiment himself at this point, but he does hope that people working with him at the Climate Systems Engineering Initiative would, if it could offer insights into the scientific questions they’re exploring. 

“I absolutely want to see experiments happen from the University of Chicago,” he says.

Why the lifetime of nuclear plants is getting longer

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Aging can be scary. As you get older, you might not be able to do everything you used to, and it can be hard to keep up with the changing times. Just ask nuclear reactors.

The average age of reactors in nuclear power plants around the world is creeping up. In the US, which has more operating reactors than any other country, the average reactor is 42 years old, as of 2023. Nearly 90% of reactors in Europe have been around for 30 years or more

Older reactors, especially smaller ones, have been shut down in droves due to economic pressures, particularly in areas with other inexpensive sources of electricity, like cheap natural gas. But there could still be a lot of life left in older nuclear reactors. 

The new owner of a plant in Michigan that was shut down in 2022 is now working to reopen it, as I reported in my latest story. If the restart is successful, the plant could operate for a total of 80 years. Others are seeing 20-year extensions to their reactors’ licenses. Extending the lifetime of existing nuclear plants could help cut emissions and is generally cheaper than building new ones. So just how long can we expect nuclear power plants to last? 

In the US, the Nuclear Regulatory Commission (NRC) licenses nuclear reactors for 40-year operating lifespans. But plants can certainly operate longer than that, and many do. 

The 40-year timeline wasn’t designed to put an endpoint on a plant’s life, says Patrick White, research director at the Nuclear Innovation Alliance, a nonprofit think tank. Rather, it was meant to ensure that plants would be able to operate long enough to make back the money invested in building them, he says. 

The NRC has granted 20-year license extensions to much of the existing US nuclear fleet, allowing them to operate for 60 years. Now some operators are applying for an additional extension. A handful of reactors have already been approved to operate for a total of 80 years, including two units at Turkey Point in Florida. Getting those extensions has been bumpy, though. The NRC has since partially walked back some of its approvals and is requiring several of the previously approved sites to go through additional environmental reviews using more recent data. 

And while the oldest operating reactors in the world today are only 54, there’s already early research investigating extending lifetimes to 100 years, White says. 

The reality is that a nuclear power plant has very few truly life-limiting components. Equipment like pumps, valves, and heat exchangers in the water cooling system and support infrastructure can all be maintained, repaired, or replaced. They might even get upgraded as technology improves to help a plant generate electricity more efficiently. 

Two main components determine a plant’s lifetime: the reactor pressure vessel and the containment structure, says Jacopo Buongiorno, a professor of nuclear engineering at MIT. 

  • The reactor pressure vessel is the heart of a nuclear power plant, containing the reactor core as well as the associated cooling system. The structure must keep the reactor core at a high temperature and pressure without leaking. 
  • The containment structure is a shell around the nuclear reactor. It is designed to be airtight and to keep any radioactive material contained in an emergency. 

Both components are crucial to the safe operation of a nuclear power plant and are generally too expensive or too difficult to replace. So as regulators examine applications for extending plant lifetimes, they are the most concerned about the condition and lifespan of those components, Buongiorno says. 

Researchers are searching for new ways to tackle issues that have threatened to take some plants offline, like the corrosion that chewed through reactor components in one Ohio plant, causing it to be closed for two years. New ways of monitoring the materials inside nuclear power plants, as well as new materials that resist degradation, could help reactors operate more safely, for longer. 

Extending the lifetime of nuclear plants could help the world meet clean energy and climate goals. 

In some places, shutting down nuclear power plants can result in more carbon pollution as fossil fuels are brought in to fill the gap. When New York shut down its Indian Point nuclear plant in 2021, natural gas use spiked and greenhouse gas emissions rose

Germany shut down the last of its nuclear reactors in 2023, and the country’s emissions have fallen to a record low, though some experts say most of that drop has more to do with an economic slowdown than increasing use of renewables like wind and solar. 

Extending the global nuclear fleet’s lifetime by 10 years would add 26,000 terawatt-hours of low carbon electricity to the grid over the coming decades, according to a report from the International Atomic Energy Agency. That adds up to roughly a year’s worth of current global electricity demand. That could help cut emissions while the world expands low-carbon power capacity. 

So when it comes to cleaning up the power grid, there’s value in respecting your elders, including nuclear reactors. 


Now read the rest of The Spark

Related reading

A nuclear power plant in Michigan could be the first reactor in the US to reenter operation after shutting down, as I wrote in my latest story

Germany shut down the last of its nuclear reactors in 2023 after years of controversy in the country. Read more in our newsletter from last April.  

The next generation of nuclear reactors is getting more advanced. Kairos Power is working on cooling its reactors with salt instead of pressurized water, as I reported in January

Another thing

A total solar eclipse will sweep across the US on Monday, April 8. Yes, it will affect solar power, especially in states like Texas that have installed a lot of solar capacity since the 2017 eclipse. No, it probably won’t be a big issue for utilities, which are able to plan far in advance for the short dip in solar capacity. Read more in this story from Business Insider. 

Keeping up with climate  

Tesla’s EV sales slipped in the first quarter compared to last year. The automaker still outsold Chinese EV giant BYD, which briefly held the crown for EV sales in late 2023. (New York Times)

A startup is making cleaner steel in a commercial prototype. Electra wants to help tackle the 7% of global emissions that come from producing the material. (Bloomberg)

Burying plant waste can help remove carbon dioxide from the atmosphere. But there are problems with biomass burial, a growing trend in carbon removal. (Canary Media)

Shareholders are voting on whether recycling labels on Kraft Heinz products are deceptive. It’s part of a growing pushback against companies overselling the recyclability of their packaging. (Inside Climate News)

→ Think your plastic is being recycled? Think again. (MIT Technology Review)

Soil in Australia is shaping up to be a major climate problem. While soil is often pitched as a way to soak up carbon emissions, agriculture practices and changing weather conditions are turning things around. (The Guardian)

Two climate journalists attempted to ditch natural gas in their home. But electrification turned into quite the saga, illustrating some of the problems with efforts to decarbonize buildings. (Grist)

Solar panels are getting so cheap, some homes in Europe are sticking them on fences. With costs having more to do with installation than the cost of solar panels, we could see them going up in increasingly quirky places. (Financial Times)

The problem with plug-in hybrids? Their drivers.

Plug-in hybrids are supposed to be the best of both worlds—the convenience of a gas-powered car with the climate benefits of a battery electric vehicle. But new data suggests that some official figures severely underestimate the emissions they produce. 

According to new real-world driving data from the European Commission, plug-in hybrids produce roughly 3.5 times the emissions official estimates suggest. The difference is largely linked to driver habits: people tend to charge plug-in hybrids and drive them in electric mode less than expected.

“The environmental impact of these vehicles is much, much worse than what the official numbers would indicate,” says Jan Dornoff, a research lead at the International Council on Clean Transportation.

While conventional hybrid vehicles contain only a small battery to slightly improve fuel economy, plug-in hybrids allow fully electric driving for short distances. These plug-in vehicles typically have a range of roughly 30 to 50 miles (50 to 80 kilometers) in electric driving mode, with a longer additional range when using the secondary fuel, like gasoline or diesel. But drivers appear to be using much more fuel than was estimated.

According to the new European Commission report, drivers in plug-in hybrid vehicles produce about 139.4 grams of carbon dioxide for every kilometer driven, based on measurements of how much fuel vehicles use over time. On the other hand, official estimates from manufacturers, which are determined using laboratory tests, put emissions at 39.6 grams per kilometer driven.

Some of this gap can be explained by differences between the controlled conditions in a lab and real-world driving. Even conventional combustion-engine vehicles tend to have higher real-world emissions than official estimates suggest, though the gap is roughly 20%, not 200% or more as it is for plug-in hybrids.

The major difference comes down to how drivers tend to use plug-in hybrids. Researchers have noticed the problem in previous studies, some of them using crowdsourced data. 

In one study from the ICCT published in 2022, researchers examined real-world driving habits of people in plug-in hybrids. While the method used to determine official emissions values estimated that drivers use electricity to power vehicles 70% to 85% of the time, the real-world driving data suggested that vehicle owners actually used electric mode for 45% to 49% of their driving. And if vehicles were company-provided cars, the average was only 11% to 15%.

The difference between reality and estimates can be a problem for drivers, who may buy plug-in hybrids expecting climate benefits and gas savings. But if drivers are charging less than expected, the benefits might not be as drastic as promised. Trips taken in a plug-in hybrid cut emissions by only 23% relative to trips in a conventional vehicle, rather than the nearly three-quarters reduction predicted by official estimates, according to the new analysis.

“People need to be realistic about what they face,” Dornoff says. Driving the vehicles in electric mode as much as possible can help maximize the financial and environmental benefits, he adds.

It’s important to close the gap between expectations and reality not only for individuals’ sake, but also to ensure that policies aimed at cutting emissions have the intended effects. 

The European Union passed a law last year that will end sales of gas-powered cars in 2035. This is aimed at cutting emissions from transportation, a sector that makes up around one-fifth of global emissions. In the EU, manufacturers are required to have a certain average emissions value for all their vehicles sold. If plug-in hybrids are performing much worse in the real world than expected, it could mean the transportation sector is actually making less progress toward climate goals than it’s getting credit for.

Plug-in hybrids’ failure to meet expectations is also a problem in the US, says Aaron Isenstadt, a senior researcher at the ICCT based in San Francisco. Real-world fuel consumption was about 50% higher than EPA estimates in one ICCT study, for example. The gap between expectations and reality is smaller in the US partly because official emissions estimates are calculated differently, and partly because US drivers have different driving habits and may have better access to charging at home, Isenstadt says.

The Biden administration recently finalized new tailpipe emissions rules, which set guidelines for manufacturers about the emissions their vehicles can produce. The rules aim at ramping down emissions from new vehicles sold, so by 2032, roughly half of new cars sold in the US will need to produce zero emissions in order to meet the standards.

Both the EU and the US have plans to update estimates about how drivers are using plug-in hybrids, which should help policies in both markets better reflect reality. The EU will make an adjustment to estimates about driver behavior beginning in 2025, while the US will do so later, in 2027.

What to expect if you’re expecting a plug-in hybrid

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

If you’ve ever eaten at a fusion restaurant or seen an episode of Glee, you know a mashup can be a wonderful thing. 

Plug-in hybrid vehicles should be the mashup that the auto industry needs right now. They can run a short distance on a small battery in electric mode or take on longer drives with a secondary fuel, cutting emissions without asking people to commit to a fully electric vehicle.

But all that freedom can come with a bit of a complication: plug-in hybrids are what drivers make them. That can wind up being a bad thing because people tend to use electric mode less than expected, meaning emissions from the vehicles are higher than anticipated, as I covered in my latest story.

So are you a good match for a plug-in hybrid? Here’s what you should know about the vehicles.

Electric range is limited, and conditions matter

Plug-in hybrids have a very modest battery, and that’s reflected in their range. Models for sale today can generally get somewhere between 25 and 40 miles of electric driving (that’s 40 to 65 kilometers), with a few options getting up to around the 50-mile (80 km) mark.

But winter conditions can cut into that range. Even gas-powered vehicles see fuel economy drop in cold weather, but electric vehicles tend to take a harder hit. Battery-powered vehicles can see a 25% reduction in range in freezing temperatures, or even more depending on how hard the heaters need to work and what sort of driving you’re doing.

In the case of a plug-in hybrid with a small battery, these range cuts can be noticeable even for modest commutes. I spoke with one researcher for a story in 2022 who told me that he uses his plug-in hybrid in electric mode constantly for about nine months out of the year. Charging once overnight gets him to and from his job most of the time, but in the winter, his range shrinks enough to require gas for part of the trip.

It might not be a problem for you lucky folks in California or the south of Spain, but if you’re in a colder climate, you might want to take these range limitations into account. Parking in a warmer place like a garage can help, and you can even preheat your vehicle while it’s plugged in to extend your range.

Charging is a key consideration

Realistically, if you don’t have the ability to charge consistently at home, a plug-in hybrid may not be the best choice for you.

EV drivers who don’t live in single-family homes with attached garages can get creative with charging. Some New York City drivers I’ve spoken with rely entirely on public fast chargers, stopping for half an hour or so to juice up their vehicles as needed.

But plug-in hybrids generally aren’t equipped to handle fast charging speeds, so forget about plugging in at a Supercharger. The vehicles are probably best for people who have access to a charger at home, in a parking garage, or at work. Depending on battery capacity, charging a plug-in hybrid can take about eight hours on a level 1 charger, and two to three hours on a level 2 charger. 

Most drivers with plug-in hybrids wind up charging them less than what official estimates suggest. That means on average, drivers are producing more emissions than they might expect and probably spending more on fuel, too. For more on setting expectations around plug-in hybrids, read more in my latest story here.

We could see better plug-in models soon (in some places, at least)

For US drivers, state regulations could mean that plug-in offerings could expand soon.  

California recently adopted rules that require manufacturers to sell a higher proportion of low-emissions vehicles. Beginning in 2026, automakers will need clean vehicles to represent 35% of sales, ramping up to 100% in 2035. Several other states have hopped on board with the regulations, including New York, Massachusetts, and Washington.

Plug-in hybrids can qualify under the California rules, but only if they have at least 50 miles (80 km) of electric driving range. That means that we could be seeing more long-range plug-in options very soon, says Aaron Isenstadt, a senior researcher at the International Council on Clean Transportation.

Some other governments aren’t supporting plug-in hybrids, or are actively pushing drivers away from the vehicles and toward fully electric options. The European Union will end sales of gas-powered cars in 2035, including all types of hybrids.

Ultimately, plug-in hybrid vehicles can help reduce emissions from road transportation in the near term, especially for drivers who aren’t ready or willing to make the jump to fully electric cars just yet. But eventually, we’ll need to move on from compromises to fully zero-emissions options.  


Now read the rest of The Spark

Related reading

Real-world driving habits can get in the way of the theoretical benefits of plug-in hybrids. For more on why drivers might be the problem, give my latest story a read

Plug-in hybrids probably aren’t going away anytime soon, as I wrote in December 2022

Still have questions about hybrids and electric vehicles? I answered a few of them for a recent newsletter. Check it out here.

Another thing

China has emerged as a dominant force in climate technology, especially in the world of electric vehicles. If you want to dig into how that happened, and what it means for the future of addressing climate change, check out the latest in our Roundtables series here

For a sampling of what my colleagues got into in this conversation, check out this story from Zeyi Yang about how China came to lead the world in EVs, and this one about how EV giant BYD is getting into shipping

Keeping up with climate  

The US Department of Energy just awarded $6 billion to 33 projects aimed at decarbonizing industry, from cement and steel to paper and food. (Canary Media)

→ Among the winners: Sublime Systems and Brimstone, two startups working on alternative cement. Read more about climate’s hardest problem in my January feature story. (MIT Technology Review)

In the latest in concerning insurance news, State Farm announced it won’t be renewing policies for 72,000 property owners in California. As fire seasons get worse, insuring properties gets riskier. (Los Angeles Times)

Surprise! Big fossil-fuel companies aren’t aligned with goals to limit global warming. A think tank assessed the companies’ plans and found that despite splashy promises, none of the 25 largest oil and gas companies meet targets set by the Paris Agreement. (The Guardian)

An AI model can predict flooding five days in advance. This and other AI tools could help better forecast dangerous scenarios in remote places with fewer flood gauges. (Bloomberg)

Boeing’s 737 Max planes have been all over the news with incidents including a door flying off on a recent Alaska Airlines flight. Some experts say the problems can be traced back in part to the company’s corner-cutting on sustainability efforts. (Heated)

In Denver, e-bike vouchers get snapped up like Taylor Swift tickets. The city is aiming to lower the cost of the vehicles for residents in an effort to reduce the total number of car trips. It’s obviously a popular program, though some experts question whether the funding could be more effective elsewhere. (Grist)

A nuclear plant in New York was shut down in 2021—and predictably, emissions went up. It’s been a step back for clean energy in the state, as natural gas has stepped in to fill the gap. (The Guardian)

Germany used to be a solar superpower, but China has come to dominate the industry. Some domestic manufacturers aren’t giving up just yet, arguing that local production will be key to meeting ambitious clean-energy goals. (New York Times)

A company will pour 9,000 tons of sand into the sea in the name of carbon removal. Vesta’s pilot project just got a regulatory green light, and it’ll be a big step for efforts to boost the ocean’s ability to soak up carbon dioxide from the atmosphere. (Heatmap)

Why New York City is testing battery swapping for e-bikes

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Spend enough time in a city and you’ll get to know its unique soundscape. In New York City, it features the echoes of car stereos, the deep grumbles of garbage truck engines, and, increasingly, the high-pitched whirring of electric bikes.

E-bikes and scooters are becoming a staple across the city’s boroughs, and e-bikes in particular are especially popular among the tens of thousands of delivery workers who zip through the streets.

On a recent cloudy afternoon in Manhattan, I joined a few dozen of them at a sign-up event for a new city program that aims to connect delivery drivers with new charging technologies. Drivers who enroll in the pilot will have access to either fast chargers or battery swapping stations for six months.

It’s part of the city’s efforts to cut down on the risk of battery fires, some of which have been sparked by e-bike batteries charging inside apartment buildings, according to the fire department. For more on the program and how it might help address fires, check out my latest story. In the meantime, here’s what I heard from delivery drivers and the startups at the kickoff event.

On a windy late-February day, I wove my way through the lines of delivery workers who showed up to the event in Manhattan’s Cooper Square. Some of them straddled their bikes in line, while others propped up their bikes in clusters. Colorful bags sporting the logos of various delivery services sprouted from their cargo racks.

City officials worked at tables under tents, assigning riders to one of the three startups that are partnering with the city for the new program. One company, Swiftmile, is building fast-charging bike racks for drivers. The other two, Popwheels and Swobbee, are aiming to bring battery swapping to the city.

Battery swapping is a growing technology in some parts of the world, but it’s not common in the US, so I was especially intrigued by the two companies who had set up battery swap cabinets.

Swobbee runs a small network of swapping stations around the world, including at its base in Germany. It is retrofitting bikes to accommodate its battery, which attaches to the rear of the bike. Popwheels is taking a slightly different approach, providing batteries that are already compatible with the majority of e-bikes delivery drivers use today, with little modification required.

I watched a Popwheels employee demonstrate the company’s battery swapping station to several newly enrolled drivers. Each one would approach the Popwheels cabinet, which is roughly the size and shape of a bookcase and has 16 numbered metal doors on the front. After they made a few taps on their smartphone, a door would swing open. Inside, there was space to slide in a used battery and a cord to plug into it. Once the battery was in the cabinet and the door had been shut, another door would open, revealing a fully charged e-bike battery the rider could unplug and slide out. Presto!

The whole process took just a minute or two—much quicker than waiting for a battery to charge. It’s similar to picking up a package from an automated locker in an upscale apartment building.

The crowd seemed to grow during the two hours I spent at the event, and the line stretched and squeezed closer to the edge of the sidewalk. I made a comment about the turnout to Baruch Herzfeld, Popwheels’ CEO and co-founder. “This is nothing,” he said. “There’s demand for 100,000 batteries in New York tomorrow.”

Indeed, New York City has roughly 60,000 delivery workers, many of whom rely on e-bikes to get around. And commuters and tourists might be interested in small, electrified vehicles. Meeting anything close to that sort of demand will take a whole lot more battery cabinets, as one can service just up to 50 riders, according to Popwheels’ estimates.

After they’d signed up and seen the battery swap demo, drivers who were ready to take batteries with them wheeled their bikes over to a few more startup employees, who helped make a slight tweak to a rail under their seats for the company’s batteries to slide into. Some adjustments required a bit of elbow grease, but I watched as one rider slid his new, freshly charged battery into place. He hopped on his bike and darted off into the bike lane, integrating into the flow of traffic.


Now read the rest of The Spark

Related reading

For more on the city’s plans for battery swapping and how they might cut fire risk, give my latest story a read.

Gogoro, one of our 15 Climate Tech Companies to Watch in 2023, operates a huge network of battery swapping stations for electric scooters, largely in Asia.

Some companies think battery swapping is an option for larger electric vehicles, too. Here’s how one startup wants to use modular, swappable batteries to get more EVs on the road.

STEPHANIE ARNETT/MITTR | SCOPEX (BALLOON)

Another thing

Harvard researchers have given up on a long-running effort to conduct a solar geoengineering experiment. 

The idea behind the technique is a simple one: scatter particles in the upper atmosphere to scatter sunlight, counteracting global warming. But related research efforts have sparked controversy. Read more in my colleague James Temple’s latest story.

Keeping up with climate  

The Biden administration finalized strict new rules for vehicle tailpipe emissions. Under the regulations, EVs are expected to make up over half of new vehicle sales by 2030. (NPR)

The first utility-scale offshore wind farm in the US is officially up and running. It’s a bright spot that could signal a turning point for the industry. (Canary Media)

→ Here’s what’s next for offshore wind. (MIT Technology Review)

The UK has big plans for heat pumps, but installations aren’t moving nearly fast enough, according to a new report. Installations need to increase more than tenfold to keep pace with goals. (The Guardian)

States across the US are proposing legislation to ban lab-grown meat. It’s the latest escalation in an increasingly weird battle over a product that basically doesn’t exist yet. (Wired)

Low-cost EVs from Chinese automakers are pushing US-based companies to reconsider their electrification strategy. More affordable EV options? A girl can dream. (Bloomberg)

→ EV prices in the US are inching down, approaching parity with gas-powered vehicles. (Washington Post)

Goodbye greenwashing, hello “greenhushing”! Corporations are increasingly going radio silent on climate commitments. (Inside Climate News)

The Summer Olympics are fast approaching, and organizers in Paris are working to reduce the event’s climate impact. Think fewer new buildings, more bike lanes. (New York Times)

Early springs mean cherry blossoms are blooming earlier than ever. Warmer winters in the future could cause an even bigger problem. (Bloomberg)

New York City’s plan to stop e-bike battery fires

Walk just a few blocks in New York City and you’ll likely spot an electric bike zipping by.

The vehicles have become increasingly popular in recent years, especially among delivery drivers, tens of thousands of whom weave through New York streets. But the e-bike influx has caused a wave of fires sparked by their batteries, some of them deadly.

Now, the city wants to fight those fires with battery swapping. A pilot program will provide a small number of delivery drivers with alternative options to power up their e-bikes, including swapping stations that supply fully charged batteries on demand. 

Proponents say the program could lay the groundwork for a new mode of powering small electric vehicles in the city, one that’s convenient and could reduce the risk of fires. But the road to fire safety will likely be long and winding given the sheer number of batteries we’re integrating into our daily lives, in e-bikes and beyond.

A swapping solution

The number of fires caused by batteries in New York City increased nearly ninefold between 2019 and 2023, according to reporting from The City. Concern over fires has been steadily growing, and in March 2023 Mayor Eric Adams announced a plan to address the problem that included regulations for e-bikes and their batteries, crackdowns on unsafe charging practices, and outreach for delivery drivers.

While batteries can catch fire for a variety of reasons, many incidents appear to have been caused by e-bike drivers charging their batteries in apartment buildings, including a February blaze that killed one person and injured 22.

The city’s most recent effort, designed to address charging, is a pilot program for delivery drivers who use e-bikes. For six months, 100 drivers will be matched with one of three startups that will provide a charging solution that doesn’t involve plugging in batteries in apartment buildings.

One of the startups, Swiftmile, is building fast charging stations that look like bike racks and can charge an e-bike battery within two hours. The other two participating companies, Popwheels and Swobbee, are proposing a different, even quicker solution: battery swapping. Instead of plugging in a battery and waiting for it to power up, a rider can swap out a dead battery for a fresh one.

Battery swapping is already being used for some electric vehicles, largely across Asia. Chinese automaker Nio operates a network of battery swapping stations that can equip a car with a fresh battery in just under three minutes. Gogoro, one of MIT Technology Review’s 2023 Climate Tech Companies to Watch, has a network of battery swapping stations for electric scooters that can accommodate more than 400,000 swaps each day.

The concept will need to be adjusted for New York and for delivery drivers, says Baruch Herzfeld, co-founder and CEO of Popwheels. “But if we get it right,” he says, “we think everybody in New York will be able to use light electric vehicles.”

Existing battery swap networks like Nio’s have mostly included a single company’s equipment, giving the manufacturer control over the vehicle, battery, and swapping equipment. That’s because one of the keys to making battery swapping work is fleet commonality—a base of many vehicles that can all use the same system.

Fortunately, delivery drivers have formed something of a de facto fleet in New York City, says David Hammer, co-founder and president of Popwheels. Roughly half of the city’s 60,000-plus delivery workers rely on e-bikes, according to city estimates. Many of them use bikes from a brand called Arrow, which include removable batteries.

Convenience is key for delivery drivers working on tight schedules. “For a lot of people, battery charging, battery swapping, it’s just technology. But for [delivery workers], it’s their livelihood,” says Irene Figueroa-Ortiz, a policy advisor at the NYC Department of Transportation.

For the New York pilot, Popwheels is building battery cabinets in several locations throughout the city that will include 16 charging slots for e-bike batteries. Riders will open a cabinet door using a smartphone app, plug in the used battery and take a fresh one from another slot. Based on the company’s modeling, each cabinet should be able to support constant use by 40 to 50 riders, Hammer says.

“Maybe it leads to an even larger vision of battery swapping as a part of an urban future,” Hammer says. “But for now, it’s solving a very real and immediate problem that delivery workers have around how they can work a full day, and earn a reasonable living, and do it without having to put their lives at risk for battery fires.”

A growing problem

Lithium-ion batteries power products from laptops and cellphones to electric vehicles, including cars, trucks, and e-bikes. A major benefit of the battery chemistry is its energy density, or ability to pack a lot of energy into a small container. But all that stored energy can also be dangerous.

Batteries can catch fire during charging or use, and even while being stored. Generally, fires happen when temperatures around the battery rise to unsafe levels or if a physical problem in a battery causes a short circuit, allowing current to flow unchecked. These factors can set in motion a dangerous process called thermal runaway.

Most batteries include a battery management system to control charging, which prevents temperatures from spiking and sparking a fire. But if this system malfunctions or if a battery doesn’t include one, charging can lead to fires, says Ben Hoff, who leads fire safety engineering and hardware design at Popwheels.

Some of the delivery drivers who attended a sign-up event for New York’s charging pilot program in late February cited safety as a reason they were looking for alternative solutions for their batteries. “Of course, I worry about that,” Jose Sarmiento, a longtime delivery worker, said at the event. “Even when I’m sleeping, I’m thinking about the battery.”  

Battery swapping could also be a key to safer electric transit, Popwheels’ Hammer says. The company has tight control over the batteries it provides drivers, and its monitoring systems include temperature sensors installed in the charging cabinets. Charging can be shut down immediately if a battery starts to overheat, and an aerosol fire suppression system can slow a fire if one does happen to start inside a cabinet.

The batteries Popwheels provides are also UL-certified, meaning they’re required to pass third-party safety tests. New York City banned the sale of uncertified batteries and e-bikes last year, but many drivers still use them, Hammer says.

Low-quality batteries are more likely to cause fires, a problem that can often be traced to the manufacturing process, says Michael Pecht, a professor at the University of Maryland who studies the reliability and safety of electronic devices.

Battery manufacturing facilities should be as clean as a medical operating room or a semiconductor facility, Pecht explains. Contamination from dust and dirt that wind up in batteries can create problems over time as charging and discharging a battery causes small physical changes. After enough charging cycles, even a tiny dust particle can lead to a short circuit that sparks a fire.

Low-quality manufacturing makes battery fires more likely, but it’s a daunting task to keep tight control over the huge number of cells being made each year. Large manufacturers can produce billions of batteries annually, making the solution to battery fires a complex one, Pecht says: “I think there’s a group who want an easy answer. To me, the answer is not that easy.”

New programs that provide well-manufactured batteries and tightly control charging could make a dent in safety concerns. But real progress will require quick and dramatic scale-up, alongside regulations and continual outreach to communities. 

Popwheels would need to install hundreds of its battery swapping cabinets to support a significant fraction of the city’s delivery drivers. The pilot will help determine whether riders are willing to use new methods of powering their livelihood. As Hammer says, “If they don’t use it, it doesn’t matter.”

Decarbonizing production of energy is a quick win 

Debate around the pace and nature of decarbonization continues to dominate the global news agenda, from the European Scientific Advisory Board on Climate Change warning that the EU must double annual emissions cuts, to forecasts that it could cost more than $1 trillion to decarbonize the global shipping industry. Despite differing opinions on the right path to net zero, all agree that every sector needs to reduce emissions to avoid the worst effects of climate change.

Oil and gas production accounts for 15% of the world’s emissions, according to the International Energy Agency. Some of the largest global companies have embarked on bold plans to cut to zero by 2050 the carbon and methane associated with their production. One player with an ambition to get there five years ahead of the rest is the UAE’s ADNOC, having announced in January 2024 it will lift spending on decarbonization projects to $23 billion from $15 billion.  

In an exclusive interview, Musabbeh Al Kaabi, ADNOC’s Executive Director for Low Carbon Solutions and International Growth, says he is hopeful the industry can make a meaningful contribution while supplying the secure and affordable energy needed to meet growing global demand.

Q: Mr. Al Kaabi, how do you plan to spend the extra $8 billion ADNOC has allocated to decarbonization?

Mr. Mussabeh Al Kaabi: Much of our investment focus is on the technologies and systems that will deliver tangible action in eliminating the emissions from our energy production. At 7 kilograms of CO2 per barrel of oil equivalent, the energy we provide is among the least carbon-intensive in our industry, yet we continue to explore every opportunity for further reductions. For example, we are using clean grid power—from renewable and nuclear sources—to meet the needs of our onshore operations. Meanwhile, we are investing almost $4 billion to electrify our offshore production in order to cut our carbon footprint from those operations by up to 50%.

We also see great potential in carbon capture utilization and sequestration (CCUS), especially where emissions are hard to abate. Last year, we doubled our capacity target to 10 million tonnes per annum by 2030. We currently have close to 4 million tonnes in capacity in development or operation and are working with key players in our industry to create a world-leading carbon management platform.

Additionally, we’re developing nature-based solutions to support our target for net zero by 2045. One of our initiatives is to plant 10 million mangroves, which serve as powerful carbon sinks, along our coastline by 2030. We used drone technology to plant 2.5 million mangrove seeds in 2023.

Q: What about renewables?

Mr. Mussabeh Al Kaabi: It’s in everyone’s interests that we invest in the growth of renewables and low-carbon fuels like hydrogen. Through our shareholding in Masdar and Masdar Green Hydrogen, we are tripling our renewable capacity by supporting a growth target of 100 gigawatts by 2030.

Q: We have been talking about hydrogen and carbon capture and storage (CCS) as the energies and solutions of tomorrow for decades. Why haven’t they broken through yet?

Mr. Mussabeh Al Kaabi: Hydrogen and CCS offer great promise, but, like any other transformative technology, they require R&D attention, investment, and scale-up opportunities.

Hydrogen is an abundant and portable fuel that could help reduce emissions from many sectors, including transport and power. Meanwhile, CCS could abate emissions from heavy, energy-intensive industries like steel and cement.

These technologies are proven, and we expect more improvements to allow wider consumer use. We will continue to develop and invest in them, while continuing to responsibly provide our traditional portfolio of low-carbon energy products that the world needs.

Q: Is there any evidence the costs can come down?

Mr. Mussabeh Al Kaabi: Yes, absolutely. The dramatic fall in the price of solar over recent years—an 89% reduction from 2010 to 2022 according to the International Renewable Energy Agency—just goes to show that clean technologies can become viable, mainstream sources of energy if the right policy and investment mechanisms are in place.

Q: Do you favor a particular decarbonization technology?

Mr. Mussabeh Al Kaabi: We don’t have the luxury of picking winners and losers. The scale of the challenge is too great. World economies consume the equivalent of around 250 million barrels of oil, gas, and coal every single day. We are going to need to invest in every viable clean energy and decarbonization technology. If CCS can do it, let’s do it. If renewables can do it, let’s invest in it.

That said, I am especially optimistic about the role artificial intelligence will play in our decarbonization drive. We’ve been implementing AI and machine learning tools across our value chain for many years; they’ve helped us eliminate around a million tonnes of CO2 emissions over the past two years. As AI technology grows at an exponential rate, we will continue to invest in the latest innovations to ensure we provide maximum energy with minimum emissions.

Q: Can traditional energy companies be part of the solution?

Mr. Mussabeh Al Kaabi: They can and they must be part of the solution. Energy companies have the technical capabilities, the project management experience and, crucially, the financial strength to advance solutions. For example, we’re investing in one of the largest integrated carbon capture projects in the Middle East and North Africa, at our gas processing facility in Habshan. Once complete, it will add 1.5 million tonnes of CCUS capacity. We’ve also just announced an investment into Storegga, the lead developer of the UK’s Acorn CCS project in Scotland, marking our first overseas investment of its kind.

Q: What’s your approach to decarbonization investment?

Mr. Mussabeh Al Kaabi: Our approach is to partner with successful developers of economic technologies and to incubate promising climate solutions so ADNOC and other players can use them to accelerate the path to net zero. There are numerous examples.

Last year, we launched the ADNOC Decarbonization Technology Challenge, a global competition that attracted 650 climate tech startups vying for a million-dollar piloting opportunity with us. The winner was Revterra, a Houston-based startup that will pilot its kinetic battery technology with us over the coming months.  

We’re also working to deploy another cutting-edge battery technology that involves taking used electric vehicle batteries and upcycling them into a battery energy storage system, which we’ll use to help decarbonize our remote production activity by up to 25%.

In the northern regions of the UAE, we’re working closely with another startup company to pilot carbon dioxide mineralization technology. It is a project we are all excited about because it presents opportunities for CO2 removal at a significant scale.

Additionally, we are working with leading industry service providers to explore new ways of producing graphene and low-carbon hydrogen.

Q: Finally, how confident are you that transformation will happen?

Mr. Mussabeh Al Kaabi: I am confident.It can be done. Transformation is happening. It won’t happen overnight, and it needs to be just and equitable for the poorest among us, but I am optimistic.We must focus on taking tangible action and not underestimate the power of human innovation. History has shown that, when we come together, we can innovate and act. I am positive that, over time, we will continue to see progress towards our common goal.

This content was produced by ADNOC. It was not written by MIT Technology Review’s editorial staff.


Why methane emissions are still a mystery

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

If you follow papers in climate and energy for long enough, you’re bound to recognize some patterns. 

There are a few things I’ll basically always see when I’m sifting through the latest climate and energy research: one study finding that perovskite solar cells are getting even more efficient; another showing that climate change is damaging an ecosystem in some strange and unexpected way. And there’s always some new paper finding that we’re still underestimating methane emissions. 

That last one is what I’ve been thinking about this week, as I’ve been reporting on a new survey of methane leaks from oil and gas operations in the US. (Yes, there are more emissions than we thought there were—get the details in my story here.) But what I find even more interesting than the consistent underestimation of methane is why this gas is so tricky to track down. 

Methane is the second most abundant greenhouse gas in the atmosphere, and it’s responsible for around 30% of global warming so far. The good news is that methane breaks down quickly in the atmosphere. The bad news is that while it’s floating around, it’s a super-powerful greenhouse gas, way more potent than carbon dioxide. (Just how much more potent is a complicated question that depends on what time scale you’re talking about—read more in this Q&A.)

The problem is, it’s difficult to figure out where all this methane is coming from. We can measure the total concentration in the atmosphere, but there are methane emissions from human activities, there are natural methane sources, and there are ecosystems that soak up a portion of all those emissions (these are called methane sinks). 

Narrowing down specific sources can be a challenge, especially in the oil and gas industry, which is responsible for a huge range of methane leaks. Some are small and come from old equipment in remote areas. Other sources are larger, spewing huge amounts of the greenhouse gas into the atmosphere but only for short times. 

A lot of stories about tracking methane have been in the news recently, mostly because of a methane-hunting satellite launched earlier this month. It’s designed to track down methane using tools called spectrometers, which measure how light is reflected and absorbed. 

This is just one of a growing number of satellites that are keeping an eye on the planet for methane emissions. Some take a wide view, spotting which regions have high emissions. Other satellites are hunting for specific sources and can see within a few dozen meters where a leak is coming from. (If you want to read more about why there are so many methane satellites, I recommend this story from Emily Pontecorvo at Heatmap.)

But methane tracking isn’t just a space game. In a new study published in Nature, researchers used nearly a million measurements taken from airplanes flown over oil- and gas-producing regions to estimate total emissions. 

The results are pretty staggering: researchers found that, on average, roughly 3% of oil and gas production at the sites they examined winds up as methane emissions. That’s about three times the official government estimates used by the US Environmental Protection Agency. 

I spoke with one of the authors of the study, Evan Sherwin, who completed the research as a postdoc at Stanford. He compared the challenge of understanding methane leaks to the parable of the blind men and the elephant: there are many pieces of the puzzle (satellites, planes, ground-based detection), and getting the complete story requires fitting them all together. 

“I think we’re really starting to see an elephant,” Sherwin told me. 

That picture will continue to get clearer as MethaneSAT and other surveillance satellites come online and researchers get to sift through the data. And that understanding will be crucial as governments around the world race to keep promises about slashing methane emissions. 


Now read the rest of The Spark

Related reading

For more on how researchers are working to understand methane emissions, give my latest story a read

If you’ve missed the news on methane-hunting satellites, check out this story about MethaneSAT from last month

Pulling methane out of the atmosphere could be a major boost for climate action. Some startups hope that spraying iron particles above the ocean could help, as my colleague James Temple wrote in December

five planes flying out of white puffy clouds at different angles across a blue sky, leaving contrails behind

PHOTO ILLUSTRATION | GETTY IMAGES

Another thing

Making minor changes to airplane routes could put a significant dent in emissions, and a new study found that these changes could be cheap to implement. 

The key is contrails, thin clouds that planes produce when they fly. Minimizing contrails means less warming, and changing flight paths can reduce the amount of contrail formation. Read more about how in the latest from my colleague James Temple

Keeping up with climate  

New rules from the US Securities and Exchange Commission were watered down, cutting off the best chance we’ve had at forcing companies to reckon with the dangers of climate change, as Dara O’Rourke writes in a new opinion piece. (MIT Technology Review)

Yes, heat pumps slash emissions, even if they’re hooked up to a pretty dirty grid. Switching to a heat pump is better than heating with fossil fuels basically everywhere in the US. (Canary Media)

Rivian announced its new R2, a small SUV set to go on sale in 2026. The reveal signals a shift to focusing on mass-market vehicles for the brand. (Heatmap)

Toyota has focused on selling hybrid vehicles instead of fully electric ones, and it’s paying off financially. (New York Times)

→ Here’s why I wrote in December 2022 that EVs wouldn’t be fully replacing hybrids anytime soon. (MIT Technology Review)

Some scientists think we should all pay more attention to tiny aquatic plants called azolla. They can fix their own nitrogen and capture a lot of carbon, making them a good candidate for crops and even biofuels. (Wired)

New York is suing the world’s largest meat company. The company has said it’ll produce meat with no emissions by 2040, a claim that is false and misleading, according to the New York attorney general’s office. (Vox)

A massive fire in Texas has destroyed hundreds of homes. Climate change has fueled dry conditions, and power equipment sparked an intense fire that firefighters struggled to contain. (Grist)

→ Many of the homes destroyed in the blaze are uninsured, creating a tough path ahead for recovery. (Texas Tribune)