The Debrief: Power and energy

It may sound bluntly obvious, but energy is power. Those who can produce it, especially lots of it, get to exert authority in all sorts of ways. It brings revenue and enables manufacturing, data processing, transportation, and military might. Energy resources are arguably a nation’s most important asset. Look at Russia, or Saudi Arabia, or China, or Canada, or Qatar, or—for that matter—the US. For all these nations, energy production plays key roles in their economies and their outsize global status. (Qatar, for example, has a population roughly the size of metro Portland, Oregon.) 

The US has always been a nation of energy and industry. It was a major producer of coal, which fed the Industrial Revolution. World War II was won in large part by the energy production in the United States—which fueled both manufacturing of the war machine at home and its ships, planes, and tanks in the Pacific and Europe. Throughout its history, the country has found strength in energy production. 

Yet in many ways right now the US seems to be forgetting those lessons. It is moving backward in terms of its clean-­energy strategy, especially when it comes to powering the grid, in ways that will affect the nation for decades to come—even as China and others are surging forward. And that retreat is taking place just as electricity demand and usage are growing again after being flat for nearly two decades. That growth, according to the US Energy Information Administration, is “coming from the commercial sector, which includes data centers, and the industrial sector, which includes manufacturing establishments.” 

As MIT Technology Review has extensively reported, energy demand from data centers is set to soar, not plateau, as AI inhales ever more electricity from the grid. As my colleagues James O’Donnell and Casey Crownhart reported, by 2028 the share of US electricity going to power data centers may triple. (For the full report, see technologyreview.com/energy-ai.)

Both manufacturing and data centers are obviously priorities for the US writ large and the Trump administration in particular. Given those priorities, it’s surprising to see the administration and Congress making moves that would both decrease our potential energy supply and increase demand by lowering efficiency. 

This will be most true for electricity generation. The administration’s proposed budget, still being considered as we went to press, would roll back tax credits for wind, solar, and other forms of clean energy. In households, they would hit credits for rooftop solar panels and residential energy efficiency programs. Simultaneously, the US is trying to roll back efficiency standards for household appliances. These standards are key to keeping consumer electricity prices down by decreasing demand. 

In short, what most analysts are expecting is more strain on the grid, which means prices will go up for everyone. Meanwhile, rollbacks to the Inflation Reduction Act and to credits for advanced manufacturing mean that fewer future-facing energy sources will be built. 

This is just belligerently shortsighted. 

That’s especially true because as the US takes steps to make energy less abundant and more expensive, China—our ostensible chief international antagonist—is moving in exactly the opposite direction. The country has made massive strides in renewable energy generation, hitting its goals six years ahead of schedule. In fact, China is now producing so much clean energy that its carbon dioxide emissions are declining as a result.

This issue is about power, in all its forms. Yet whether you’re talking about the ability to act or the act of providing electricity, power comes from energy. So when it comes to energy, we need “ands,” not “ors.” We need nuclear and solar and wind and hydropower and hydrogen and geothermal and batteries on the grid. And we need efficiency. And yes, we even need oil and gas in the mid term while we ramp up cleaner sources. That is the way to maintain and increase our prosperity, and the only way we can possibly head off some of the worst consequences of climate change.

Inside the US power struggle over coal

Coal power is on life support in the US. It used to carry the grid with cheap electricity, but now plants are closing left and right.

There are a lot of potential reasons to let coal continue its journey to the grave. Carbon emissions from coal plants are a major contributor to climate change. And those facilities are also often linked with health problems in nearby communities, as reporter Alex Kaufman explored in a new feature story on Puerto Rico’s only coal-fired power plant.

But the Trump administration wants to keep coal power alive, and the US Department of Energy recently ordered some plants to stay open past their scheduled closures. Here’s why there’s a power struggle over coal.

Coal used to be king in the US, but the country has dramatically reduced its dependence on the fuel over the past two decades. It accounted for about 20% of the electricity generated in 2024, down from roughly half in 2000.

While the demise of coal has been great for US emissions, the real driver is economics. Coal used to be the cheapest form of electricity generation around, but the fracking boom handed that crown to natural gas over a decade ago. And now, even cheaper wind and solar power is coming online in droves.

Economics was a major factor in the planned retirement of the J.H. Campbell coal plant in Michigan, which was set to close at the end of May, Dan Scripps, chair of the Michigan Public Service Commission, told the Washington Post.

Then, on May 23, US Energy Secretary Chris Wright released an emergency order that requires the plant to remain open. Wright’s order mandates 90 more days of operation, and the order can be extended past that, too. It states that the goal is to minimize the risk of blackouts and address grid security issues before the start of summer.

The DOE’s authority to require power plants to stay open is something that’s typically used in emergencies like hurricanes, rather than in response to something as routine as … seasons changing. 

It’s true that there’s growing concern in the US about meeting demand for electricity, which is rising for the first time after being basically flat for decades. (The recent rise is in large part due to massive data centers, like those needed to run AI. Have I mentioned we have a great package on AI and energy?)

And we are indeed heading toward summer, which is when the grid is stretched to its limits. In the New York area, the forecast high is nearly 100 °F (38 °C) for several days next week—I’ll certainly have my air conditioner on, and I’m sure I’ll soon be getting texts asking me to limit electricity use during times of peak demand.

But is keeping old coal plants open the answer to a stressed grid?

It might not be the most economical way forward. In fact, in almost every case today, it’s actually cheaper to build new renewables capacity than to keep existing coal plants running in the US, according to a 2023 report from Energy Innovation, an energy think tank. And coal is only getting more expensive—in an updated analysis, Energy Innovation found that three-quarters of coal plants saw costs rising faster than inflation between 2021 and 2024.

Granted, solar and wind aren’t always available, while coal plants can be fired up on demand. And getting new projects built and connected to the grid will take time (right now, there’s a huge backlog of renewable projects waiting in the interconnection queue). But some experts say we actually don’t need new generation that urgently anyway, if big electricity users can be flexible with their demand

And we’re already seeing batteries come to the rescue on the grid at times of stress. Between May 2024 and April 2025, US battery storage capacity increased by about 40%. When Texas faced high temperatures last month, batteries did a lot to help the state make it through without blackouts, as this Bloomberg story points out. Costs are falling, too; prices are about 19% lower in 2024 than they were in 2023. 

Even as the Trump administration is raising concerns about grid reliability, it’s moved to gut programs designed to get more electricity generation and storage online, like the tax credits that support wind, solar, and battery production and installation. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

These new batteries are finding a niche

Lithium-ion batteries have some emerging competition: Sodium-based alternatives are starting to make inroads.

Sodium is more abundant on Earth than lithium, and batteries that use the material could be cheaper in the future. Building a new battery chemistry is difficult, mostly because lithium is so entrenched. But, as I’ve noted before, this new technology has some advantages in nooks and crannies. 

I’ve been following sodium-ion batteries for a few years, and we’re starting to see the chemistry make progress, though not significantly in the big category of electric vehicles. Rather, these new batteries are finding niches where they make sense, especially in smaller electric scooters and large energy storage installations. Let’s talk about what’s new for sodium batteries, and what it’ll take for the chemistry to really break out.

Two years ago, lithium prices were, to put it bluntly, bonkers. The price of lithium hydroxide (an ingredient used to make lithium-ion batteries) went from a little under $10,000 per metric ton in January 2021 to over $76,000 per metric ton in January 2023, according to data from Benchmark Mineral Intelligence.

More expensive lithium drives up the cost of lithium-ion batteries. Price spikes, combined with concerns about potential shortages, pushed a lot of interest in alternatives, including sodium-ion.

I wrote about this swelling interest for a 2023 story, which focused largely on vehicle makers in China and a few US startups that were hoping to get in on the game.

There’s one key point to understand here. Sodium-based batteries will need to be cheaper than lithium-based ones to have a shot at competing, especially for electric vehicles, because they tend to be worse on one key metric: energy density. A sodium-ion battery that’s the same size and weight as a lithium-ion one will store less energy, limiting vehicle range.

The issue is, as we’ve seen since that 2023 story, lithium prices—and the lithium-ion battery market—are moving targets. Prices for precursor materials have come back down since the early 2023 peak, with lithium hydroxide crossing below $9,000 per metric ton recently.

And as more and more battery factories are built, costs for manufactured products come down too, with the average price for a lithium-ion pack in 2024 dropping 20%—the biggest annual decrease since 2017, according to BloombergNEF.

I wrote about this potential difficulty in that 2023 story: “If sodium-ion batteries are breaking into the market because of cost and material availability, declining lithium prices could put them in a tough position.”

One researcher I spoke with at the time suggested that sodium-ion batteries might not compete directly with lithium-ion batteries but could instead find specialized uses where the chemistry made sense. Two years later, I think we’re starting to see what those are.

One growing segment that could be a big win for sodium-ion: electric micromobility vehicles, like scooters and three-wheelers. Since these vehicles tend to travel shorter distances at lower speeds than cars, the lower energy density of sodium-ion batteries might not be as big a deal.

There’s a great BBC story from last week that profiled efforts to put sodium-ion batteries in electric scooters. It focused on one Chinese company called Yadea, which is one of the largest makers of electric two- and three-wheelers in the world. Yadea has brought a handful of sodium-powered models to the market so far, selling about 1,000 of the scooters in the first three months of 2025, according to the company’s statement to the BBC. It’s early days, but it’s interesting to see this market emerging.

Sodium-ion batteries are also seeing significant progress in stationary energy storage installations, including some on the grid. (Again, if you’re not worried about carting the battery around and fitting it into the limited package of a vehicle, energy density isn’t so important.)

The Baochi Energy Storage Station that just opened in Yunnan province, China, is a hybrid system that uses both lithium-ion and sodium-ion batteries and has a capacity of 400 megawatt-hours. And Natron Energy in the US is among those targeting other customers for stationary storage, specifically going after data centers.

While smaller vehicles and stationary installations appear to be the early wins for sodium, some companies aren’t giving up on using the alternative for EVs as well. The Chinese battery giant CATL announced earlier this year that it plans to produce sodium-ion batteries for heavy-duty trucks under the brand name Naxtra Battery.

Ultimately, lithium is the juggernaut of the battery industry, and going head to head is going to be tough for any alternative chemistry. But sticking with niches that make sense could help sodium-ion make progress at a time when I’d argue we need every successful battery type we can get. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Over $1 billion in federal funding got slashed for this polluting industry

The clean cement industry might be facing the end of the road, before it ever really got rolling. 

On Friday, the US Department of Energy announced that it was canceling $3.7 billion in funding for 24 projects related to energy and industry. That included nearly $1.3 billion for cement-related projects.

Cement is a massive climate problem, accounting for roughly 7% of global greenhouse-gas emissions. What’s more, it’s a difficult industry to clean up, with huge traditional players and expensive equipment and infrastructure to replace. This funding was supposed to help address those difficulties, by supporting projects on the cusp of commercialization. Now companies will need to fill in the gap left by these cancellations, and it’s a big one. 

First up on the list for cuts is Sublime Systems, a company you’re probably familiar with if you’ve been reading this newsletter for a while. I did a deep dive last year, and the company was on our list of Climate Tech Companies to Watch in both 2023 and 2024.

The startup’s approach is to make cement using electricity. The conventional process requires high temperatures typically achieved by burning fossil fuels, so avoiding that could prevent a lot of emissions. 

In 2024, Sublime received an $87 million grant from the DOE to construct a commercial demonstration plant in Holyoke, Massachusetts. That grant would have covered roughly half the construction costs for the facility, which is scheduled to open in 2026 and produce up to 30,000 metric tons of cement each year. 

“We were certainly surprised and disappointed about the development,” says Joe Hicken, Sublime’s senior VP of business development and policy. Customers are excited by the company’s technology, Hicken adds, pointing to Sublime’s recently announced deal with Microsoft, which plans to buy up to 622,500 metric tons of cement from the company. 

Another big name, Brimstone, also saw its funding affected. That award totaled $189 million for a commercial demonstration plant, which was expected to produce over 100,000 metric tons of cement annually. 

In a statement, a Brimstone representative said the company believes the cancellation was a “misunderstanding.” The statement pointed out that the planned facility would make not only cement but also alumina, supporting US-based aluminum production. (Aluminum is classified as a critical mineral by the US Geological Survey, meaning it’s considered crucial to the US economy and national security.) 

An award to Heidelberg Materials for up to $500 million for a planned Indiana facility was also axed. The idea there was to integrate carbon capture and storage to clean up emissions from the plant, which would have made it the first cement plant in the US to demonstrate that technology. In a written statement, a representative said the decision can be appealed, and the company is considering that option.

And National Cement’s funding for the Lebec Net-Zero Project, another $500 million award, was canceled. That facility planned to make carbon-neutral cement through a combination of strategies: reducing the polluting ingredients needed, using alternative fuels like biomass, and capturing the plant’s remaining emissions. 

“We want to emphasize that this project will expand domestic manufacturing capacity for a critical industrial sector, while also integrating new technologies to keep American cement competitive,” said a company spokesperson in a written statement. 

There’s a sentiment here that’s echoed in all the responses I received: While these awards were designed to cut emissions, these companies argue that they can fit into the new administration’s priorities. They’re emphasizing phrases like “critical minerals,” “American jobs,” and “domestic supply chains.” 

“We’ve heard loud and clear from the Trump administration the desire to displace foreign imports of things that can be made here in America,” Sublime’s Hicken says. “At the end of the day, what we deliver is what the policymakers in DC are looking for.” 

But this administration is showing that it’s not supporting climate efforts—often even those that also advance its stated goals of energy abundance and American competitiveness. 

On Monday, my colleague James Temple published a new story about cuts to climate research, including tens of millions of dollars in grants from the National Science Foundation. Researchers at Harvard were particularly hard hit. 

Even as there’s interest in advancing the position of the US on the world’s stage, these cuts are making it hard for researchers and companies alike to do the crucial work of understanding our climate and developing and deploying new technologies. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

The Trump administration has shut down more than 100 climate studies

The Trump administration has terminated National Science Foundation grants for more than 100 research projects related to climate change amid a widening campaign to slash federal funding for scientists and institutions studying the rising risks of a warming world.

The move will cut off what’s likely to amount to tens of millions of dollars for studies that were previously approved and, in most cases, already in the works. 

Affected projects include efforts to develop cleaner fuels, measure methane emissions, improve understanding of how heat waves and sea-level rise disproportionately harm marginalized groups, and help communities transition to sustainable energy, according to an MIT Technology Review review of a GrantWatch database—a volunteer-led effort to track federal cuts to research—and a list of terminated grants from the National Science Foundation (NSF) itself. 

The NSF is one of the largest sources of US funding for university research, so the cancellations will deliver a big blow to climate science and clean-energy development.

They come on top of the White House’s broader efforts to cut research funding and revenue for universities and significantly raise their taxes. The administration has also strived to slash staff and budgets at federal research agencies, halt efforts to assess the physical and financial risks of climate change, and shut down labs that have monitored and analyzed the levels of greenhouse gases in the air for decades.

“I don’t think it takes a lot of imagination to understand where this is going,” says Daniel Schrag, co-director of the science, technology, and public policy program at Harvard University, which has seen greater funding cuts than any other university amid an escalating legal conflict with the administration. “I believe the Trump administration intends to zero out funding for climate science altogether.”

The NSF says it’s terminating grants that aren’t aligned with the agency’s program goals, “including but not limited to those on diversity, equity, and inclusion (DEI), environmental justice, and misinformation/disinformation.”

Trump administration officials have argued that DEI considerations have contaminated US science, favoring certain groups over others and undermining the public’s trust in researchers.

“Political biases have displaced the vital search for truth,” Michael Kratsios, head of the White House Office of Science and Technology Policy, said to a group of NSF administrations and others last month, according to reporting in Science.

Science v. politics

But research projects that got caught in the administration’s anti-DEI filter aren’t the only casualties of the cuts. The NSF has also canceled funding for work that has little obvious connections to DEI ambitions, such as research on catalysts. 

Many believe the administration’s broader motivation is to  undermine the power of the university system and prevent research findings that cut against its politics. 

Trump and his officials have repeatedly argued, in public statements and executive orders, that climate fears are overblown and that burdensome environmental regulations have undermined the nation’s energy security and economic growth.

“It certainly seems like a deliberate attempt to undo any science that contradicts the administration,” says Alexa Fredston, an assistant professor of ocean sciences at the University of California, Santa Cruz. 

On May 28, a group of states including California, New York, and Illinois sued the NSF, arguing that the cuts illegally violated diversity goals and funding priorities clearly established by Congress, which controls federal spending.

A group of universities also filed a lawsuit against the NSF over its earlier decision to reduce the indirect cost rate for research, which reimburses universities for overhead expenses associated with work carried out on campuses. The plaintiffs included the California Institute of Technology, Carnegie Mellon University, and the Massachusetts Institute of Technology, which has also lost a number of research grants.

(MIT Technology Review is owned by, but editorially independent from, MIT.)

The NSF declined to comment.

‘Theft from the American people’

GrantWatch is an effort among researchers at rOpenSci, Harvard, and other organizations to track terminations of grants issued by the National Institutes of Health (NIH) and NSF. It draws on voluntary submissions from scientists involved as well as public government information. 

A search of its database for the terms “climate change,” “clean energy,” “climate adaptation,” “environmental justice,” and “climate justice” showed that the NSF has canceled funds for 118 projects, which were supposed to receive more than $100 million in total. Searching for the word “climate” produces more than 300 research projects that were set to receive more than $230 million. (That word often indicates climate-change-related research, but in some abstracts it refers to the cultural climate.) 

Some share of those funds has already been issued to research groups. The NSF section of the database doesn’t include that “outlaid” figure, but it’s generally about half the amount of the original grants, according to Noam Ross, a computational researcher and executive director of rOpenSci, a nonprofit initiative that promotes open and reproducible science.

A search for “climate change” among the NIH projects produces another 22 studies that were terminated and were still owed nearly $50 million in grants. Many of those projects explored the mental or physical health effects of climate change and extreme weather events.

The NSF more recently released its own list of terminated projects, which mostly mirrored GrantWatch’s findings and confirms the specific terminations mentioned in this story.

“These grant terminations are theft from the American people,” Ross said in an email response. “By illegally ending this research the Trump administration is wasting taxpayer dollars, gutting US leadership in science, and telling the world that the US government breaks its promises.”

Harvard, the country’s oldest university, has been particularly hard hit.

In April, the university sued the Trump administration over cuts to its research funding and efforts to exert control over its admissions and governance policies. The White House, in turn, has moved to eliminate all federal funds for the university, including hundreds of NSF and NIH grants. 

Daniel Nocera, a professor at Harvard who has done pioneering work on so-called artificial photosynthesis, a pathway for producing clean fuels from sunlight, said in an email that all of his grants were terminated. 

“I have no research funds,” he added.

Another terminated grant involved a collaboration between Harvard and the NSF National Center for Atmospheric Research (NCAR), designed to update the atmospheric chemistry component of the Community Earth System Model, an open-source climate model widely used by scientists around the world.

The research was expected to “contribute to a better understanding of atmospheric chemistry in the climate system and to improve air quality predictions within the context of climate change,” according to the NSF abstract. 

“We completed most of the work and were able to bring it to a stopping point,” Daniel Jacob, a professor at Harvard listed as the principal investigator on the project, said in an email. “But it will affect the ability to study chemistry-climate interactions. And it is clearly not right to pull funding from an existing project.”

Plenty of the affected research projects do, in one way or another, grapple with issues of diversity, equity, and inclusion. But that’s because there is ample evidence that disadvantaged communities experience higher rates of illness from energy-sector pollution, will be harder hit by the escalating effects of extreme weather and are underrepresented in scientific fields.

One of the largest terminations cut off about $4 million dollars of remaining funds for the CLIMATE Justice Initiative, a fellowship program at the University of California, Irvine designed to recruit, train and mentor a more diverse array of researchers in Earth sciences.  

The NSF decision occurred halfway into the 5-year program, halting funds for a number of fellows who were in the midst of environmental justice research efforts with community partners in Southern California. Kathleen Johnson, a professor at UC Irvine and director of the initiative, says the university is striving to find ways to fund as many participants as possible for the remainder of their fellowships.

“We need people from all parts of society who are trained in geoscience and climate science to address all these global challenges that we are facing,” she says. “The people who will be best positioned to do this work …  are the people who understand the community’s needs and are able to therefore work to implement equitable solutions.”

“Diverse teams have been shown to do better science,” Johnson adds.

Numerous researchers whose grants were terminated didn’t respond to inquiries from MIT Technology Review or declined to comment, amid growing concerns that the Trump administration will punish scientists or institutions that criticize their policies.

Coming cuts

The termination of existing NSF and NIH grants is just the start of the administration’s plans to cut federal funding for climate and clean-energy research. 

The White House’s budget proposal for the coming fiscal year seeks to eliminate tens of billions of dollars in funding across federal agencies, specifically calling out “Green New Scam funds” at the Department of Energy; “low-priority climate monitoring satellites” at NASA; “climate-dominated research, data, and grant programs” at the National Oceanic and Atmospheric Administration; and “climate; clean energy; woke social, behavioral, and economic sciences” at the NSF.

The administration released a more detailed NSF budget proposal on May 30th, which called for a 60% reduction in research spending and nearly zeroed out the clean energy technology program. It also proposed cutting funds by 97% for the US Global Change Research Program, which produces regular assessments of climate risks; 80% for the Ocean Observatories Initiative, a global network of ocean sensors that monitor shifting marine conditions; and 40% for NCAR, the atmospheric research center.

If Congress approves budget reductions anywhere near the levels the administration has put forward, scientists fear, it could eliminate the resources necessary to carry on long-running climate observation of oceans, forests, and the atmosphere. 

The administration also reportedly plans to end the leases on dozens of NOAA facilities, including the Global Monitoring Laboratory in Hilo, Hawaii. The lab supports the work of the nearby Mauna Loa Observatory, which has tracked atmospheric carbon dioxide levels for decades.

Even short gaps in these time-series studies, which scientists around the world rely upon, would have an enduring impact on researchers’ ability to analyze and understand weather and climate trends.

“We won’t know where we’re going if we stop measuring what’s happening,” says Jane Long, formerly the associate director of energy and environment at Lawrence Livermore National Lab. “It’s devastating—there’s no two ways around it.” 

Stunting science 

Growing fears that public research funding will take an even larger hit in the coming fiscal year are forcing scientists to rethink their research plans—or to reconsider whether they want to stay in the field at all, numerous observers said.

“The amount of funding we’re talking about isn’t something a university can fill indefinitely, and it’s not something that private philanthropy can fill for very long,” says Michael Oppenheimer, a professor of geosciences and international affairs at Princeton University. “So what we’re talking about is potentially cataclysmic for climate science.”

“Basically it’s a shit show,” he adds, “and how bad a shit show it is will depend a lot on what happens in the courts and Congress over the next few months.”

One climate scientist, who declined to speak on the record out of concern that the administration might punish his institution, said the declining funding is forcing researchers to shrink their scientific ambitions down to a question of “What can I do with my laptop and existing data sets?”

“If your goal was to make the United States a second-class or third-class country when it comes to science and education, you would be doing exactly what the administration is doing,” the scientist said. “People are pretty depressed, upset, and afraid.”

Given the rising challenges, Harvard’s Schrag fears that the best young climate scientists will decide to shift their careers outside of the US, or move into high tech or other fields where they can make significantly more money.

“We might lose a generation of talent—and that’s not going to get fixed four years from now,” he says. “The irony is that Trump is attacking the institutions and foundation of US science that literally made America great.”

What will power AI’s growth?

It’s been a little over a week since we published Power Hungry, a package that takes a hard look at the expected energy demands of AI. Last week in this newsletter, I broke down the centerpiece of that package, an analysis I did with my colleague James O’Donnell. (In case you’re still looking for an intro, you can check out this Roundtable discussion with James and our editor in chief Mat Honan, or this short segment I did on Science Friday.)

But this week, I want to talk about another story that I also wrote for that package, which focused on nuclear energy. I thought this was an important addition to the mix of stories we put together, because I’ve seen a lot of promises about nuclear power as a saving grace in the face of AI’s energy demand. My reporting on the industry over the past few years has left me a little skeptical. 

As I discovered while I continued that line of reporting, building new nuclear plants isn’t so simple or so fast. And as my colleague David Rotman lays out in his story for the package, the AI boom could wind up relying on another energy source: fossil fuels. So what’s going to power AI? Let’s get into it. 

When we started talking about this big project on AI and energy demand, we had a lot of conversations about what to include. And from the beginning, the climate team was really focused on examining what, exactly, was going to be providing the electricity needed to run data centers powering AI models. As we wrote in the main story: 

“A data center humming away isn’t necessarily a bad thing. If all data centers were hooked up to solar panels and ran only when the sun was shining, the world would be talking a lot less about AI’s energy consumption.” 

But a lot of AI data centers need to be available constantly. Those that are used to train models can arguably be more responsive to the changing availability of renewables, since that work can happen in bursts, any time. Once a model is being pinged with questions from the public, though, there needs to be computing power ready to run all the time. Google, for example, would likely not be too keen on having people be able to use its new AI Mode only during daylight hours.

Solar and wind power, then, would seem not to be a great fit for a lot of AI electricity demand, unless they’re paired with energy storage—and that increases costs. Nuclear power plants, on the other hand, tend to run constantly, outputting a steady source of power for the grid. 

As you might imagine, though, it can take a long time to get a nuclear power plant up and running. 

Large tech companies can help support plans to reopen shuttered plants or existing plants’ efforts to extend their operating lifetimes. There are also some existing plants that can make small upgrades to improve their output. I just saw this news story from the Tri-City Herald about plans to upgrade the Columbia Generating Station in eastern Washington—with tweaks over the next few years, it could produce an additional 162 megawatts of power, over 10% of the plant’s current capacity. 

But all that isn’t going to be nearly enough to meet the demand that big tech companies are claiming will materialize in the future. (For more on the numbers here and why new tech isn’t going to come online fast enough, check out my full story.) 

Instead, natural gas has become the default to meet soaring demand from data centers, as David lays out in his story. And since the lifetime of plants built today is about 30 years, those new plants could be running past 2050, the date the world needs to bring greenhouse-gas emissions to net zero to meet the goals set out in the Paris climate agreement. 

One of the bits I found most interesting in David’s story is that there’s potential for a different future here: Big tech companies, with their power and influence, could actually use this moment to push for improvements. If they reduced their usage during peak hours, even for less than 1% of the year, it could greatly reduce the amount of new energy infrastructure required. Or they could, at the very least, push power plant owners and operators to install carbon capture technology, or ensure that methane doesn’t leak from the supply chain.

AI’s energy demand is a big deal, but for climate change, how we choose to meet it is potentially an even bigger one. 

This startup wants to make more climate-friendly metal in the US

A California-based company called Magrathea just turned on a new electrolyzer that can make magnesium metal from seawater. The technology has the potential to produce the material, which is used in vehicles and defense applications, with net-zero greenhouse-gas emissions.

Magnesium is an incredibly light metal, and it’s used for parts in cars and planes, as well as in aluminum alloys like those in vehicles. The metal is also used in defense and industrial applications, including the production processes for steel and titanium.

Today, China dominates production of magnesium, and the most common method generates a lot of the emissions that cause climate change. If Magrathea can scale up its process, it could help provide an alternative source of the metal and clean up industries that rely on it, including automotive manufacturing.

The star of Magrathea’s process is an electrolyzer, a device that uses electricity to split a material into its constituent elements. Using an electrolyzer in magnesium production isn’t new, but Magrathea’s approach represents an update. “We really modernized it and brought it into the 21st century,” says Alex Grant, Magrathea’s cofounder and CEO.

The whole process starts with salty water. There are small amounts of magnesium in seawater, as well as in salt lakes and groundwater. (In seawater, the concentration is about 1,300 parts per million, so magnesium makes up about 0.1% of seawater by weight.) If you take that seawater or brine and clean it up, concentrate it, and dry it out, you get a solid magnesium chloride salt.

Magrathea takes that salt (which it currently buys from Cargill) and puts it into the electrolyzer. The device reaches temperatures of about 700 °C (almost 1,300 °F) and runs electricity through the molten salt to split the magnesium from the chlorine, forming magnesium metal.

Typically, running an electrolyzer in this process would require a steady source of electricity. The temperature is generally kept just high enough to maintain the salt in a molten state. Allowing it to cool down too much would allow it to solidify, messing up the process and potentially damaging the equipment. Heating it up more than necessary would just waste energy. 

Magrathea’s approach builds in flexibility. Basically, the company runs its electrolyzer about 100 °C higher than is necessary to keep the molten salt a liquid. It then uses the extra heat in inventive ways, including to dry out the magnesium salt that eventually goes into the reactor. This preparation can be done intermittently, so the company can take in electricity when it’s cheaper or when more renewables are available, cutting costs and emissions. In addition, the process will make a co-product, called magnesium oxide, that can be used to trap carbon dioxide from the atmosphere, helping to cancel out the remaining carbon pollution.

The result could be a production process with net-zero emissions, according to an independent life cycle assessment completed in January. While it likely won’t reach this bar at first, the potential is there for a much more climate-friendly process than what’s used in the industry today, Grant says.

Breaking into magnesium production won’t be simple, says Simon Jowitt, director of the Nevada Bureau of Mines and of the Center for Research in Economic Geology at the University of Nevada, Reno.

China produces roughly 95% of the global supply as of 2024, according to data from the US Geological Survey. This dominant position means companies there can flood the market with cheap metal, making it difficult for others to compete. “The economics of all this is uncertain,” Jowitt says.

The US has some trade protections in place, including an anti-dumping duty, but newer players with alternative processes can still face obstacles. US Magnesium, a company based in Utah, was the only company making magnesium in the US in recent years, but it shut down production in 2022 after equipment failures and a history of environmental concerns. 

Magrathea plans to start building a demonstration plant in Utah in late 2025 or early 2026, which will have a capacity of roughly 1,000 tons per year and should be running in 2027. In February the company announced that it signed an agreement with a major automaker, though it declined to share its name on the record. The automaker pre-purchased material from the demonstration plant and will incorporate it into existing products.

After the demonstration plant is running, the next step would be to build a commercial plant with a larger capacity of around 50,000 tons annually.

A new sodium metal fuel cell could help clean up transportation

A new type of fuel cell that runs on sodium metal could one day help clean up sectors where it’s difficult to replace fossil fuels, like rail, regional aviation, and short-distance shipping. The device represents a departure from technologies like lithium-based batteries and is more similar conceptually to hydrogen fuel cell systems. 

The sodium-air fuel cell was designed by a team led by Yet-Ming Chiang, a professor of materials science and engineering at MIT. It has a higher energy density than lithium-ion batteries and doesn’t require the super-cold temperatures or high pressures that hydrogen does, making it potentially more practical for transport. “I’m interested in sodium metal as an energy carrier of the future,” Chiang says.  

The device’s design, published today in Joule, is related to the technology behind one of Chiang’s companies, Form Energy, which is building iron-air batteries for large energy storage installations like those that could help store wind and solar power on the grid. Form’s batteries rely on water, iron, and air.

One technical challenge for metal-air batteries has historically been reversibility. A battery’s chemical reactions must be easily reversed so that in one direction they generate electricity, discharging the battery, and in the other electricity goes into the cell and the reverse reactions happen, charging it up.

When a battery’s reactions produce a very stable product, it can be difficult to recharge the battery without losing capacity. To get around this problem, the team at Form had discussions about whether their batteries could be refuelable rather than rechargeable, Chiang says. The idea was that rather than reversing the reactions, they could simply run the system in one direction, add more starting material, and repeat. 

Ultimately, Form chose a more traditional battery concept, but the idea stuck with Chiang, who decided to explore it with other metals and landed on the idea of a sodium-based fuel cell. 

In this fuel cell format, the device takes in chemicals and runs reactions that generate electricity, after which the products get removed. Then fresh fuel is put in to run the whole thing again—no electrical charging required. (You might recognize this concept from hydrogen fuel cell vehicles, like the Toyota Mirai.)

Chiang and his colleagues set out to build a fuel cell that runs on liquid sodium, which could have a much higher energy density than existing commercial technologies, so it would be small and light enough to be used for things like regional airplanes or short-distance shipping.

Gloved hands holding a small vial of sodium metal.
Sodium metal could be used to power regional planes or short distance shipping.
GRETCHEN ERTL/MITTR

The research team built small test cells to try out the concept and ran them to show that they could use the sodium-metal-based system to generate electricity. Since sodium becomes liquid at about 98 °C (208 °F), the cells operated at moderate temperatures of between 110 °C and 130 °C (or 230 °F and 266°F), which could be practical for use on planes or ships, Chiang says. 

From their work with these experimental devices, the researchers estimated that the energy density was about 1,200 watt-hours per kilogram (Wh/kg). That’s much higher than what commercial lithium-ion batteries can reach today (around 300 Wh/kg). Hydrogen fuel cells can achieve high energy density, but that requires the hydrogen to be stored at high pressures and often ultra-low temperatures.

“It’s an interesting cell concept,” says Jürgen Janek, a professor at the Institute of Physical Chemistry at the University of Giessen in Germany, who was not involved in the research. There’s been previous research on sodium-air batteries in the past, Janek says, but using this sort of chemistry in a fuel cell instead is new.

“One of the critical issues with this type of cell concept is the safety issue,” Janek says. Sodium metal reacts very strongly with water. (You may have seen videos where blocks of sodium metal get thrown into a lake, to dramatic effect). Asked about this issue, Chiang says the design of the cell ensures that water produced during reactions is continuously removed, so there’s not enough around to fuel harmful reactions. The solid electrolyte, a ceramic material, also helps prevent reactions between water and sodium, Chiang adds. 

Another question is what happens to one of the cell’s products, sodium hydroxide. Commonly known as lye, it’s an industrial chemical, used in products like liquid drain-cleaning solution. One of the researchers’ suggestions is to dilute the product and release it into the atmosphere or ocean, where it would react with carbon dioxide, capturing it in a stable form and preventing it from contributing to global warming. There are groups pursuing field trials using this exact chemical for ocean-based carbon removal, though some have been met with controversy. The researchers also laid out the potential for a closed system, where the chemical could be collected and sold as a by-product.

There are economic factors working in favor of sodium-based systems, though it would take some work to build up the necessary supply chains. Today, sodium metal isn’t produced at very high volumes. However, it can be made from sodium chloride (table salt), which is incredibly cheap. And it was produced more abundantly in the past, since it was used in the process of making leaded gasoline. So there’s a precedent for a larger supply chain, and it’s possible that scaling up production of sodium metal would make it cheap enough to use in fuel cell systems, Chiang says.

Chiang has cofounded a company called Propel Aero to commercialize the research. The project received funding from ARPA-E’s Propel-1K program, which aims to develop new forms of high-power energy storage for aircraft, trains, and ships.

The next step is to continue research to improve the cells’ performance and energy density, and to start designing small-scale systems. One potential early application is drones. “We’d like to make something fly within the next year,” Chiang says.

“If people don’t find it crazy, I’ll be rather disappointed,” Chiang says. “Because if an idea doesn’t sound crazy at the beginning, it probably isn’t as revolutionary as you think. Fortunately, most people think I’m crazy on this one.”

Three takeaways about AI’s energy use and climate impacts

This week, we published Power Hungry, a package all about AI and energy. At the center of this package is the most comprehensive look yet at AI’s growing power demand, if I do say so myself. 

This data-heavy story is the result of over six months of reporting by me and my colleague James O’Donnell (and the work of many others on our team). Over that time, with the help of leading researchers, we quantified the energy and emissions impacts of individual queries to AI models and tallied what it all adds up to, both right now and for the years ahead. 

There’s a lot of data to dig through, and I hope you’ll take the time to explore the whole story. But in the meantime, here are three of my biggest takeaways from working on this project. 

1. The energy demands of AI are anything but constant. 

If you’ve heard estimates of AI’s toll, it’s probably a single number associated with a query, likely to OpenAI’s ChatGPT. One popular estimate is that writing an email with ChatGPT uses 500 milliliters (or roughly a bottle) of water. But as we started reporting, I was surprised to learn just how much the details of a query can affect its energy demand. No two queries are the same—for several reasons, including their complexity and the particulars of the model being queried.

One key caveat here is that we don’t know much about “closed source” models—for these, companies hold back the details of how they work. (OpenAI’s ChatGPT and Google’s Gemini are examples.) Instead, we worked with researchers who measured the energy it takes to run open-source AI models, for which the source code is publicly available. 

But using open-source models, it’s possible to directly measure the energy used to respond to a query rather than just guess. We worked with researchers who generated text, images, and video and measured the energy required for the chips the models are based on to perform the task.  

Even just within the text responses, there was a pretty large range of energy needs. A complicated travel itinerary consumed nearly 10 times as much energy as a simple request for a few jokes, for example. An even bigger difference comes from the size of the model used. Larger models with more parameters used up to 70 times more energy than smaller ones for the same prompts. 

As you might imagine, there’s also a big difference between text, images, or video. Videos generally took hundreds of times more energy to generate than text responses. 

2. What’s powering the grid will greatly affect the climate toll of AI’s energy use. 

As the resident climate reporter on this project, I was excited to take the expected energy toll and translate it into an expected emissions burden. 

Powering a data center with a nuclear reactor or a whole bunch of solar panels and batteries will not affect our planet the same way as burning mountains of coal. To quantify this idea, we used a figure called carbon intensity, a measure of how dirty a unit of electricity is on a given grid. 

We found that the same exact query, with the same exact energy demand, will have a very different climate impact depending on what the data center is powered by, and that depends on the location and the time of day. For example, querying a data center in West Virginia could cause nearly twice the emissions of querying one in California, according to calculations based on average data from 2024.

This point shows why it matters where tech giants are building data centers, what the grid looks like in their chosen locations, and how that might change with more demand from the new infrastructure. 

3. There is still so much that we don’t know when it comes to AI and energy. 

Our reporting resulted in estimates that are some of the most specific and comprehensive out there. But ultimately, we still have no idea what many of the biggest, most influential models are adding up to in terms of energy and emissions. None of the companies we reached out to were willing to provide numbers during our reporting. Not one.

Adding up our estimates can only go so far, in part because AI is increasingly everywhere. While today you might generally have to go to a dedicated site and type in questions, in the future AI could be stitched into the fabric of our interactions with technology. (See my colleague Will Douglas Heaven’s new story on Google’s I/O showcase: “By putting AI into everything, Google wants to make it invisible.”)

AI could be one of the major forces that shape our society, our work, and our power grid. Knowing more about its consequences could be crucial to planning our future. 

To dig into our reporting, give the main story a read. And if you’re looking for more details on how we came up with our numbers, you can check out this behind-the-scenes piece.

There are also some great related stories in this package, including one from James Temple on the data center boom in the Nevada desert, one from David Rotman about how AI’s rise could entrench natural gas, and one from Will Douglas Heaven on a few technical innovations that could help make AI more efficient. Oh, and I also have a piece on why nuclear isn’t the easy answer some think it is

Find them, and the rest of the stories in the package, here

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

AI could keep us dependent on natural gas for decades to come

The thousands of sprawling acres in rural northeast Louisiana had gone unwanted for nearly two decades. Louisiana authorities bought the land in Richland Parish in 2006 to promote economic development in one of the poorest regions in the state. For years, they marketed the former agricultural fields as the Franklin Farm mega site, first to auto manufacturers (no takers) and after that to other industries that might want to occupy more than a thousand acres just off the interstate.


This story is a part of MIT Technology Review’s series “Power Hungry: AI and our energy future,” on the energy demands and carbon costs of the artificial-intelligence revolution.


So it’s no wonder that state and local politicians were exuberant when Meta showed up. In December, the company announced plans to build a massive $10 billion data center for training its artificial-intelligence models at the site, with operations to begin in 2028. “A game changer,” declared Governor Jeff Landry, citing 5,000 construction jobs and 500 jobs at the data center that are expected to be created and calling it the largest private capital investment in the state’s history. From a rural backwater to the heart of the booming AI revolution!

The AI data center also promises to transform the state’s energy future. Stretching in length for more than a mile, it will be Meta’s largest in the world, and it will have an enormous appetite for electricity, requiring two gigawatts for computation alone (the electricity for cooling and other building needs will add to that). When it’s up and running, it will be the equivalent of suddenly adding a decent-size city to the region’s grid—one that never sleeps and needs a steady, uninterrupted flow of electricity.

To power the data center, Entergy aims to spend $3.2 billion to build three large natural-gas power plants with a total capacity of 2.3 gigawatts and upgrade the grid to accommodate the huge jump in anticipated demand. In its filing to the state’s power regulatory agency, Entergy acknowledged that natural-gas plants “emit significant amounts of CO2” but said the energy source was the only affordable choice given the need to quickly meet the 24-7 electricity demand from the huge data center.

Meta said it will work with Entergy to eventually bring online at least 1.5 gigawatts of new renewables, including solar, but that it had not yet decided which specific projects to fund or when those investments will be made. Meanwhile, the new natural-gas plants, which are scheduled to be up and running starting in 2028 and will have a typical lifetime of around 30 years, will further lock in the state’s commitment to the fossil fuel.

The development has sparked interest from the US Congress; last week, Sheldon Whitehouse, the ranking member of the Senate Committee on Environment and Public Works issued a letter to Meta that called out the company’s plan to power its data center with “new and unabated natural gas generation” and said its promises to offset the resulting emissions “by funding carbon capture and a solar project are vague and offer little reassurance.”

The choice of natural gas as the go-to solution to meet the growing demand for power from AI is not unique to Louisiana. The fossil fuel is already the country’s chief source of electricity generation, and large natural-gas plants are being built around the country to feed electricity to new and planned AI data centers. While some climate advocates have hoped that cleaner renewable power would soon overtake it, the booming power demand from data centers is all but wiping out any prospect that the US will wean itself off natural gas anytime soon.

The reality on the ground is that natural gas is “the default” to meet the exploding power demand from AI data centers, says David Victor, a political scientist at the University of California, San Diego, and co-director of its Deep Decarbonization Project. “The natural-gas plant is the thing that you know how to build, you know what it’s going to cost (more or less), and you know how to scale it and get it approved,” says Victor. “Even for [AI] companies that want to have low emissions profiles and who are big pushers of low or zero carbon, they won’t have a choice but to use gas.”

The preference for natural gas is particularly pronounced in the American South, where plans for multiple large gas-fired plants are in the works in states such as Virginia, North Carolina, South Carolina, and Georgia. Utilities in those states alone are planning some 20 gigawatts of new natural-gas power plants over the next 15 years, according to a recent report. And much of the new demand—particularly in Virginia, South Carolina and Georgia—is coming from data centers; in those 3 states data centers account for around 65 to 85% of projected load growth.

“It’s a long-term commitment in absolutely the wrong direction,” says Greg Buppert, a senior attorney at the Southern Environmental Law Center in Charlottesville, Virginia. If all the proposed gas plants get built in the South over the next 15 years, he says, “we’ll just have to accept that we won’t meet emissions reduction goals.”

But even as it looks more and more likely that natural gas will remain a sizable part of our energy future, questions abound over just what its continued dominance will look like.

For one thing, no one is sure exactly how much electricity AI data centers will need in the future and how large an appetite companies will have for natural gas. Demand for AI could fizzle. Or AI companies could make a concerted effort to shift to renewable energy or nuclear power. Such possibilities mean that the US could be on a path to overbuild natural-gas capacity, which would leave regions saddled with unneeded and polluting fossil-fuel dinosaurs—and residents footing soaring electricity bills to pay off today’s investments.

The good news is that such risks could likely be managed over the next few years, if—and it’s a big if—AI companies are more transparent about how flexible they can be in their seemingly insatiable energy demands.

The reign of natural gas

Natural gas in the US is cheap and abundant these days. Two decades ago, huge reserves were found in shale deposits scattered across the country. In 2008, as fracking started to make it possible to extract large quantities of the gas from shale, natural gas was selling for $13 per million Btu (a measure of thermal energy); last year, it averaged just $2.21, the lowest annual price (adjusting for inflation) ever reported, according to the US Energy Information Administration (EIA).

Around 2016, natural gas overtook coal as the main fuel for electricity generation in the US. And today—despite the rapid rise of solar and wind power, and well-deserved enthusiasm for the falling price of such renewables—natural gas is still king, accounting for around 40% of electricity generated in the US. In Louisiana, which is also a big producer, that share is some 72%, according to a recent audit.

Natural gas burns much cleaner than coal, producing roughly half as much carbon dioxide. In the early days of the gas revolution, many environmental activists and progressive politicians touted it as a valuable “bridge” to renewables and other sources of clean energy. And by some calculations, natural gas has fulfilled that promise. The power sector has been one of the few success stories in lowering US emissions, thanks to its use of natural gas as a replacement for coal.  

But natural gas still produces a lot of carbon dioxide when it is burned in conventionally equipped power plants. And fracking causes local air and water pollution. Perhaps most worrisome, drilling and pipelines are releasing substantial amounts of methane, the main ingredient in natural gas, both accidentally and by intentional venting. Methane is a far more potent greenhouse gas than carbon dioxide, and the emissions are a growing concern to climate scientists, albeit one that’s difficult to quantify.

Still, carbon emissions from the power sector will likely continue to drop as coal is further squeezed out and more renewables get built, according to the Rhodium Group, a research consultancy. But Rhodium also projects that if electricity demand from data centers remains high and natural-gas prices low, the fossil fuel will remain the dominant source of power generation at least through 2035 and the transition to cleaner electricity will be much delayed. Rhodium estimates that the continued reign of natural gas will lead to an additional 278 million metric tons of annual US carbon emissions by 2035 (roughly equivalent to the emissions from a large US state such as Florida), relative to a future in which the use of fossil fuel gradually winds down.

Our addiction to natural gas, however, doesn’t have to be a total climate disaster, at least over the longer term. Large AI companies could use their vast leverage to insist that utilities install carbon capture and sequestration (CCS) at power plants and use natural gas sourced with limited methane emissions.

Entergy, for one, says its new gas turbines will be able to incorporate CCS through future upgrades. And Meta says it will help to fund the installation of CCS equipment at one of Entergy’s existing natural-gas power plants in southern Louisiana to help prove out the technology.  

But the transition to clean natural gas is a hope that will take decades to realize. Meanwhile, utilities across the country are facing a more imminent and practical challenge: how to meet the sudden demand for gigawatts more power in the next few years without inadvertently building far too much capacity. For many, adding more natural-gas power plants might seem like the safe bet. But what if the explosion in AI demand doesn’t show up?

Times of stress

AI companies tout the need for massive, power-hungry data centers. But estimates for just how much energy it will actually take to train and run AI models vary wildly. And the technology keeps changing, sometimes seemingly overnight. DeepSeek, the new Chinese model that debuted in January, may or may not signal a future of new energy-efficient AI, but it certainly raises the possibility that such advances are possible. Maybe we will find ways to use far more energy-efficient hardware. Or maybe the AI revolution will peter out and many of the massive data centers that companies think they’ll need will never get built. There are already signs that too many have been constructed in China and clues that it might be beginning to happen in the US

Despite the uncertainty, power providers have the task of drawing up long-term plans for investments to accommodate projected demand. Too little capacity and their customers face blackouts; too much and those customers face outsize electricity bills to fund investments in unneeded power.

There could be a way to lessen the risk of overbuilding natural-gas power, however. Plenty of power is available on average around the country and on most regional grids. Most utilities typically use only about 53% of their available capacity on average during the year, according to a Duke study. The problem is that utilities must be prepared for the few hours when demand spikes—say, because of severe winter weather or a summer heat wave.

The soaring demand from AI data centers is prompting many power providers to plan new capacity to make sure they have plenty of what Tyler Norris, a fellow at Duke’s Nicholas School of the Environment, and his colleagues call “headroom,” to meet any spikes in demand. But after analyzing data from power systems across the country, Norris and his coauthors found that if large AI facilities cut back their electricity use during hours of peak demand, many regional power grids could accommodate those AI customers without adding new generation capacity.

Even a moderate level of flexibility would make a huge difference. The Duke researchers estimate that if data centers cut their electricity use by roughly half for just a few hours during the year, it will allow utilities to handle some additional 76 gigawatts of new demand. That means power providers could effectively absorb the 65 or so additional gigawatts that, according to some predictions, data centers will likely need by 2029.

“The prevailing assumption is that data centers are 100% inflexible,” says Norris. That is, that they need to run at full power all the time. But Norris says AI data centers, particularly ones that are training large foundation models (such as Meta’s facility in Richland Parish), can avoid running at full capacity or shift their computation loads to other data centers around the country—or even ramp up their own backup power—during times when a grid is under stress.

The increased flexibility could allow companies to get AI data centers up and running faster, without waiting for new power plants and upgrades to transmission lines—which can take years to get approved and built. It could also, Norris noted in testimony to the US Congress in early March, provide at least a short-term reprieve on the rush to build more natural-gas power, buying time for utilities to develop and plan for cleaner technologies such as advanced nuclear and enhanced geothermal. It could, he testified, prevent “a hasty overbuild of natural-gas infrastructure.”

AI companies have expressed some interest in their ability to shift around demand for power. But there are still plenty of technology questions around how to make it happen. Late last year, EPRI (the Electric Power Research Institute), a nonprofit R&D group, started a three-year collaboration with power providers, grid operators, and AI companies including Meta and Google, to figure it out. “The potential is very large,” says David Porter, the EPRI vice president who runs the project, but we must show it works “beyond just something on a piece of paper or a computer screen.”

Porter estimates that there are typically 80 to 90 hours a year when a local grid is under stress and it would help for a data center to reduce its energy use. But, he says, AI data centers still need to figure out how to throttle back at those times, and grid operators need to learn how to suddenly subtract and then add back hundreds of megawatts of electricity without disrupting their systems. “There’s still a lot of work to be done so that it’s seamless for the continuous operation of the data centers and seamless for the continuous operation of the grid,” he says.

Footing the bill

Ultimately, getting AI data centers to be more flexible in their power demands will require more than a technological fix. It will require a shift in how AI companies work with utilities and local communities, providing them with more information and insights into actual electricity needs. And it will take aggressive regulators to make sure utilities are rigorously evaluating the power requirements of data centers rather than just reflexively building more natural-gas plants.

“The most important climate policymakers in the country right now are not in Washington. They’re in state capitals, and these are public utility commissioners,” says Costa Samaras, the director of Carnegie Mellon University’s Scott Institute for Energy Innovation.

In Louisiana, those policymakers are the elected officials at the Louisiana Public Service Commission, who are expected to rule later this year on Entergy’s proposed new gas plants and grid upgrades. The LPSC commissioners will decide whether Entergy’s arguments about the huge energy requirements of Meta’s data center and need for full 24/7 power leave no alternative to natural gas. 

In the application it filed last fall with LPSC, Entergy said natural-gas power was essential for it to meet demand “throughout the day and night.” Teaming up solar power with battery storage could work “in theory” but would be “prohibitively costly.” Entergy also ruled out nuclear, saying it would take too long and cost too much.

Others are not satisfied with the utility’s judgment. In February, the New Orleans–based Alliance for Affordable Energy and the Union of Concerned Scientists filed a motion with the Louisiana regulators arguing that Entergy did not do a rigorous market evaluation of its options, as required by the commission’s rules. Part of the problem, the groups said, is that Entergy relied on “unsubstantiated assertions” from Meta on its load needs and timeline.

“Entergy is saying [Meta] needs around-the-clock power,” says Paul Arbaje, an analyst for the climate and energy program at the Union of Concerned Scientists. “But we’re just being asked to take [Entergy’s] word for it. Regulators need to be asking tough questions and not just assume that these data centers need to be operated at essentially full capacity all the time.” And, he suggests, if the utility had “started to poke holes at the assumptions that are sometimes taken as a given,” it “would have found other cleaner options.”      

In an email response to MIT Technology Review, Entergy said that it has discussed the operational aspects of the facility with Meta, but “as with all customers, Entergy Louisiana will not discuss sensitive matters on behalf of their customers.” In a letter filed with the state’s regulators in early April, Meta said Entergy’s understanding of its energy needs is, in fact, accurate.

The February motion also raised concern over who will end up paying for the new gas plants. Entergy says Meta has signed a 15-year supply contract for the electricity that is meant to help cover the costs of building and running the power plants but didn’t respond to requests by MIT Technology Review for further details of the deal, including what happens if Meta wants to terminate the contract early.

Meta referred MIT Technology Review’s questions about the contract to Entergy but says its policy is to cover the full cost that utilities incur to serve its data centers, including grid upgrades. It also says it is spending over $200 million to support the Richland Parish data centers with new infrastructure, including roads and water systems. 

Not everyone is convinced. The Alliance for Affordable Energy, which works on behalf of Louisiana residents, says that the large investments in new gas turbines could mean future rate hikes, in a state where residents already have high electricity bills and suffer from one of country’s most unreliable grids. Of special concern is what happens after the 15 years.

“Our biggest long-term concern is that in 15 years, residential ratepayers [and] small businesses in Louisiana will be left holding the bag for three large gas generators,” says Logan Burke, the alliance’s executive director.

Indeed, consumers across the country have good reasons to fear that their electricity bills will go up as utilities look to meet the increased demand from AI data centers by building new generation capacity. In a paper posted in March, researchers at Harvard Law School argued that utilities “are now forcing the public to pay for infrastructure designed to supply a handful of exceedingly wealthy corporations.”

The Harvard authors write, “Utilities tell [public utility commissions] what they want to hear: that the deals for Big Tech isolate data center energy costs from other ratepayers’ bills and won’t increase consumers’ power prices.” But the complexity of the utilities’ payment data and lack of transparency in the accounting, they say, make verifying this claim “all but impossible.”

The boom in AI data centers is making Big Tech a player in our energy infrastructure and electricity future in a way unimaginable just a few years ago. At their best, AI companies could greatly facilitate the move to cleaner energy by acting as reliable and well-paying customers that provide funding that utilities can use to invest in a more robust and flexible electricity grid. This change can happen without burdening other electricity customers with additional risks and costs. But it will take AI companies committed to that vision. And it will take state regulators who ask tough questions and don’t get carried away by the potential investments being dangled by AI companies.

Huge new AI data centers like the one in Richland Parish could in fact be a huge economic boon by providing new jobs, but residents deserve transparency and input into the negotiations. This is, after all, public infrastructure. Meta may come and go, but Louisiana’s residents will have to live with—and possibly pay for—the changes in the decades to come.