How Trump’s policies are affecting early-career scientists—in their own words

This story is part of MIT Technology Review’s “America Undone” series, examining how the foundations of US success in science and innovation are currently under threat. You can read the rest here.

Every year MIT Technology Review celebrates accomplished young scientists, entrepreneurs, and inventors from around the world in our Innovators Under 35 list. We’ve just published the 2025 edition. This year, though, the context is pointedly different: The US scientific community finds itself in an unprecedented position, with the very foundation of its work under attack

Since Donald Trump took office in January, his administration has fired top government scientists, targeted universities individually and academia more broadly, and made substantial funding cuts to the country’s science and technology infrastructure. It has also upended longstanding rights and norms related to free speech, civil rights, and immigration—all of which further affects the overall environment for research and innovation in science and technology. 

We wanted to understand how these changes are affecting the careers and work of our most recent classes of innovators. The US government is the largest source of research funding at US colleges and universities, and many of our honorees are new professors and current or recent graduate or PhD students, while others work with government-funded entities in other ways. Meanwhile, about 16% of those in US graduate programs are international students. 

We sent surveys to the six most recent cohorts, which include 210 people. We asked people about both positive and negative impacts of the administration’s new policies and invited them to tell us more in an optional interview. Thirty-seven completed our survey, and we spoke with 14 of them in follow-up calls. Most respondents are academic researchers (about two-thirds) and are based in the US (81%); 11 work in the private sector (six of whom are entrepreneurs). Their responses provide a glimpse into the complexities of building their labs, companies, and careers in today’s political climate. 

Twenty-six people told us that their work has been affected by the Trump administration’s changes; only one of them described those effects as “mostly positive.” The other 25 reported primarily negative effects. While a few agreed to be named in this story, most asked to be identified only by their job titles and general areas of work, or wished to remain anonymous, for fear of retaliation. “I would not want to flag the ire of the US government,” one interviewee told us. 

Across interviews and surveys, certain themes appeared repeatedly: the loss of jobs, funding, or opportunities; restrictions on speech and research topics; and limits on who can carry out that research. These shifts have left many respondents deeply concerned about the “long-term implications in IP generation, new scientists, and spinout companies in the US,” as one respondent put it. 

One of the things we heard most consistently is that the uncertainty of the current moment is pushing people to take a more risk-averse approach to their scientific work—either by selecting projects that require fewer resources or that seem more in line with the administration’s priorities, or by erring on the side of hiring fewer people. “We’re not thinking so much about building and enabling … we’re thinking about surviving,” said one respondent. 

Ultimately, many are worried that all the lost opportunities will result in less innovation overall—and caution that it will take time to grasp the full impact. 

“We’re not going to feel it right now, but in like two to three years from now, you will feel it,” said one entrepreneur with a PhD who started his company directly from his area of study. “There are just going to be fewer people that should have been inventing things.”

The money: “Folks are definitely feeling the pressure”

The most immediate impact has been financial. Already, the Trump administration has pulled back support for many areas of science—ending more than a thousand awards by the National Institutes of Health and over 100 grants for climate-related projects by the National Science Foundation. The rate of new awards granted by both agencies has slowed, and the NSF has cut the number of graduate fellowships it’s funding by half for this school year. 

The administration has also cut or threatened to cut funding from a growing number of universities, including Harvard, Columbia, Brown, and UCLA, for supposedly not doing enough to combat antisemitism.

As a result, our honorees said that finding funding to support their work has gotten much harder—and it was already a big challenge before. 

A biochemist at a public university told us she’d lost a major NIH grant. Since it was terminated earlier this year, she’s been spending less time in the lab and more on fundraising. 

Others described uncertainty about the status of grants from a wide range of agencies, including NSF, the Advanced Research Projects Agency for Health, the Department of Energy, and the Centers for Disease Control and Prevention, which collectively could pay out more than $44 million to the researchers we’ve recognized. Several had waited months for news on an application’s status or updates on when funds they had already won would be disbursed. One AI researcher who studies climate-related issues is concerned that her multiyear grant may not be renewed, even though renewal would have been “fairly standard” in the past.

Two individuals lamented the cancellation of 24 awards in May by the DOE’s Office of Clean Energy Demonstrations, including grants for carbon capture projects and a clean cement plant. One said the decision had “severely disrupted the funding environment for climate-tech startups” by creating “widespread uncertainty,” “undermining investor confidence,” and “complicating strategic planning.” 

Climate research and technologies have been a favorite target of the Trump administration: The recently passed tax and spending bill put stricter timelines in place that make it harder for wind and solar installations to qualify for tax credits via the Inflation Reduction Act. Already, at least 35 major commercial climate-tech projects have been canceled or downsized this year. 

In response to a detailed list of questions, a DOE spokesperson said, “Secretary [Chris] Wright and President Trump have made it clear that unleashing American scientific innovation is a top priority.” They pointed to “robust investments in science” in the president’s proposed budget and the spending bill and cited special areas of focus “to maintain America’s global competitiveness,” including nuclear fusion, high-performance computing, quantum computing, and AI. 

Other respondents cited tighter budgets brought on by a change in how the government calculates indirect costs, which are funds included in research grants to cover equipment, institutional overhead, and in some cases graduate students’ salaries. In February, the NIH instituted a 15% cap on indirect costs—which ran closer to 28% of the research funds the NIH awarded in 2023. The DOE, DOD, and NSF all soon proposed similar caps. This collective action has sparked lawsuits, and indirect costs remain in limbo. (MIT, which owns MIT Technology Review, is involved in several of these lawsuits; MIT Technology Review is editorially independent from the university.) 

Looking ahead, an academic at a public university in Texas, where the money granted for indirect costs funds student salaries, said he plans to hire fewer students for his own lab. “It’s very sad that I cannot promise [positions] at this point because of this,” he told us, adding that the cap could also affect the competitiveness of public universities in Texas, since schools elsewhere may fund their student researchers differently. 

At the same time, two people with funding through the Defense Department—which could see a surge of investment under the president’s proposed budget—said their projects were moving forward as planned. A biomedical engineer at a public university in the Midwest expressed excitement about what he perceives as a fresh surge of federal interest in industrial and defense applications of synthetic biology. Still, he acknowledged colleagues working on different projects don’t feel as optimistic: “Folks are definitely feeling the pressure.”

Many who are affected by cuts or delays are now looking for new funding sources in a bid to become less reliant on the federal government. Eleven people said they are pursuing or plan to pursue philanthropic and foundation funding or to seek out industry support. However, the amount of private funding available can’t begin to make up the difference in federal funds lost, and investors often focus more on low-risk, short-term applications than on open scientific questions. 

The NIH responded to a detailed list of questions with a statement pointing to unspecified investments in early-career researchers. “Recent updates to our priorities and processes are designed to broaden scientific opportunity rather than restrict it, ensuring that taxpayer-funded research is rigorous, reproducible, and relevant to all Americans,” it reads. The NSF declined a request for comment from MIT Technology Review

Further complicating this financial picture are tariffs—some of which are already in effect, and many more of which have been threatened. Nine people who responded to our survey said their work is already being affected by these taxes imposed on goods imported into the US. For some scientists, this has meant higher operating costs for their labs: An AI researcher said tariffs are making computational equipment more expensive, while the Texas academic said the cost of buying microscopes from a German firm had gone up by thousands of dollars since he first budgeted for them. (Neither the White House press office nor the White House Office of Science and Technology Policy responded to requests for comment.) 

One cleantech entrepreneur saw a positive impact on his business as more US companies reevaluated their supply chains and sought to incorporate more domestic suppliers. The entrepreneur’s firm, which is based in the US, has seen more interest for its services from potential customers seeking “tariff-proof vendors.”  

“Everybody is proactive on tariffs and we’re one of these solutions—we’re made in America,” he said. 

Another person, who works for a European firm, is factoring potential tariffs into decisions about where to open new production facilities. Though the Trump administration has said the taxes are meant to reinvigorate US manufacturing, she’s now less inclined to build out a significant presence in the US because, she said, tariffs may drive up the costs of importing raw materials that are required to make the company’s product. 

What’s more, financial backers have encouraged her company to stay rooted abroad because of the potential impact of tariffs for US-based facilities: “People who invest worldwide—they are saying it’s reassuring for them right now to consider investing in Europe,” she said.

The climate of fear: “It will impact the entire university if there is retaliation” 

Innovators working in both academia and the private sector described new concerns about speech and the politicization of science. Many have changed how they describe their work in order to better align with the administration’s priorities—fearing funding cuts, job terminations, immigration action, and other potential retaliation. 

This is particularly true for those who work at universities. The Trump administration has reached deals with some institutions, including Columbia and Brown, that would restore part of the funding it slashed—but only after the universities agreed to pay hefty fines and abide by terms that, critics say, hand over an unprecedented level of oversight to administration officials. 

Some respondents had received guidance on what they could or couldn’t say from program managers at their funding agencies or their universities or investors; others had not received any official guidance but made personal decisions on what to say and share publicly based on recent news of grant cancellations.

Both on and off campus, there is substantial pressure on diversity, equity, and inclusion (DEI) initiatives, which have been hit particularly hard as the administration seeks to eliminate what it called “illegal and immoral discrimination programs” in one of the first executive orders of President Trump’s second term.  

One respondent, whose work focuses on fighting child sexual abuse materials, recalled rewriting a grant abstract “3x to remove words banned” by Senator Ted Cruz of Texas, an administration ally; back in February, Cruz identified 3,400 NSF grants as “woke DEI” research advancing “neo-Marxist class warfare propaganda.” (His list includes grants to research self-driving cars and solar eclipses. His office did not respond to a request for comment.) 

Many other researchers we spoke with are also taking steps to avoid being put in the DEI bucket. A technologist at a Big Tech firm whose work used to include efforts to provide more opportunities for marginalized communities to get into computing has stopped talking about those recruiting efforts. One biologist described hearing that grant applications for the NIH now have to avoid words like “cell type diversity” for “DEI reasons”—no matter that “cell type diversity” is, she said, a common and “neutral” scientific term in microbiology. (In its statement, the NIH said: “To be clear, no scientific terms are banned, and commonly used terms like ‘cell type diversity’ are fully acceptable in applications and research proposals.”) 

Plenty of other research has also gotten caught up in the storm

One person who works in climate technology said that she now talks about “critical minerals,” “sovereignty,” and “energy independence” or “dominance” rather than “climate” or “industrial decarbonization.” (Trump’s Energy Department has boosted investment in critical minerals, pledging nearly $1 billion to support related projects.) Another individual working in AI said she has been instructed to talk less about “regulation,” “safety,” or “ethics” as they relate to her work. One survey respondent described the language shift as “definitely more red-themed.”

Some said that shifts in language won’t change the substance of their work, but others feared they will indeed affect the research itself. 

Emma Pierson, an assistant professor of computer science at the University of California, Berkeley, worried that AI companies may kowtow to the administration, which could in turn “influence model development.” While she noted that this fear is speculative, the Trump administration’s AI Action Plan contains language that directs the federal government to purchase large language models that generate “truthful responses” (by the administration’s definition), with a goal of “preventing woke AI in the federal government.” 

And one biomedical researcher fears that the administration’s effective ban on DEI will force an end to outreach “favoring any one community” and hurt efforts to improve the representation of women and people of color in clinical trials. The NIH and the Food and Drug Administration had been working for years to address the historic underrepresentation of these groups through approaches including specific funding opportunities to address health disparities; many of these efforts have recently been cut

Respondents from both academia and the private sector told us they’re aware of the high stakes of speaking out. 

“As an academic, we have to be very careful about how we voice our personal opinion because it will impact the entire university if there is retaliation,” one engineering professor told us. 

“I don’t want to be a target,” said one cleantech entrepreneur, who worries not only about reprisals from the current administration but also about potential blowback from Democrats if he cooperates with it. 

“I’m not a Trumper!” he said. “I’m just trying not to get fined by the EPA.” 

The people: “The adversarial attitude against immigrants … is posing a brain drain”

Immigrants are crucial to American science, but what one respondent called a broad “persecution of immigrants,” and an increasing climate of racism and xenophobia, are matters of growing concern. 

Some people we spoke with feel vulnerable, particularly those who are immigrants themselves. The Trump administration has revoked 6,000 international student visas (causing federal judges to intervene in some cases) and threatened to “aggressively” revoke the visas of Chinese students in particular. In recent months, the Justice Department has prioritized efforts to denaturalize certain citizens, while similar efforts to revoke green cards granted decades ago were shut down by court order. One entrepreneur who holds a green card told us, “I find myself definitely being more cognizant of what I’m saying in public and certainly try to stay away from anything political as a result of what’s going on, not just in science but in the rest of the administration’s policies.” 

On top of all this, federal immigration raids and other enforcement actions—authorities have turned away foreign academics upon arrival to the US and detained others with valid academic visas, sometimes because of their support for Palestine—have created a broad climate of fear.  

Four respondents said they were worried about their own immigration status, while 16 expressed concerns about their ability to attract or retain talent, including international students. More than a million international students studied in the US last year, with nearly half of those enrolling in graduate programs, according to the Institute of International Education

“The adversarial attitude against immigrants, especially those from politically sensitive countries, is posing a brain drain,” an AI researcher at a large public university on the West Coast told us. 

This attack on immigration in the US can be compounded by state-level restrictions. Texas and Florida both restrict international collaborations with and recruitment of scientists from countries including China, even though researchers told us that international collaborations could help mitigate the impacts of decreased domestic funding. “I cannot collaborate at this point because there’s too many restrictions and Texas also can limit us from visiting some countries,” the Texas academic said. “We cannot share results. We cannot visit other institutions … and we cannot give talks.”

All this is leading to more interest in positions outside the United States. One entrepreneur, whose business is multinational, said that their company has received a much higher share of applications from US-based candidates to openings in Europe than it did a year ago, despite the lower salaries offered there. 

“It is becoming easier to hire good people in the UK,” confirmed Karen Sarkisyan, a synthetic biologist based in London. 

At least one US-based respondent, an academic in climate technology, accepted a tenured position in the United Kingdom. Another said that she was looking for positions in other countries, despite her current job security and “very good” salary. “I can tell more layoffs are coming, and the work I do is massively devalued. I can’t stand to be in a country that treats their scientists and researchers and educated people like this,” she told us. 

Some professors reported in our survey and interviews that their current students are less interested in pursuing academic careers because graduate and PhD students are losing offers and opportunities as a result of grant cancellations. So even as the number of international students dwindles, there may also be “shortages in domestic grad students,” one mechanical engineer at a public university said, and “research will fall behind.”  

Have more information on this story or a tip for something else that we should report? Using a non-work device, reach the reporter on Signal at eileenguo.15 or tips@technologyreview.com.

In the end, this will affect not just academic research but also private-sector innovation. One biomedical entrepreneur told us that academic collaborators frequently help his company generate lots of ideas: “We hope that some of them will pan out and become very compelling areas for us to invest in.” Particularly for small startups without large research budgets, having fewer academics to work with will mean that “we just invest less, we just have fewer options to innovate,” he said. “The level of risk that industry is willing to take is generally lower than academia, and you can’t really bridge that gap.” 

Despite it all, a number of researchers and entrepreneurs who generally expressed frustration about the current political climate said they still consider the US the best place to do science. 

Pierson, the AI researcher at Berkeley, described staying committed to her research into social inequities despite the political backlash: “I’m an optimist. I do believe this will pass, and these problems are not going to pass unless we work on them.” 

And a biotech entrepreneur pointed out that US-based scientists can still command more resources than those in most other countries. “I think the US still has so much going for it. Like, there isn’t a comparable place to be if you’re trying to be on the forefront of innovation—trying to build a company or find opportunities,” he said.

Several academics and founders who came to the US to pursue scientific careers spoke about still being drawn to America’s spirit of invention and the chance to advance on their own merits. “For me, I’ve always been like, the American dream is something real,” said one. They said they’re holding fast to those ideals—for now.

Here’s how we picked this year’s Innovators Under 35

Next week, we’ll publish our 2025 list of Innovators Under 35, highlighting smart and talented people who are working in many areas of emerging technology. This new class features 35 accomplished founders, hardware engineers, roboticists, materials scientists, and others who are already tackling tough problems and making big moves in their careers. All are under the age of 35. 

One is developing a technology to reduce emissions from shipping, while two others are improving fertility treatments and creating new forms of contraception. Another is making it harder for people to maliciously share intimate images online. And quite a few are applying artificial intelligence to their respective fields in novel ways. 

We’ll also soon reveal our 2025 Innovator of the Year, whose technical prowess is helping physicians diagnose and treat critically ill patients more quickly. What’s more (here’s your final hint), our winner even set a world record as a result of this work. 

MIT Technology Review first published a list of Innovators Under 35 in 1999. It’s a grand tradition for us, and we often follow the work of various featured innovators for years, even decades, after they appear on the list. So before the big announcement, I want to take a moment to explain how we select the people we recognize each year. 

Step 1: Call for nominations

Our process begins with a call for nominations, which typically goes out in the final months of the previous year and is open to anyone, anywhere in the world. We encourage people to nominate themselves, which takes just a few minutes. This method helps us discover people doing important work that we might not otherwise encounter. 

This year we had 420 nominations. Two-thirds of our candidates were put forward by someone else and one-third nominated themselves. We received nominations for people located in about 40 countries. Nearly 70% were based in the United States, with the UK, Switzerland, China, and the United Arab Emirates, respectively, having the next-highest concentrations. 

After nominations close, a few editors then spend several weeks reviewing the nominees and selecting semifinalists. During this phase, we look for people who have developed practical solutions to societal issues or made important scientific advances that could translate into new technologies. Their work should have the potential for broad impact—it can’t be niche or incremental. And what’s unique about their approach must be clear. 

Step 2: Semifinalist applications 

This year, we winnowed our initial list of hundreds of nominees to 108 semifinalists. Then we asked those entrants for more information to help us get to know them better and evaluate their work. 

We request three letters of reference and a résumé from each semifinalist, and we ask all of them to answer a few short questions about their work. We also give them the option to share a video or pass along relevant journal articles or other links to help us learn more about what they do.

Step 3: Expert judges weigh in

Next, we bring in dozens of experts to vet the semifinalists. This year, 38 judges evaluated and scored the applications. We match the contenders with judges who work in similar fields whenever possible. At least two judges review each entrant, though most are seen by three. 

All these judges volunteer their time, and some return to help year after year. A few of our longtime judges include materials scientists Yet-Ming Chiang (MIT) and Julia Greer (Caltech), MIT neuroscientist Ed Boyden, and computer scientist Ben Zhao of the University of Chicago. 

John Rogers, a materials scientist and biomedical engineer at Northwestern University, has been a judge for more than a decade (and was featured on our very first Innovators list, in 1999). Here’s what he had to say about why he stays involved: “This award is compelling because it recognizes young people with scientific achievements that are not only of fundamental interest but also of practical significance, at the highest levels.” 

Step 4: Editors make the final calls 

In a final layer of vetting, editors who specialize in covering biotechnology, climate and energy, and artificial intelligence review the semifinalists whom judges scored highly in their respective areas. Staff editors and reporters can also nominate people they’ve come across in their coverage, and we add them to the mix for consideration. 

Last, a small team of senior editors reviews all the semifinalists and the judges’ scores, as well as our own staff’s recommendations, and selects 35 honorees. We aim for a good combination of people from a variety of disciplines working in different regions of the world. And we take a staff vote to pick an Innovator of the Year—someone whose work we particularly admire. 

In the end, it’s impossible to include every deserving individual on our list. But by incorporating both external nominations and outside expertise from our judges, we aim to make the evaluation process as rigorous and open as possible.  

So who made the cut this year? Come back on September 8 to find out.

India is still working on sewer robots

When Jitender was a child in New Delhi, both his parents worked as manual scavengers—a job that involved clearing the city’s sewers of solid waste by hand. Now, he is among almost 200 contractors involved in the Delhi government’s effort to shift from this manual process to safer mechanical methods.

Although it has been outlawed since 1993, manual scavenging—the practice of extracting human excreta from toilets, sewers, or septic tanks—is still practiced widely in India. The work is usually done by people who belong to what are considered the lowest castes, known as the Scheduled Castes or Dalits. Not only is the job undignified, but it can be extremely dangerous: People who enter clogged sewers to clean them face the risk of asphyxiation from exposure to toxic gases like ammonia and methane. According to data presented in the Indian parliament, manual scavenging was responsible for more than 500 deaths between 2018 and 2023.

Several companies have emerged to offer alternatives at a wide range of technical complexity. For example, Genrobotics, based in Kerala, has developed the “Bandicoot Robot” (shown above), a mechanical scavenger that features robotic legs, night-vision cameras, and the ability to detect toxic gas. Researchers at the Indian Institute of Technology in Chennai have developed a robot for septic tanks that has a suction mechanism to pump out the slurry. 

More than 220 Bandicoot robots have been deployed in India, says Vipin Govind, head of marketing and communications at Genrobotics. The company’s reach, he says, enables “even resource-constrained municipalities” to deploy the technology effectively.

Despite these technological options, a 2021 report by the Ministry of Social Justice & Empowerment found that there are still more than 58,000 manual scavengers across India. Independent observers say the numbers are even higher.  

The machine that Jitender uses is mounted on a pickup truck and uses rotating rods, high-pressure streams of water, and a mechanical claw to break up blockages and remove debris. “Earlier, a sanitation worker would get into a sewer and clear the drain with some equipment, but now with these machines we just drop the nozzle into the drain and turn on the pump,” he says. But Vijay Shehriyar, part of the same Delhi initiative, explains that the machines have not entirely replaced manual scavenging in the city. “The manual cleaning is still employed at many places, especially in narrow lanes,” he says. 

Bezwada Wilson, an activist who has long campaigned for the eradication of manual scavenging, explains that most of the drainage and sewage systems across the country are not well planned and were built without proper engineering oversight. Any solution would need to take into consideration all the resulting differences in infrastructure, he says: “It can’t be that you come up with an alternative and force it upon the drainage system without understanding its nature.”

Hamaad Habibullah is a freelance journalist based in New Delhi. 

3 Things James O’Donnell is into right now

Overthink

This is a podcast in which two very smart people (who happen to be young and hilarious professors of philosophy) draw unexpected philosophical connections between facets of modern life. Ellie Anderson and David Peña-Guzmán have done hour-long episodes on everything from mommy issues to animal justice, with particularly sharp segments on tech-adjacent issues like biohacking and the relationship between AI and art. Whenever I think society is dealing with a brand-new problem, these two unearth someone who was pondering it centuries ago. It’s a treat to listen to. 

A film from the tech billionaire bunker

Over the summer I was eager to watch Mountainhead, a darkly funny film by Jesse Armstrong, the creator of Succession, that follows four unlikable tech founders as they watch the world collapse under political turmoil and violence caused by AI deepfakes. I was prepared for it to seem like a documentary, but to a reporter who is in frequent dialogue with AI’s movers and shakers, it felt a little too real. From their remote mountain mansion, they talk about AI accelerationism, utilitarian ethics, uploading one’s consciousness to the cloud, liberating humanity to other planetsall common conversation topics among the tech elite that has had so much influence in the current administration.  

Music by human beings

For much of last winter I was reporting a story about just how far AI-generated music has come. As a lifelong musician (I play guitar, bass, and drums, none particularly well), I found the songs I heardbuilt with models whose creators have been sued for training on the discographies of artists without compensationso convincingly human that they made me deeply uncomfortable. Since then, I’ve had a revitalized zeal for live shows where real people in punk bands or jazz trios do things that AI is not capable of (Sophie Truax is my latest favorite). 

On the ground in Ukraine’s largest Starlink repair shop

Oleh Kovalskyy thinks that Starlink terminals are built as if someone assembled them with their feet. Or perhaps with their hands behind their back. 

To demonstrate this last image, Kovalskyy—a large, 47-year-old Ukrainian, clad in sweatpants and with tattoos stretching from his wrists up to his neck—leans over to wiggle his fingers in the air behind him, laughing as he does. Components often detach, he says through bleached-white teeth, and they’re sensitive to dust and moisture. “It’s terrible quality. Very terrible.” 

But even if he’s not particularly impressed by the production quality, he won’t dispute how important the satellite internet service has been to his country’s defense. 

Starlink is absolutely critical to Ukraine’s ability to continue in the fight against Russia: It’s how troops in battle zones stay connected with faraway HQs; it’s how many of the drones essential to Ukraine’s survival hit their targets; it’s even how soldiers stay in touch with spouses and children back home. 

At the time of my visit to Kovalskyy in March 2025, however, it had begun to seem like this vital support system may suddenly disappear. Reuters had just broken news that suggested Musk, who was then still deeply enmeshed in Trump world, would remove Ukraine’s access to the service should its government fail to toe the line in US-led peace negotiations. Musk denied the allegations shortly afterward, but given Trump’s fickle foreign policy and inconsistent support of Ukrainian president Volodymyr Zelensky, the uncertainty of the technology’s future had become—and remains—impossible to ignore.  

a view down at the back of a volunteer working in a corner workbench. Tools and components are piled on every bit of the surface as well as the shelves in front of him.

ELENA SUBACH
a carboard box stuffed with grey cylinders

ELENA SUBACH

Kovalskyy’s unofficial Starlink repair shop may be the biggest of its kind in the world. Ordered chaos is the best way to describe it.

The stakes couldn’t be higher: Another Reuters report in late July revealed that Musk had ordered the restriction of Starlink in parts of Ukraine during a critical counteroffensive back in 2022. “Ukrainian troops suddenly faced a communications blackout,” the story explains. “Soldiers panicked, drones surveilling Russian forces went dark, and long-range artillery units, reliant on Starlink to aim their fire, struggled to hit targets.”

None of this is lost on Kovalskyy—and for now Starlink access largely comes down to the unofficial community of users and engineers of which Kovalskyy is just one part: Narodnyi Starlink.

The group, whose name translates to “The People’s Starlink,” was created back in March 2022 by a tech-savvy veteran of the previous battles against Russia-backed militias in Ukraine’s east. It started as a Facebook group for the country’s infant yet burgeoning community of Starlink users—a forum to share guidance and swap tips—but it very quickly emerged as a major support system for the new war effort. Today, it has grown to almost 20,000 members, including the unofficial expert “Dr. Starlink”—famous for his creative ways of customizing the systems—and other volunteer engineers like Kovalskyy and his men. It’s a prime example of the many informal, yet highly effective, volunteer networks that have kept Ukraine in the fight, both on and off the front line.

A repaired and mounted Starlink terminal standing on a cobbled road

ELENA SUBACH
a Starlink unit mounted to the roof of a vehicle with pink tinted windows

ELENA SUBACH

Kovalskyy and his crew of eight volunteers have repaired or customized more than 15,000 terminals since the war began in February 2022. Here, they test repaired units in a nearby parking lot.

Kovalskyy gave MIT Technology Review exclusive access to his unofficial Starlink repair workshop in the city of Lviv, about 300 miles west of Kyiv. Ordered chaos is the best way to describe it: Spread across a few small rooms in a nondescript two-story building behind a tile shop, sagging cardboard boxes filled with mud-splattered Starlink casings form alleyways among the rubble of spare parts. Like flying buttresses, green circuit boards seem to prop up the walls, and coils of cable sprout from every crevice.

Those acquainted with the workshop refer to it as the biggest of its kind in Ukraine—and, by extension, maybe the world. Official and unofficial estimates suggest that anywhere from 42,000 to 160,000 Starlink terminals operate in the country. Kovalskyy says he and his crew of eight volunteers have repaired or customized more than 15,000 terminals since the war began.

a surface scattered with pieces of used blue tape of various colors and sizes. Two ziploc bags with small metal parts are also taped up.
The informal, accessible nature of the Narodnyi Starlink community has been critical to its success. One military communications officer was inspired by Kovalskyy to set up his own repair workshop as part of Ukraine’s armed forces, but he says that official processes can be slower than private ones by a factor of 10.
ELENA SUBACH

Despite the pressure, the chance that they may lose access to Starlink was not worrying volunteers like Kovalskyy at the time of my visit; in our conversations, it was clear they had more pressing concerns than the whims of a foreign tech mogul. Russia continues to launch frequent aerial bombardments of Ukrainian cities, sometimes sending more than 500 drones in a single night. The threat of involuntary mobilization to the front line looms on every street corner. How can one plan for a hypothetical future crisis when crisis defines every minute of one’s day?


Almost every inch of every axis of the battlefield in Ukraine is enabled by Starlink. It connects pilots near the trenches with reconnaissance drones soaring kilometers above them. It relays the video feeds from those drones to command centers in rear positions. And it even connects soldiers, via encrypted messaging services, with their family and friends living far from the front.  

Although some soldiers and volunteers, including members of Narodnyi Starlink, refer to Starlink as a luxury, the reality is that it’s an essential utility; without it, Ukrainian forces would need to rely on other, often less effective means of communication. These include wired-line networks, mobile internet, and older geostationary satellite technology—all of which provide connectivity that is either slower, more vulnerable to interference, or more difficult for untrained soldiers to set up. 

“If not for Starlink, we would already be counting rubles in Kyiv,” Kovalskyy says.

close up of a Starlink unit on the lap of a volunteer, who is writing notes in a gridded notebook

ELENA SUBACH
a hand holding pieces of shrapnel

ELENA SUBACH

The workshop’s crew has learned to perform adjustments to terminals, especially in adapting them for battlefield conditions. At right, a volunteer engineer shows the fragments of shrapnel he has extracted from the terminals.

Despite being designed primarily for commercial use, Starlink provides a fantastic battlefield solution. The low-latency, high-bandwidth connection its terminals establish with its constellation of low-Earth-orbit satellites can transmit large streams of data while remaining very difficult for the enemy to jam—in part because the satellites, unlike geostationary ones, are in constant motion. 

It’s also fairly easy to use, so that soldiers with little or no technical knowledge can connect in minutes. And the system costs much less than other military technology; while the US and Polish governments pay business rates for many of Ukraine’s Starlink systems, individual soldiers or military units can purchase the hardware at the private rate of about $500, and subscribe for just $50 per month.

No alternatives match Starlink for cost, ease of use, or coverage—and none will in the near future. Its constellation of 8,000 satellites dwarfs that of its main competitor, a service called OneWeb sold by the French satellite operator Eutelsat, which has only 630 satellites. OneWeb’s hardware costs about 20 times more, and a subscription can run significantly higher, since OneWeb targets business customers. Amazon’s Project Kuiper, the most likely future competitor, started putting satellites in space only this year. 


Volodymyr Stepanets, a 51-year-old Ukrainian self-described “geek,” had been living in Krakow, Poland, with his family when Russia invaded in 2022. But before that, he had volunteered for several years on the front lines of the war against Russian-supported paramilitaries that began in 2014. 

He recalls, in those early months in eastern Ukraine, witnessing troops coordinating an air strike with rulers and a calculator; the whole process took them between 30 and 40 minutes. “All these calculations can be done in one minute,” he says he told them. “All we need is a very stupid computer and very easy software.” (The Ukrainian military declined to comment on this issue.)

Stepanets subsequently committed to helping this brigade, the 72nd, integrate modern technology into its operations. He says that within one year, he had taught them how to use modern communication platforms, positioning devices, and older satellite communication systems that predate Starlink. 

a Starlink terminal with leaves inside the housing, seen lit in silhouette and numbered 5566
Narodnyi Starlink members ask each other for advice about how to adapt the systems: how to camouflage them from marauding Russian drones or resolve glitches in the software, for example.
ELENA SUBACH

So after Russian tanks rolled across the border, Stepanets was quick to see how Starlink’s service could provide an advantage to Ukraine’s armed forces. He also recognized that these units, as well as civilian users, would need support in utilizing the new technology. And that’s how he came up with the idea for Narodnyi Starlink, an open Facebook group he launched on March 21, just a few weeks after the full invasion began and the Ukrainian government requested the activation of Starlink.

Over the past few years, the Narodnyi Starlink digital community has grown to include volunteer engineers, resellers, and military service members interested in the satellite comms service. The group’s members post roughly three times per day, often sharing or asking for advice about adaptations, or seeking volunteers to fix broken equipment. A user called Igor Semenyak recently asked, for example, whether anyone knew how to mask his system from infrared cameras. “How do you protect yourself from heat radiation?” he wrote, to which someone suggested throwing special heat-proof fabric over the terminal.

Its most famous member is probably a man widely considered the brains of the group: Oleg Kutkov, a 36-year-old software engineer otherwise known to some members as “Dr. Starlink.” Kutkov had been privately studying Starlink technology from his home in Kyiv since 2021, having purchased a system to tinker with when service was still unavailable in the country; he believes that he may have been the country’s first Starlink user. Like Stepanets, he saw the immense potential for Starlink after Russia broke traditional communication lines ahead of its attack.

“Our infrastructure was very vulnerable because we did not have a lot of air defense,” says Kutkov, who still works full time as an engineer at the US networking company Ubiquiti’s R&D center in Kyiv. “Starlink quickly became a crucial part of our survival.”

Stepanets contacted Kutkov after coming across his popular Twitter feed and blog, which had been attracting a lot of attention as early Starlink users sought help. Kutkov still publishes the results of his own research there—experiments he performs in his spare time, sometimes staying up until 3 a.m. to complete them. In May, for example, he published a blog post explaining how users can physically move a user account from one terminal to another when the printed circuit board in one is “so severely damaged that repair is impossible or impractical.” 

“Oleg Kutkov is the coolest engineer I’ve met in my entire life,” Kovalskyy says.

a volunteer holding a Starlink vertically to pry it open

ELENA SUBACH
two volunteers at workbenches repairing terminals

ELENA SUBACH

When the fighting is at its worst, the workshop may receive 500 terminals to repair every month. The crew lives and sometimes even sleeps there.

Supported by Kutkov’s technical expertise and Stepanets’s organizational prowess, Kovalskyy’s warehouse became the major repair hub (though other volunteers also make repairs elsewhere). Over time, Kovalskyy—who co-owned a regional internet service provider before the war—and his crew have learned to perform adjustments to Starlink terminals, especially to adapt them for battlefield conditions. For example, they modified them to receive charge at the right voltage directly from vehicles, years before Starlink released a proprietary car adapter. They’ve also switched out Starlink’s proprietary SPX plugs—which Kovalskyy criticized as vulnerable to moisture and temperature changes—with standard ethernet ports. 

Together, the three civilians—Kutkov, Stepanets, and Kovalskyy—effectively lead Narodnyi Starlink. Along with several other members who wished to remain anonymous, they hold meetings every Monday over Zoom to discuss their activities, including recent Starlink-related developments on the battlefield, as well as information security. 

While the public group served as a suitable means of disseminating information in the early stages of the war when speed was critical, they have had to move a lot of their communications to private channels after discovering Russian surveillance; Stepanets says that at least as early as 2024, Russians had translated a 300-page educational document they had produced and shared online. Now, as administrators of the Facebook group, the three men block the publication of any posts deemed to reveal information that might be useful to Russian forces. 

Stepanets believes the threat extends beyond the group’s intel to its members’ physical safety. When we talked, he brought up the attempted assassination of the Ukrainian activist and volunteer Serhii Sternenko in May this year. Although Sternenko was unaffiliated with Narodnyi Starlink, the event served as a clear reminder of the risks even civilian volunteers undertake in wartime Ukraine. “The Russian FSB and other [security] services still understand the importance of participation in initiatives like [Narodnyi Starlink],” Stepanets says. He stresses that the group is not an organization with a centralized chain of command, but a community that would continue operating if any of its members were no longer able to perform their roles. 

closeup of a Starlink board with light shining through the holes
“We have extremely professional engineers who are extremely intelligent,” Kovalskyy told me. “Repairing Starlink terminals for them is like shooting ducks with HIMARS [a vehicle-borne GPS-guided rocket launcher].”
ELENA SUBACH

The informal, accessible nature of this community has been critical to its success. Operating outside official structures has allowed Narodnyi Starlink to function much more efficiently than state channels. Yuri Krylach, a military communications officer who was inspired by Kovalskyy to set up his own repair workshop as part of Ukraine’s armed forces, says that official processes can be slower than private ones by a factor of 10; his own team’s work is often interrupted by other tasks that commanders deem more urgent, whereas members of the Narodnyi Starlink community can respond to requests quickly and directly. (The military declined to comment on this issue, or on any military connections with Narodnyi Starlink.)


Most of the Narodnyi Starlink members I spoke to, including active-duty soldiers, were unconcerned about the report that Musk might withdraw access to the service in Ukraine. They pointed out that doing so would involve terminating state contracts, including those with the US Department of Defense and Poland’s Ministry of Digitalization. Losing contracts worth hundreds of millions of dollars (the Polish government claims to pay $50 million per year in subscription fees), on top of the private subscriptions, would cost the company a significant amount of revenue. “I don’t really think that Musk would cut this money supply,” Kutkov says. “It would be quite stupid.” Oleksandr Dolynyak, an officer in the 103rd Separate Territorial Defense Brigade and a Narodnyi Starlink member since 2022, says: “As long as it is profitable for him, Starlink will work for us.”

Stepanets does believe, however, that Musk’s threats exposed an overreliance on the technology that few had properly considered. “Starlink has really become one of the powerful tools of defense of Ukraine,” he wrote in a March Facebook post entitled “Irreversible Starlink hegemony,” accompanied by an image of the evil Darth Sidious from Star Wars. “Now, the issue of the country’s dependence on the decisions of certain eccentric individuals … has reached [a] melting point.”

Even if telecommunications experts both inside and outside the military agree that Starlink has no direct substitute, Stepanets believes that Ukraine needs to diversify its portfolio of satellite communication tools anyway, integrating additional high-speed satellite communication services like OneWeb. This would relieve some of the pressure caused by Musk’s erratic, unpredictable personality and, he believes, give Ukraine some sense of control over its wartime communications. (SpaceX did not respond to a request for comment.) 

The Ukrainian military seems to agree with this notion. In late March, at a closed-door event in Kyiv, the country’s then-deputy minister of defense Kateryna Chernohorenko announced the formation of a special Space Policy Directorate “to consolidate internal and external capabilities to advance Ukraine’s military space sector.” The announcement referred to the creation of a domestic “satellite constellation,” which suggests that reliance on foreign services like Starlink had been a catalyst. “Ukraine needs to transition from the role of consumer to that of a full-fledged player in the space sector,” a government blog post stated. (Chernohorenko did not respond to a request for comment.)

Ukraine isn’t alone in this quandary. Recent discussions about a potential Starlink deal with the Italian government, for example, have stalled as a result of Musk’s behavior. And as Juliana Süss, an associate fellow at the UK’s Royal United Services Institute, points out, Taiwan chose SpaceX’s competitor Eutelsat when it sought a satellite communications partner in 2023.

“I think we always knew that SpaceX is not always the most reliable partner,” says Süss, who also hosts RUSI’s War in Space podcast, citing Musk’s controversial comments about the country’s status. “The Taiwan problems are a good example for how the rest of the world might be feeling about this.”

Nevertheless, Ukraine is about to become even more deeply enmeshed with Starlink; the country’s leading mobile operator Kyivstar announced in July that Ukraine will soon become the first European nation to offer Starlink direct-to-mobile services. Süss is cautious about placing too much emphasis on this development though. “This step does increase dependency,” she says. “But that dependency is already there.” Adding an additional channel of communications as a possible backup is otherwise a logical action for a country at war, she says.


These issues can feel far away for the many Ukrainians who are just trying to make it through to the next day. Despite its location in the far west of Ukraine, Lviv, home to Kovalskyy’s shop, is still frequently hit by Russian kamikaze drones, and local military-affiliated sites are popular targets. 

Still, during our time together, Kovalskyy was far more worried by the prospect of his team’s possible mobilization. In March, the Ministry of Defense had removed the special status that had otherwise protected his people from involuntary conscription given the nature of their volunteer activities. They’re now at risk of being essentially picked up off the street by Ukraine’s dreaded military recruitment teams, known as the TCK, whenever they leave the house.

A room with walls covered by a grid of patches and Ukrainian flags, and stacks of grey boxes on the floor
The repair shop displays patches from many different Ukrainian military units—each given as a gift for their services. “We sometimes perform miracles with Starlinks,” Kovalskyy said.
COURTESY OF THE AUTHOR

This is true even though there’s so much demand for the workshop’s services that during my visit, Kovalskyy expressed frustration at the vast amount of time they’ve had to dedicate solely to basic repairs. “We have extremely professional engineers who are extremely intelligent,” he told me. “Repairing Starlink terminals for them is like shooting ducks with HIMARS [a vehicle-borne GPS-guided rocket launcher].” 

At least the situation seemed to have become better on the front over the winter, Kovalskyy added, handing me a Starlink antenna whose flat, white surface had been ripped open by shrapnel. When the fighting is at its worst, the team might receive 500 terminals to repair every month, and the crew lives in the workshop, sometimes even sleeping there. But at that moment in time, it was receiving only a couple of hundred.

We ended our morning at the workshop by browsing its vast collection of varied military patches, pinned to the wall on large pieces of Velcro. Each had been given as a gift by a different unit as thanks for the services of Kovalskyy and his team, an indication of the diversity and size of Ukraine’s military: almost 1 million soldiers protecting a 600-mile front line. At the same time, it’s a physical reminder that they almost all rely on a single technology with just a few production factories located on another continent nearly 6,000 miles away.

“We sometimes perform miracles with Starlinks,” Kovalskyy says. 

He and his crew can only hope that they will still be able to for the foreseeable future—or, better yet, that they won’t need to at all.  

Charlie Metcalfe is a British journalist. He writes for magazines and newspapers including Wired, the Guardian, and MIT Technology Review.

Apple AirPods : a gateway hearing aid

When the US Food and Drug Administration approved over-the-counter hearing-aid software for Apple’s AirPods Pro in September 2024, with a device price point right around $200, I was excited. I have mild to medium hearing loss and tinnitus, and my everyday programmed hearing aids cost just over $2,000—a lower-cost option I chose after my audiologist wanted to put me in a $5,000 pair.

Health insurance in the US does not generally cover the cost of hearing aids, and the vast majority of people who use them pay out of pocket for the devices along with any associated maintenance. Ninety percent of the hearing-aid market is concentrated in the hands of a few companies, so there’s little competitive pricing. The typical patient heads to an audiology clinic, takes a hearing test, gets an audiogram (a graph plotting decibel levels against frequencies to show how loud various sounds need to be for you to hear them), and then receives a recommendation—an interaction that can end up feeling like a high-pressure sales pitch. 

Prices should be coming down: In October 2022, the FDA approved the sale of over-the-counter hearing aids without a prescription or audiology exam. These options start around $200, but they are about as different from prescription hearing aids as drugstore reading glasses are from prescription lenses. 

Beginning with the AirPods Pro 2, Apple is offering something slightly different: regular earbuds (useful in all the usual ways) with many of the same features as OTC hearing aids. I’m thrilled that a major tech company has entered this field. 

The most important features for mild hearing loss are programmability, Bluetooth functionality, and the ability to feed sound to both ears. These are features many hearing aids have, but they are less robust and reliable in some of the OTC options. 

iPhone screen mockup
Apple software lets you take a hearing test through the AirPods Pro 2 with your cell phone; your phone then uses that data to program the devices.
COURTESY OF APPLE

The AirPods Pro “hearing health experience” lets you take a hearing test through the AirPods themselves with your cell phone; your phone then uses that data to program the hearing aids. No trip to the audiologist, no waiting room where a poster reminds you that hearing loss is associated with earlier cognitive decline, and no low moment afterward when you grapple with the cost.

I desperately wanted the AirPods Pro 2 to be really good, but they’re simply okay. They provide an opportunity for those with mild hearing loss to see if some of the functions of a hearing aid might be useful, but there are some drawbacks. Prescription hearing aids help me with tinnitus; I found that after a day of wear, the AirPods exacerbated it. Functionality to manage tinnitus might be a feature that Apple could and would want to pursue in the future, as an estimated 10% to 15% of the adult population experiences it. The devices also plug your whole ear canal, which can be uncomfortable and even cause swimmer’s ear after hours of use. Some people may feel odd wearing such bulky devices all the time—though they could make you look more like someone signaling “Don’t talk to me, I’m listening to my music” than someone who needs hearing aids.

Most of the other drawbacks are shared by other devices within their class of OTC hearing aids and even some prescription hearing aids: factors like poor sound quality, inadequate discernment between sounds, and difficulties with certain sound environments, like crowded rooms. Still, while the AirPods are not as good as my budget hearing aid that costs 10 times more, there’s incredible potential here.

Ashley Shew is the author of Against Technoableism: Rethinking Who Needs Improvement (2023). 

How churches use data and AI as engines of surveillance

On a Sunday morning in a Midwestern megachurch, worshippers step through sliding glass doors into a bustling lobby—unaware they’ve just passed through a gauntlet of biometric surveillance. High-speed cameras snap multiple face “probes” per second, isolating eyes, noses, and mouths before passing the results to a local neural network that distills these images into digital fingerprints. Before people find their seats, they are matched against an on-premises database—tagged with names, membership tiers, and watch-list flags—that’s stored behind the church’s firewall.

Late one afternoon, a woman scrolls on her phone as she walks home from work. Unbeknownst to her, a complex algorithm has stitched together her social profiles, her private health records, and local veteran outreach lists. It flags her for past military service, chronic pain, opioid dependence, and high Christian belief, and then delivers an ad to her Facebook feed: “Struggling with pain? You’re not alone. Join us this Sunday.”

These hypothetical scenes reflect real capabilities increasingly woven into places of worship nationwide, where spiritual care and surveillance converge in ways few congregants ever realize. Where Big Tech’s rationalist ethos and evangelical spirituality once mixed like oil and holy water, this unlikely amalgam has given birth to an infrastructure already reshaping the theology of trust—and redrawing the contours of community and pastoral power in modern spiritual life.

An ecumenical tech ecosystem

The emerging nerve center of this faith-tech nexus is in Boulder, Colorado, where the spiritual data and analytics firm Gloo has its headquarters.

Gloo captures congregants across thousands of data points that make up a far richer portrait than any snapshot. From there, the company is constructing a digital infrastructure meant to bring churches into the age of algorithmic insight.

The church is “a highly fragmented market that is one of the largest yet to fully adopt digital technology,” the company said in a statement by email. “While churches have a variety of goals to achieve their mission, they use Gloo to help them connect, engage with, and know their people on a deeper level.” 


Gloo was founded in 2013 by Scott and Theresa Beck. From the late 1980s through the 2000s, Scott was turning Blockbuster into a 3,500-store chain, taking Boston Market public, and founding Einstein Bros. Bagels before going on to seed and guide startups like Ancestry.com and HomeAdvisor. Theresa, an artist, has built a reputation creating collaborative, eco-minded workshops across Colorado and beyond. Together, they have recast pastoral care as a problem of predictive analytics and sold thousands of churches on the idea that spiritual health can be managed like customer engagement.

Think of Gloo as something like Salesforce but for churches: a behavioral analytics platform, powered by church-­generated insights, psychographic information, and third-party consumer data. The company prefers to refer to itself as “a technology platform for the faith ecosystem.” Either way, this information is integrated into its “State of Your Church” dashboard—an interface for the modern pulpit. The result is a kind of digital clairvoyance: a crystal ball for knowing whom to check on, whom to comfort, and when to act.

Thousands of churches have been sold on the idea that spiritual health can be managed like customer engagement.

Gloo ingests every one of the digital breadcrumbs a congregant leaves—how often you attend church, how much money you donate, which church groups you sign up for, which keywords you use in your online prayer requests—and then layers on third-party data (census demographics, consumer habits, even indicators for credit and health risks). Behind the scenes, it scores and segments people and groups—flagging who is most at risk of drifting, primed for donation appeals, or in need of pastoral care. On that basis, it auto-triggers tailored outreach via text, email, or in-app chat. All the results stream into the single dashboard, which lets pastors spot trends, test messaging, and forecast giving and attendance. Essentially, the system treats spiritual engagement like a marketing funnel.

Since its launch in 2013, Gloo has steadily increased its footprint, and it has started to become the connective tissue for the country’s fragmented religious landscape. According to the Hartford Institute for Religion Research, the US is home to around 370,000 distinct congregations. As of early 2025, according to figures provided by the company, Gloo held contracts with more than 100,000 churches and ministry leaders.

In 2024, the company secured a $110 million strategic investment, backed by “mission-aligned” investors ranging from a child-development NGO to a denominational finance group. That cemented its evolution from basic church services vendor to faith-tech juggernaut. 

It started snapping up and investing in a constellation of ministry tools—everything from automated sermon distribution to real-time giving and attendance analytics, AI-driven chatbots, and leadership content libraries. By layering these capabilities onto its core platform, the company has created a one-stop shop for churches that combines back-office services with member-engagement apps and psychographic insights to fully realize that unified “faith ecosystem.” 

And just this year, two major developments brought this strategy into sharper focus.

In March 2025, Gloo announced that former Intel CEO Pat Gelsinger—who has served as its chairman of the board since 2018—would assume an expanded role as executive chair and head of technology. Gelsinger, whom the company describes as “a great long-term investor and partner,” is a technologist whose fingerprints are on Intel’s and VMware’s biggest innovations.

(It is worth noting that Intel shareholders have filed a lawsuit against Gelsinger and CFO David Zinsner seeking to claw back roughly $207 million in compensation to Gelsinger, alleging that between 2021 and 2023, he repeatedly misled investors about the health of Intel Foundry Services.)

The same week Gloo announced Gelsinger’s new role, it unveiled a strategic investment in Barna Group, the Texas-based research firm whose four decades of surveying more than 2 million self-identified Christians underpin its annual reports on worship, beliefs, and cultural engagement. Barna’s proprietary database—covering every region, age cohort, and denomination—has made it the go-to insight engine for pastors, seminaries, and media tracking the pulse of American faith.

“We’ve been acquiring about a company a month into the Gloo family, and we expect that to continue,” Gelsinger told MIT Technology Review in June. “I’ve got three meetings this week on different deals we’re looking at.” (A Gloo spokesperson declined to confirm the pace of acquisitions, stating only that as of April 30, 2025, the company had fully acquired or taken majority ownership in 15 “mission-aligned companies.”)

“The idea is, the more of those we can bring in, the better we can apply the platform,” Gelsinger said. “We’re already working with companies with decades of experience, but without the scale, the technology, or the distribution we can now provide.”

hands putting their phones in a collection plate

MICHAEL BYERS

In particular, Barna’s troves of behavioral, spiritual, and cultural data offer granular insight into the behaviors, beliefs, and anxieties of faith communities. While the two organizations frame the collaboration in terms of serving church leaders, the mechanics resemble a data-fusion engine of impressive scale: Barna supplies the psychological texture, and Gloo provides the digital infrastructure to segment, score, and deploy the information.

In a promotional video from 2020 that is no longer available online, Gloo claimed to provide “the world’s first big-data platform centered around personal growth,” promising pastors a 360-degree view of congregants, including flags for substance use or mental-health struggles. Or, as the video put it, “Maximize your capacity to change lives by leveraging insights from big data, understand the people you want to serve, reach them earlier, and turn their needs into a journey toward growth.”

Gloo is also now focused on supercharging its services with artificial intelligence and using these insights to transcend market research. The company aims to craft AI models that aren’t just trained on theology but anticipate the moments when people’s faith—and faith leaders’ outreach—matters most. At a September 2024 event in Boulder called the AI & the Church Hackathon, Gloo unveiled new AI tools called Data Engine, a content management system with built-in digital-rights safeguards, and Aspen, an early prototype of its “spiritually safe” chatbot, along with the faith-tuned language model powering that chatbot, known internally as CALLM (for “Christian-Aligned Large Language Model”). 

More recently, the company released what it calls “Flourishing AI Standards,” which score large language models on their alignment with seven dimensions of well-­being: relationships, meaning, happiness, character, finances, health, and spirituality. Co-developed with Barna Group and Harvard’s Human Flourishing Program, the benchmark draws on a thousand-plus-item test bank and the Global Flourishing Study, a $40 million, 22-nation project being carried out by the Harvard program, Baylor University’s Institute for Studies of Religion, Gallup, and the Center for Open Science.

Gelsinger calls the study “one of the most significant bodies of work around this question of values in decades.” It’s not yet clear how collecting information of this kind at such scale could ultimately affect the boundary between spiritual care and data commerce. One thing is certain, though: A rich vein of donation and funding could be at stake.

“Money’s already being spent here,” he said. “Donated capital in the US through the church is around $300 billion. Another couple hundred billion beyond that doesn’t go through the church. A lot of donors have capital out there, and we’re a generous nation in that regard. If you put the flourishing-­related economics on the table, now we’re talking about $1 trillion. That’s significant economic capacity. And if we make that capacity more efficient, that’s big.” In secular terms, it’s a customer data life cycle. In faith tech, it could be a conversion funnel—one designed not only to save souls, but to shape them. 

One of Gloo’s most visible partnerships was between 2022 and 2023 with the nonprofit He Gets Us, which ran a billion-dollar media campaign aimed at rebranding Jesus for a modern audience. The project underlined that while Gloo presents its services as tools for connection and support, their core functionality involves collecting and analyzing large amounts of congregational data. When viewers who saw the ads on social media or YouTube clicked through, they landed on prayer request forms, quizzes, and church match tools, all designed to gather personal details. Gloo then layered this raw data over Barna’s decades of behavioral research, turning simple inputs—email, location, stated interests—into what the company presented as multidimensional spiritual profiles. The final product offered a level of granularity no single congregation could achieve on its own.  

Though Gloo still lists He Gets Us on its platform, the nonprofit Come Near, which has since taken over the campaign, says it has terminated Gloo’s involvement. Still, He Gets Us led to one of Gloo’s most prized relationships by sparking interest from the African Methodist Episcopal Zion Church, a 229-year-old denomination with deep historical roots in the abolitionist and civil rights movements. In 2023, the church formalized a partnership with Gloo, and in late 2024 it announced that all 1,600 of its US congregations—representing roughly 1.5 million members—would begin using the company’s State of Your Church dashboard

In a 2024 press release issued by Gloo, AME Zion acknowledged that while the denomination had long tracked traditional metrics like membership growth, Sunday turnout, and financial giving, it had limited visibility into the deeper health of its communities.

“Until now, we’ve lacked the insight to understand how church culture, people, and congregations are truly doing,” said the Reverend J. Elvin Sadler, the denomination’s general secretary-auditor. “The State of Your Church dashboards will give us a better sense of the spirit and language of the culture (ethos), and powerful new tools to put in the hands of every pastor.”

The rollout marked the first time a major US denomination had deployed Gloo’s framework at scale. For Gloo, the partnership unlocked a real-time, longitudinal data stream from a nationwide religious network, something the company had never had before. It not only validated Gloo’s vision of data-driven ministry but also positioned AME Zion as what the company hopes will be a live test case, persuading other denominations to follow suit.

The digital supply chain

The digital infrastructure of modern churches often begins with intimacy: a prayer request, a small-group sign-up, a livestream viewed in a moment of loneliness. But beneath these pastoral touchpoints lies a sophisticated pipeline that increasingly mirrors the attention-economy engines of Silicon Valley.

Charles Kriel, a filmmaker who formerly served as a special advisor to the UK Parliament on disinformation, data, and addictive technology, has particular insight into that connection. Kriel has been working for over a decade on issues related to preserving democracy and countering digital surveillance. He helped write the UK’s Online Safety Act, joining forces with many collaborators, including the Nobel Peace Prize–­winning journalist Maria Ressa and former UK tech minister Damian Collins, in an attempt to rein in Big Tech in the late 2010s.

His 2020 documentary film, People You May Know, investigated how data firms like Gloo and their partners harvest intimate personal information from churchgoers to build psychographic profiles, highlighting how this sensitive data is commodified and raising questions about its potential downstream uses.

“Listen, any church with an app? They probably didn’t build that. It’s white label,” Kriel says, referring to services produced by one company and rebranded by another. “And the people who sold it to them are collecting data.”

Many churches now operate within a layered digital environment, where first-party data collected inside the church is combined with third-party consumer data and psychographic segmentation before being fed into predictive systems. These systems may suggest sermons people might want to view online, match members with small groups, or trigger outreach when engagement drops. 


In some cases, monitoring can even take the form of biometric surveillance.

In 2014, an Israeli security-tech veteran named Moshe Greenshpan brought airport-grade facial recognition into church entryways. Face-Six, the surveillance suite from the company he founded in 2012, already protected banks and hospitals; its most provocative offshoot, FA6 Events (also known as “Churchix”), repurposes this technology for places of worship.

Greenshpan claims he didn’t originally set out to sell to churches. But over time, as he became increasingly aware of the market, he built FA6 Events as a bespoke solution for them. Today, Greenshpan says, it’s in use at over 200 churches worldwide, nearly half of them in the US.

In practice, FA6 transforms every entryway into a biometric checkpoint: an instant headcount, a security sweep, and a digital ledger of attendance, all incorporated into the familiar routine of Sunday worship. 

When someone steps into an FA6-equipped place of worship, a discreet camera mounted at eye level springs to life. Behind the scenes, each captured image is run through a lightning-fast face detector that looks at the whole face. The subject’s cropped face is then aligned, resized, and rotated so the eyes sit on a perfect horizontal line before being fed into a compact neural network. 

“To the best of my knowledge, no church notifies its congregants that it’s using facial recognition.”

Moshe Greenshpan, Israeli security-tech veteran

This onboard neural network quickly captures the features of a person’s face in a unique digital signature called an embedding, allowing for quick identification. These embeddings are compared with thousands of others that are already in the church’s local database, each one tagged with data points like a name, a membership role, or even a flag designating inclusion in an internal watch list. If the match is strong enough, the system makes an identification and records the person’s presence on the church’s secure server.

A congregation can pull full attendance logs, time-stamped entry records, and—critically—alerts whenever someone on a watch list walks through the doors. In this context, a watch list is simply a roster of photos, and sometimes names, of individuals a church has been asked (or elected) to screen out: past disruptors, those subject to trespass or restraining orders, even registered sex offenders. Once that list is uploaded into Churchix, the system instantly flags any match on arrival, pinging security teams or usher staff in real time. Some churches lean on it to spot longtime members who’ve slipped off the radar and trigger pastoral check-ins; others use it as a hard barrier, automatically denying entry to anyone on their locally maintained list.

None of this data is sent to the cloud; Greenshpan says the company is actively working on a cloud-based application. Instead, all face templates and logs are stored locally on church-owned hardware, encrypted so they can’t be read if someone gains unauthorized access. 

Churches can export data from Churchix, he says, but the underlying facial templates remain on premises. 

Still, Greenshpan admits, robust technical safeguards do not equal transparency.

“To the best of my knowledge,” he says, “no church notifies its congregants that it’s using facial recognition.”


If the tools sound invasive, the logic behind them is simple: The more the system knows about you, the more precisely it can intervene.

“Every new member of the community within a 20-mile radius—whatever area you choose—we’ll send them a flier inviting them to your church,” Gloo’s Gelsinger says. 

It’s a tech-powered revival of the casserole ministry. The system pings the church when someone new moves in—“so someone can drop off cookies or lasagna when there’s a newborn in the neighborhood,” he says. “Or just say ‘Hey, welcome. We’re here.’”

Gloo’s back end automates follow-up, too: As soon as a pastor steps down from the pulpit after delivering a sermon, it can be translated into five languages, broken into snippets for small-group study, and repackaged into a draft discussion guide—ready within the hour.

Gelsinger sees the same approach extending to addiction recovery ministries. “We can connect other databases to help churches with recovery centers reach people more effectively,” he says. 

But the data doesn’t stay within the congregation. It flows through customer relationship management (CRM) systems, application programming interfaces, cloud servers, vendor partnerships, and analytics firms. Some of it is used internally in efforts to increase engagement; the rest is repackaged as “insights” and resold to the wider faith-tech marketplace—and sometimes even to networks that target political ads.

“We measured prayer requests. Call it crazy. But it was like, ‘We’re sitting on mounds of information that could help us steward our people.’”

Matt Engel, Gloo

 “There is a very specific thing that happens when churches become clients of Gloo,” says Brent Allpress, an academic based in Melbourne, Australia, who was a key researcher on People You May Know. Gloo gets access to the client church’s databases, he says, and the church “is strongly encouraged to share that data. And Gloo has a mechanism to just hoover that data straight up into their silo.” 

This process doesn’t happen automatically; the church must opt in by pushing those files or connecting its church-management software system’s database to Gloo via API. Once it’s uploaded, however, all that first-party information lands in Gloo’s analytics engine, ready to be processed and shared with any downstream tools or partners covered by the church’s initial consent to the terms and conditions of its contract with the company.

“There are religious leaders at the mid and local level who think the use of data is good. They’re using data to identify people in need. Addicts, the grieving,” says Kriel. “And then you have tech people running around misquoting the Bible as justification for their data harvest.” 

Matt Engel, who held the title executive director of ministry innovation at Gloo when Kriel’s film was made, acknowledged the extent of this harvest in the opening scene.  

“We measured prayer requests. Call it crazy. But it was like, ‘We’re sitting on mounds of information that could help us steward our people,’” he said in an on-camera interview. 

According to Engel—whom Gloo would not make available for public comment—uploading data from anonymous prayer requests to the cloud was Gloo’s first use case.

Powering third-party initiatives

But Gloo’s data infrastructure doesn’t end with its own platform; it also powers third-party initiatives.

Communio, a Christian nonprofit focused on marriage and family, used Gloo’s data infrastructure in order to launch “Communio Insights,” a stripped-down version of Gloo’s full analytics platform. 

Unlike Gloo Insights, which provides access to hundreds of demographic, behavioral, health, and psychographic filters, Communio Insights focuses narrowly on relational metrics—indicators of marriage and family stress, involvement in small groups at church—and basic demographic data. 

At the heart of its playbook is a simple, if jarring, analogy.

“If you sell consumer products of different sorts, you’re trying to figure out good ways to market that. And there’s no better product, really, than the gospel,” J.P. De Gance, the founder and president of Communio, said in People You May Know.

Communio taps Gloo’s analytics engine—leveraging credit histories, purchasing behavior, public voter rolls, and the database compiled by i360, an analytics company linked to the conservative Koch network—to pinpoint unchurched couples in key regions who are at risk of relationship strain. It then runs microtargeted outreach (using direct mail, text messaging, email, and Facebook Custom Audiences, a tool that lets organizations find and target people who have interacted with them), collecting contact info and survey responses from those who engage. All responses funnel back into Gloo’s platform, where churches monitor attendance, small-group participation, baptisms, and donations to evaluate the campaign’s impact.

church window over the parishioners has rays of light emanating from a stained glass eye

MICHAEL BYERS

Investigative research by Allpress reveals significant concerns around these operations.  

In 2015, two nonprofits—the Relationship Enrichment Collaborative (REC), staffed by former Gloo executives, and its successor, the Culture of Freedom Initiative (now Communio), controlled by the Koch-affiliated nonprofit Philanthropy Roundtable—funded the development of the original Insights platform. Between 2015 and 2017, REC paid approximately $1.3 million to Gloo and $535,000 to Cambridge Analytica, the consulting firm notorious for harvesting Facebook users’ personal data and using it for political targeting before the 2016 election, to build and refine psychographic models and a bespoke digital ministry app powering Gloo’s outreach tools. Following REC’s closure, the Culture of Freedom Initiative invested another $375,000 in Gloo and $128,225 in Cambridge Analytica. 

REC’s own 2016 IRS filing describes the work in terse detail: “Provide[d] digital micro-targeted marketing for churches and non-profit champions … using predictive modeling and centralized data analytics we help send the right message to the right couple at the right time based upon their desires and behaviors.”

On top of all this documented research, Allpress exposed another critical issue: the explicit use of sensitive health-care data. 

He found that Gloo Insights combines over 2,000 data points—drawing on everything from nationwide credit and purchasing histories to church management records and Christian psychographic surveys—with filters that make it possible to identify people with health issues such as depression, anxiety, and grief. The result: Facebook Custom Audiences built to zero in on vulnerable individuals via targeted ads.

These ads invite people suffering from mental-health conditions into church counseling groups “as a pathway to conversion,” Allpress says.

These targeted outreach efforts were piloted in cities including Phoenix, Arizona; Dayton, Ohio; and Jacksonville, Florida. Reportedly, as many as 80% of those contacted responded positively, with those who joined a church as new members contributing financially at above-­average rates. In short, Allpress found that pastoral tools had covertly exploited mental-health vulnerabilities and relationship crises for outreach that blurred the lines separating pastoral care, commerce, and implicit political objectives.

The legal and ethical vacuum

Developers of this technology earnestly claim that the systems are designed to enhance care, not exploit people’s need for it. They’re described as ways to tailor support to individual needs, improve follow-up, and help churches provide timely resources. But experts say that without robust data governance or transparency around how sensitive information is used and retained, well-­intentioned pastoral technology could slide into surveillance.

In practice, these systems have already been used to surveil and segment congregations. Internal demos and client testimonials confirm that Gloo, for example, uses “grief” as an explicit data point: Churches run campaigns aimed at people flagged for recent bereavement, depression, or anxiety, funneling them into support groups and identifying them for pastoral check-ins. 

Examining Gloo’s terms and conditions reveals further security and transparency concerns. From nearly a dozen documents, ranging from “click-through” terms for interactive services to master service agreements at the enterprise level, Gloo stitches together a remarkably consistent data-­governance framework. Limits are imposed on any legal action by individual congregants, for example. The click-through agreement corrals users into binding arbitration, bars any class action suits or jury trials, and locks all disputes into New York or Colorado courts, where arbitration is particularly favored over traditional litigation. Meanwhile, its privacy statement carves out broad exceptions for service providers, data-­enrichment partners, and advertising affiliates, giving them carte blanche to use congregants’ data as they see fit. Crucially, Gloo expressly reserves the right to ingest “health and wellness information” provided via wellness assessments or when mental-health keywords appear in prayer requests. This is a highly sensitive category of information that, for health apps, is normally covered by stringent medical-privacy rules like HIPAA.

In other words, Gloo is protected by sprawling legal scaffolding, while churches and individual users give up nearly every right to litigate, question data practices, or take collective action. 

“We’re kind of in the Wild West in terms of the law,” says Adam Schwartz, the director of privacy litigation at the Electronic Frontier Foundation, the nonprofit watchdog that has spent years wrestling tech giants over data abuses and biometric overreach. 

In the United States, biometric surveillance like that used by growing numbers of churches inhabits a legal twilight zone where regulation is thin, patchy, and often toothless. Schwartz points to Illinois as a rare exception for its Biometric Information Privacy Act (BIPA), one of the nation’s strongest such laws. The statute applies to any organization that captures biometric identifiers—including retina or iris scans, fingerprints, voiceprints, hand scans, facial geometry, DNA, and other unique biological information. It requires entities to post clear data-collection policies, obtain explicit written consent, and limit how long such data is retained. Failure to comply can expose organizations to class action lawsuits and steep statutory damages—up to $5,000 per violation.

But beyond Illinois, protections quickly erode. Though Texas and Washington also have biometric privacy statutes, their bark is stronger than their bite. Efforts to replicate Illinois’s robust protections have been made in over a dozen states—but none have passed. As a result, in much of the country, any checks on biometric surveillance depend more on voluntary transparency and goodwill than any clear legal boundary.

“There is a real potential for information gathered about a person [to] be used against them in their life outside the church.”

Emily Tucker, Center on Privacy & Technology at Georgetown Law

That’s especially problematic in the church context, says Emily Tucker, executive director of the Center on Privacy & Technology at Georgetown Law, who attended divinity school before becoming a legal scholar. “The necessity of privacy for the possibility of finding personal relationship to the divine—for engaging in rituals of worship, for prayer and penitence, for contemplation and spiritual struggle—is a fundamental principle across almost every religious tradition,” she says. “Imposing a surveillance architecture over the faith community interferes radically with the possibility of that privacy, which is necessary for the creation of sacred space.”

Tucker researches the intersection of surveillance, civil rights, and marginalized communities. She warns that the personal data being collected through faith-tech platforms is far from secure: “Because corporate data practices are so poorly regulated in this country, there are very few limitations on what companies that take your data can subsequently do with it.”

To Tucker, the risks of these platforms outweigh the rewards—especially when biometrics and data collected in a sacred setting could follow people into their daily lives. “Many religious institutions are extremely large and often perform many functions in a given community besides providing a space for worship,” she says. “Many churches, for example, are also employers or providers of social services. There is a real potential for information gathered about a person in their associational activities as a member of a church to then be used against them in their life outside the church.”  

She points to government dragnet surveillance, the use of IRS data in immigration enforcement, and the vulnerability of undocumented congregants as examples of how faith-tech data could be weaponized beyond its intended use: “Religious institutions are putting the safety of those members at risk by adopting this kind of surveillance technology, which exposes so much personal information to potential abuse and misuse.” 

Schwartz, too, says that any perceived benefits must be weighed carefully against the potential harms, especially when sensitive data and vulnerable communities are involved.

“Churches: Before doing this, you ought to consider the downside, because it can hurt your congregants,” he says.  

With guardrails still scarce, though, faith-tech pioneers and church leaders are peering ever more deeply into congregants’ lives. Until meaningful oversight arrives, the faithful remain exposed to a gaze they never fully invited and scarcely understand.

In April, Gelsinger took the stage at a sold-out Missional AI Summit, a flagship event for Christian technologists that this year was organized around the theme “AI Collision: Shaping the Future Together.” Over 500 pastors, engineers, ethicists, and AI developers filled the hall, flashing badges with logos from Google DeepMind, Meta, McKinsey, and Gloo.

“We want to be part of a broader community … so that we’re influential in creating flourishing AI, technology as a force for good, AI that truly embeds the values that we care about,” Gelsinger said at the summit. He likened such tools to pivotal technologies in Christian history: the Roman roads that carried the gospel across the empire, or Martin Luther’s printing press, which shattered monolithic control over scripture. A Gloo spokesperson later confirmed that one of the company’s goals is to shape AI specifically to “contribute to the flourishing of people.”

“We’re going to see AI become just like the internet,” Gelsinger said. “Every single interaction will be infused with AI capabilities.” 

He says Gloo is already mining data across the spectrum of human experience to fuel ever more powerful tools.

“With AI, computers adapt to us. We talk to them; they hear us; they see us for the first time,” he said. “And now they are becoming a user interface that fits with humanity.”

Whether these technologies ultimately deepen pastoral care or erode personal privacy may hinge on decisions made today about transparency, consent, and accountability. Yet the pace of adoption already outstrips the development of ethical guardrails. Now, one of the questions lingering in the air is not whether AI, facial recognition, and other emerging technologies can serve the church, but how deeply they can be woven into its nervous system to form a new OS for modern Christianity and moral infrastructure. 

“It’s like standing on the beach watching a tsunami in slow motion,” Kriel says. 

Gelsinger sees it differently.  

“You and I both need to come to the same position, like Isaiah did,” he told the crowd at the Missional AI Summit. “‘Here am I, Lord. Send me.’ Send me, send us, that we can be shaping technology as a force for good, that we could grab this moment in time.” 

Alex Ashley is a journalist whose reporting has appeared in Rolling Stone, the Atlantic, NPR, and other national outlets.

Material Cultures looks to the past to build the future

Despite decades of green certifications, better material sourcing, and the use of more sustainable materials such as mass timber, the built environment is still responsible for a third of global emissions worldwide. According to a 2024 UN report, the building sector has fallen “significantly behind on progress” toward becoming more sustainable. Changing the way we erect and operate buildings remains key to even approaching climate goals. 

“As soon as you set out and do something differently in construction, you are constantly bumping your head against the wall,” says Paloma Gormley, a director of the London-based design and research nonprofit Material Cultures. “You can either stop there or take a step back and try to find a way around it.”

Gormley has been finding a “way around it” by systematically exploring how tradition can be harnessed in new ways to repair what she has dubbed the “oil vernacular”—the contemporary building system shaped not by local, natural materials but by global commodities and plastic products made largely from fossil fuels.

Though she grew up in a household rich in art and design—she’s the daughter of the famed British sculptor Antony Gormley—she’s quick to say she’s far from a brilliant maker and more of a “bodger,” a term that means someone who does work that’s botched or shoddy. 

Improviser or DIYer might be more accurate. One of her first bits of architecture was a makeshift home built on the back of a truck she used to tour around England one summer in her 20s. The work of her first firm, Practice Architecture, which she cofounded after graduating from the University of Cambridge in 2009, was informed by London’s DIY subcultures and informal art spaces. She says these scenes “existed in the margins and cracks between things, but in which a lot felt possible.” 

Frank’s Café, a bar and restaurant she built in 2009 on the roof of a parking garage in Peckham that hosted a sculpture park, was constructed from ratchet straps, scaffold boards, and castoffs she’d source from lumberyards and transport on the roof rack of an old Volvo. It was the first of a series of cultural and social spaces she and her partner Lettice Drake created using materials both low-budget and local. 

Material Cultures grew out of connections Gormley made while she was teaching at London Metropolitan University. In 2019, she was a teaching assistant along with Summer Islam, who was friends with George Massoud, both architects and partners in the firm Study Abroad and advocates of more socially conscious design. The trio had a shared interest in sustainability and building practices, as well as a frustration with the architecture world’s focus on improving sustainability through high-tech design. Instead of using modern methods to build more efficient commercial and residential spaces from carbon-intensive materials like steel, they thought, why not revisit first principles? Build with locally sourced, natural materials and you don’t have to worry about making up a carbon deficit in the first place. 

The frame of Clearfell House was built with ash and larch, two species of wood vulnerable to climate change
HENRY WOIDE/COURTESY OF MATERIAL CULTURES
office in a house
Flat House was built with pressed panels of hemp grown in the fields surrounding the home.
OSKAR PROCTOR

As many other practitioners look to artificial intelligence and other high-tech approaches to building, Material Cultures has always focused on sustainability, finding creative ways to turn local materials into new buildings. And the three of them don’t just design and build. They team up with traditional craft experts to explore the potential of materials like reeds and clay, and techniques like thatching and weaving. 

More than any one project, Gormley, Islam, and Massoud are perhaps best known for their meditation on the subject of how architects work. Published in 2022, Material Reform: Building for a Post-Carbon Future is a pocket-size book that drills into materials and methodologies to suggest a more thoughtful, ecological architecture.

“There is a huge amount of technological knowledge and intelligence in historic, traditional, vernacular ways of doing things that’s been evolved over millennia, not just the last 100 years,” Gormley says. “We’re really about trying to tap into that.”

One of Material Cultures’ early works, Flat House, a home built in 2019 in Cambridgeshire, England, with pressed panels of hemp grown in the surrounding fields, was meant as an exploration of what kind of building could be made from what a single farm could produce. Gormley was there from the planting of the seeds to the harvesting of the hemp plants to the completion of construction. 

“It was incredible understanding that buildings could be part of these natural cycles,” she says. 

Clearfell House, a timber A-frame cabin tucked into a clearing in the Dalby Forest in North Yorkshire, England, exemplifies the firm’s obsession with elevating humble materials and vernacular techniques. Every square inch of the house, which was finished in late 2024 as part of a construction class Material Cultures’ architects taught at Central Saint Martins design school in London, emerged from extensive research into British timber, the climate crisis, and how forestry is changing. That meant making the frame from local ash and larch, two species of wood specifically chosen because they were affected by climate change, and avoiding the use of factory-farmed lumber. The modular system used for the structure was made to be replicated at scale.  

“I find it rare that architecture offices have such a clear framing and mission,” says Andreas Lang, head of the Saint Martins architecture program. “Emerging practices often become client-dependent. For [Material Cultures], the client is maybe the planet.”

Material Cultures fits in with the boom in popularity for more sustainable materials, waste-minimizing construction, and panelized building using straw and hemp, says Michael Burchert, a German expert on decarbonized buildings. “People are grabbing the good stuff from the hippies at the moment,” he says. Regulation has started to follow: France recently mandated that new public buildings be constructed with 50% timber or other biological material, and Denmark’s construction sector has embarked on a project, Pathways to Biobased Construction, to promote use of nature-based products in new building.

Burchert appreciates the way the firm melds theory and practice. “We have academia, and academia is full of papers,” he says. “We need makers.” 

Over the last several years, Gormley and her cofounders have developed a portfolio of work that rethinks construction supply chains and stays grounded in social impact. The just-finished Wolves Lane Centre, a $2.4 million community center in North London run by a pair of groups that work on food and racial justice, didn’t just reflect Material Cultures’ typical focus on bio-based materials—in this case, local straw, lime, and timber. 

LUKE O’DONOVAN/COURTESY OF MATERIAL CULTURES

LUKE O’DONOVAN/COURTESY OF MATERIAL CULTURES

For Wolves Lane Centre, a $2.4 million community facility for groups working on food and racial justice, expert plasterers and specialists in straw-bale construction were brought in so their processes could be shared and learned.

LUKE O’DONOVAN/COURTESY OF MATERIAL CULTURES

It was a project of self-determination and learning, says Gormley. Expert plasterers and specialists in straw-bale construction were brought in so the processes could be shared and learned. Introducing this kind of teaching into the construction process was quite time-consuming and, Gormley says, was as expensive as using contemporary techniques, if not more so. But the added value was worth it. 

“The people who become the custodians of these buildings then have the skills to maintain and repair, as well as evolve, the site over time,” she says. 

As Burchert puts it, science fiction tends to show a future built of concrete and steel; Material Cultures instead offers something natural, communal, and innovative, a needed paradigm shift. And it’s increasingly working on a larger scale. The Phoenix, a forthcoming low-carbon development in the southern English city of Lewes that’s being developed by a former managing director for Greenpeace, will use the firm’s designs for 70 of its 700 planned homes. 

The project Gormley may be most excited about is an interdisciplinary school Material Cultures is creating north of London: a 500-acre former farm in Essex that will be a living laboratory bridging the firm’s work in supply chains, materials science, and construction. The rural site for the project, which has the working title Land Lab, was deliberately chosen as a place where those connections would be inherent, Gormley says. 

The Essex project advances the firm’s larger mission. As Gormley, Massoud, and Islam advise in their book, “Hold a vision of a radically different world in your mind while continuing to act in the world as it is, persisting in the project of making changes that are within the scope of action.” 

Patrick Sisson, a Chicago expat living in Los Angeles, covers technology and urbanism.

Indigenous knowledge meets artificial intelligence

There is no word for art in most Native American languages. Instead, the closest terms speak not to objecthood but to action and intention. In Lakota, “wówačhiŋtȟaŋka” implies deep thought or reflection, while “wóčhekiye” suggests offering or prayer. Art is not separate from life; it is ceremony, instruction, design. Like architecture or code, it carries knowledge and enacts responsibility. Its power lies not in being preserved or displayed but in how it moves, teaches, and connects through use—principles that challenge the tech industry’s assumptions about intelligence and interaction.

A new vanguard of Native artists—Suzanne Kite (Oglala Lakota), Raven Chacon (Diné), and Nicholas Galanin (Tlingít)—are building on this principle. They are united not by stereotypical weaving and carving or revanchist critique of Silicon Valley, but through their rejection of extractive data models in favor of relationship-based systems. These technologists put the human-tech relationship at the center of their work.

Suzanne Kite’s AI art installations, for example, model a Lakota framework of data sovereignty: intelligence that emerges only through reciprocal, consensual interaction. Unlike systems that assume user consent via opaque terms of service, her kinetic machines require the viewer’s physical presence—and give something back in return. 

“It’s my data. It’s my training set. I know exactly what I did to train it. It’s not a large model but a small and intimate one,” Kite says. “I’m not particularly interested in making the most technologically advanced anything. I’m an artist; I don’t make tech demos. So the complexity needs to come at many layers—not just the technical.”

Where Kite builds working prototypes of consent-based AI, other artists in this cohort explore how sound, robotics, and performance can confront the logic of automation, surveillance, and extraction. But Native people have never been separate from technology. The land, labor, and lifeways that built America’s infrastructure—including its tech—are Indigenous. The question isn’t whether Native cultures are contributing now, but why they were ever considered separate. 

Native technologies reject the false binaries foundational to much Western innovation. These artists ask a more radical question: What if intelligence couldn’t be gathered until a relationship had been established? What if the default were refusal, not extraction? These artists aren’t asking to be included in today’s systems. They’re building what should come next.


Suzanne Kite

stones arranged on a reflective surface
Wičhíŋčala Šakówiŋ (Seven Little Girls)
2023
For Kite, the fundamental flaw of Western technology is its severance of knowledge from the body. In this installation, a four-meter hair braid with embedded sensors translates the artist’s body movements into machine-learning algorithms. During her live performance, Kite dances while the braid reads the force and rhythm of her gestures, generating audio responses that fill the museum gallery of the Institute of American Indian Arts in Santa Fe, New Mexico. Below her, stones arranged in patterns reflecting Lakota star maps anchor the performance in traditional astronomical knowledge.
COURTESY OF THE ARTIST
Ínyan Iyé (Telling Rock)
2019
This installation uses embedded AI to speak and respond to viewers, upending assumptions about intelligence and agency. “People listen close, I whisper / The rock speaks beyond hearing … Many nations speaking / We speak to each other without words,” it intones, its lights shifting as viewers engage with its braided tendrils. The piece aims to convey what Kite calls “more-than-human intelligence”—systems rooted in reciprocity, the fundamental principle that all relationships involve mutual exchange and responsibility.
COURTESY OF THE ARTIST

Raven Chacon

artist performing in a church
Voiceless Mass
2021
Raven Chacon’s Pulitzer Prize–winning musical composition Voiceless Mass premiered in 2021 at the Cathedral of St. John the Evangelist in Milwaukee. The piece generates what he calls “sounds the building can hear”—electronic frequencies that exploit the cathedral’s acoustics to create spectral voices without human vocal cords, a technological séance that gives presence to historical absence. Each site-specific performance is recorded, generating material that mirrors how sensor networks log presence—but only with explicit consent.
COURTESY OF THE ARTIST

Nicholas Galanin

Aáni yéi xat duwasáakw (I am called Land)
2025
Galanin’s mechanical drum installation stages a conflict between machine motion and human memory, asking what happens when culture is performed without a consenting body. A box drum—an instrument historically carved from red cedar and hung with braided spruce root—is here made of cherrywood and suspended from the ceiling at the MassArt Art Museum in Boston as is traditionally done in Tlingit plank houses. Played at tribal meetings, celebrations, and ceremonies, these drums hold sonic memory as well as social function. A mechanical arm strikes, unfaltering, at the tempo of a heartbeat; like a warning, the sound pulses with the tension between automation and ancestry.–––
COURTESY OF THE ARTIST
I think it goes like this (pick yourself up)
2025
This Herculean bronze sculpture cast from deconstructed faux totem blocks serves to indict settler sabotage of Native technology and culture. Unlike today’s digital records—from genealogical databases to virtual versions of sacred texts like the Bible—Tlingit data is carved in wood. Galanin’s totem poles underscore their function as information systems, their carvings encoding history, mythology, and family.
COURTESY OF THE ARTIST

Petala Ironcloud is a California-born Lakota/Dakota and Jewish writer and textile artist based in New York.

3 things Rhiannon Williams is into right now

The last good Instagram account

It’s a truth universally acknowledged that social media is a Bad Vibe. Thankfully, there is still one Instagram account worth following that’s just as incisive, funny, and scathing today as when it was founded back in 2016: Every Outfit (@everyoutfitonsatc). Originally conceived as an homage to Sex and the City’s iconic fashion, Every Outfit has since evolved into a wider cultural critique and spawned a podcast of the same name that I love listening to while running. Sex and the City may be over, but Every Outfit is forever.

Glorious Exploits, by Ferdia Lennon

Glorious Exploits is one of those rare books that manage to pull off being both laugh-out-loud funny and deeply moving, which is no mean feat. Set in ancient Sicily, it tells the story of unemployed potters Lampo and Gelon’s grand plan to stage the Greek tragedy Medea with a cast of defeated Athenian soldiers who’ve been imprisoned in quarries on the outskirts of Syracuse. The ancient backdrop combined with the characters’ contemporary Irish dialogue (the author was born in Dublin) makes it unlike anything I’ve ever read before; it’s so ambitious it’s hard to believe it’s Lennon’s debut novel. Completely engrossing.

Life drawing

The depressing wave of AI-generated art that’s flooded the internet in recent years has inspired me to explore the exact opposite and make art the old-fashioned way. My art teacher in college always said the best way to learn the correct proportions of the human body was to draw it in person, so I’ve started attending classes near where I live in London. Pencil and paper are generally my medium of choice. Spending a few hours interpreting what’s in front of you in your own artistic style is really rewarding—and has the added bonus of being completely screen-free. I can’t recommend it enough.