Job titles of the future: Satellite streak astronomer

Earlier this year, the $800 million Vera Rubin Observatory commenced its decade-long quest to create an extremely detailed time-lapse movie of the universe. Rubin is capable of capturing many more stars than any other astronomical observatory ever built; it also sees many more satellites. Up to 40% of images captured by the observatory within its first 10 years of operation will be marred by their sunlight-reflecting streaks. 

Meredith Rawls, a research scientist at the telescope’s flagship observation project, Vera Rubin’s Legacy Survey of Space and Time, is one of the experts tasked with protecting Rubin’s science mission from the satellite blight, which could make observations more difficult because the satellites are millions of times brighter than the faint stars and galaxies it hopes to study. Satellites could also confuse astronomers when the sudden brightening they cause gets mistaken for astronomical phenomena.

An unexpected path

When Rawls joined the Rubin project in 2016, she says, she had no clue what turn her career would take. “I was hired as a postdoc to help build a new imaging pipeline to process precursor images [and] analyze results to identify things we needed to fix or change,” she says.

But in 2019, SpaceX began deploying its internet-beaming Starlink constellation, and the astronomical community started to sound alarm bells. The satellites were orbiting too low and reflected too much sunlight, leaving bright marks in telescope images. A year later, Rawls and a handful of her colleagues were the first to make a scientific assessment of the satellite streaks’ effect on astronomical observations, using images from the Víctor M. Blanco telescope (which, like Rubin, is in Chile). “We wanted to see how bright those streaks were and look at possible mitigation strategies,” Rawls says. Her team found that although the streaks weren’t overwhelmingly bright, they still risked affecting scientific observations.

Streak removal 

Since those early observations, an entirely new subdiscipline of astronomical image processing has emerged, focusing on techniques to remove satellite light pollution from the data and designing observation protocols to prevent too-bright satellites from spoiling the views. Rawls has become one of the leading experts in the fast-evolving field, which is only set to grow in importance in the coming years.

“We are fundamentally altering the night sky by launching a lot more stuff at an unsustainably increasing rate,” says Rawls, who is also an astronomy researcher at the University of Washington. 

To mitigate the damage, she and her colleagues designed algorithms that compare images of the same spot in the sky to detect unexpected changes and determine whether those could have been caused by passing satellites or natural phenomena like asteroids or stellar explosions.

A rising force

The number of satellites orbiting our planet has risen from a mere thousand some 15 years ago to more than 12,000 active satellites today. About 8,000 of those belong to SpaceX’s Starlink, but other ventures threaten to worsen the light-pollution problem in the coming years. US-based AST SpaceMobile, for example, is building a constellation of giant orbiting antenna arrays to beam 5G connectivity directly to users’ phones. The first five of these satellites—each over 60 square meters in size—are already in orbit and reflecting so much light that Rubin must adjust its observing schedule to avoid their paths. 

“So far, what we’ve seen with the initial images is that it’s a nuisance but not a science-ending thing,” says Rawls. She remains optimistic that she and her colleagues can stay on top of the problem.

Tereza Pultarova is a London-based science and technology journalist.

The case against humans in space

Elon Musk and Jeff Bezos are bitter rivals in the commercial space race, but they agree on one thing: Settling space is an existential imperative. Space is the place. The final frontier. It is our human destiny to transcend our home world and expand our civilization to extraterrestrial vistas.

This belief has been mainstream for decades, but its rise has been positively meteoric in this new gilded age of astropreneurs. Expanding humanity beyond Earth is both our birthright and our duty to the future, they insist. Failing to do so would consign our species to certain extinction—either by our own hand, perhaps through nuclear war or climate change, or in some cosmic disaster, like a massive asteroid impact.

But as visions of giant orbital stations and Martian cities dance in our heads, a case against human space colonization has found its footing in a number of recent books. The argument grows from many grounds: Doubts about the practical feasibility of off-Earth communities. Concerns about the exorbitant costs, including who would bear them and who would profit. Realism about the harsh environment of space and the enormous tax it would exact on the human body. Suspicion of the underlying ideologies and mythologies that animate the race to settle space.

And, more bluntly, a recognition that “space sucks” and a lot of people have “underestimated the scale of suckitude,” as Kelly and Zach Weinersmith put it in their book A City on Mars: Can We Settle Space, Should We Settle Space, and Have We Really Thought This Through?, which was released in paperback earlier this year.

cover of A City on Mars
A City on Mars: Can We Settle Space, Should
We Settle Space, and Have We Really Thought This Through?

Kelly and Zach Weinersmith
PENGUIN RANDOM HOUSE, 2023 (PAPERBACK RELEASE 2025)

The Weinersmiths, a husband-wife team, spent years thinking it through—in delightfully pragmatic detail. A City on Mars provides ground truth for our lofty celestial dreams by gaming out the medical, technical, legal, ethical, and existential consequences of space settlements. 

Much to the authors’ own dismay, the result is a grotesquery of possible outcomes including (but not limited to) Martian eugenics, interplanetary war, and—­memorably—“space cannibalism.” 

The Weinersmiths puncture the gauzy fantasy of space cities by asking pretty basic questions, like how to populate them. Astronauts experience all kinds of medical challenges in space, such as radiation exposure and bone loss, which would increase risks to both parents and babies. Nobody wants their pregnant “glow” to be a by-product of cosmic radiation.

Trying to bring forth babies in space “is going to be tricky business, not just in terms of science, but from the perspective of scientific ethics,” they write. “Adults can consent to being in experiments. Babies can’t.”

You don’t even have to contemplate going to Mars to make some version of this case. In Ground Control: An Argument for the End of Human Space Exploration, Savannah Mandel chronicles how past and present generations have regarded human spaceflight as an affront to vulnerable children right here on Earth.

cover of Ground Control
Ground Control: An Argument for the End of Human Space Exploration
Savannah Mandel
CHICAGO REVIEW PRESS, 2024

“Hungry Kids Can’t Eat Moon Rocks,” read signs at a protest outside Kennedy Space Center on the eve of the Apollo 11 launch in July 1969. Gil Scott-Heron’s 1970 poem “Whitey on the Moon” rose to become the de facto anthem of this movement, which insists, to this day, that until humans get our earthly house in order, we have no business building new ones in outer space.

Ground Control, part memoir and part manifesto, channels this lament: How can we justify the enormous cost of sending people beyond our planet when there is so much suffering here at home? 

Advocates for human space exploration reject the zero-sum framing and point to the many downstream benefits of human spaceflight. Space exploration has catalyzed inventions from the CAT scan to baby formula. There is also inherent value in our shared adventure of learning about the vast cosmos.

Those upsides are real, but they are not remotely well distributed. Mandel predicts that the commercial space sector in its current form will only exacerbate inequalities on Earth, as profits from space ventures flow into the coffers of the already obscenely rich. 

In her book, Mandel, a space anthropologist and scholar at Virginia Tech, describes a personal transformation from spacey dreamer to grounded critic. It began during fieldwork at Spaceport America, a commercial launch facility in New Mexico, where she began to see cracks in the dazzling future imagined by space billionaires. As her career took her from street protests in London to extravagant space industry banquets in Washington, DC, she writes, “crystal clear glasses” replaced “the rose-colored ones.”

Mandel remains enchanted by space but is skeptical that humans are the optimal trailblazers. Robots, rovers, probes, and other artificial space ambassadors could do the job for a fraction of the price and without risk to life, limb, and other corporeal vulnerabilities.  

“A decentralization of self needs to occur,” she writes. “A dissolution of anthropocentrism, so to speak. And a recognition that future space explorers may not be man, even if man moves through them.” 

In other words, giant leaps for mankind no longer necessitate a man’s small steps; the wheels of a rover or the rotors of a copter offer a much better bang for our buck than boots on the ground.

In contrast to the Weinersmiths, Mandel devotes little attention to the physical dangers and limitations that space imposes on humans. She is more interested in a kind of psychic sickness that drives the impulse to abandon our planet and rush into new territories.

Mary-Jane Rubenstein, a scholar of religion at Wesleyan University, presents a thorough diagnosis of this exact pathology in her 2022 book Astrotopia: The Dangerous Religion of the Corporate Space Race, which came out in paperback last year. It all begins, appropriately enough, with the book of Genesis, where God creates Earth for the dominion of man. Over the years, this biblical brain worm has offered divine justification for the brutal colonization and environmental exploitation of our planet. Now it serves as the religious rocket fuel propelling humans into the next frontier, Rubenstein argues.

cover of Astrotopia
Astrotopia: The Dangerous Religion of the Corporate Space Race
Mary-Jane Rubenstein
UNIVERSITY OF CHICAGO PRESS, 2022  (PAPERBACK RELEASE 2024)

“The intensifying ‘NewSpace race’ is as much a mythological project as it is a political, economic, or scientific one,” she writes. “It’s a mythology, in fact, that holds all these other efforts together, giving them an aura of duty, grandeur, and benevolence.”

Rubenstein makes a forceful case that malignant outgrowths of Christian ideas scaffold the dreams of space settlements championed by Musk, Bezos, and like-minded enthusiasts—even if these same people might never describe themselves as religious. If Earth is man’s dominion, space is the next logical step. Earth is just a temporary staging ground for a greater destiny; we will find our deliverance in the heavens.   

“Fuck Earth,” Elon Musk said in 2014. “Who cares about Earth? If we can establish a Mars colony, we can almost certainly colonize the whole solar system.”

Jeff Bezos, for one, claims to care about Earth; that’s among his best arguments for why humans should move beyond it. If heavy industries and large civilian populations cast off into the orbital expanse, our home world can be, in his words, “zoned residential and light industry,” allowing it to recover from anthropogenic pressures.

Bezos also believes that space settlements are essential for the betterment of humanity, in part on the grounds that they will uncork our population growth. He envisions an orbital archipelago of stations, sprawled across the solar system, that could support a collective population of a trillion people. “That’s a thousand Mozarts. A thousand Einsteins,” Bezos has mused. “What a cool civilization that would be.”

It does sound cool. But it’s an easy layup for Rubenstein: This “numbers game” approach would also produce a thousand Hitlers and Stalins, she writes. 

And that is the real crux of the argument against pushing hard torapidly expand human civilization into space: We will still be humans when we get there. We won’t escape our vices and frailties by leaving Earth—in fact, we may exacerbate them. 

While all three books push back on the existential argument for space settlements, the Weinersmiths take the rebuttal one step further by proposing that space colonization might actually increase the risk of self-annihilation rather than neutralizing it.

“Going to space will not end war because war isn’t caused by anything that space travel is apt to change, even in the most optimistic scenarios,” they write. “Humanity going to space en masse probably won’t reduce the likelihood of war, but we should consider that it might increase the chance of war being horrific.” 

The pair imagine rival space nations exchanging asteroid fire or poisoning whole biospheres. Proponents of space settlements often point to the fate of the dinosaurs as motivational grist, but what if a doomsday asteroid were deliberately flung between human cultures as a weapon? It may sound outlandish, but it’s no more speculative than a floating civilization with a thousand Mozarts. It follows the same logic of extrapolating our human future in space from our behavior on Earth in the past.

So should we just sit around and wait for our inevitable extinction? The three books have more or less the same response: What’s the rush? It is far more likely that humanity will be wiped out by our own activity in the near term than by any kind of cosmic threat. Worrying about the expansion of the sun in billions of years, as Musk has openly done, is frankly hysterical. 

In the meantime, we have some growing up to do. Mandel and Rubenstein both argue that any worthy human future in space must adopt a decolonizing approach that emphasizes caretaking and stewardship of this planet and its inhabitants before we set off for others. They draw inspiration from science fiction, popular culture, and Indigenous knowledge, among other sources, to sketch out these alternative visions of an off-Earth future. 

Mandel sees hope for this future in post-scarcity political theories. She cites various attempts to anticipate the needs of future generations—ideas found in the work of the social theorist Aaron Benanav, or in the values expressed by the Green New Deal, or in the fictional Ministry for the Future imagined by Kim Stanley Robinson in his 2020 novel of the same name. Whatever you think of the controversial 2025 book Abundance, by Ezra Klein and Derek Thompson, it is also appealing to the same demand for a post-scarcity road map.  

To that end, Mandel envisions “the creation of a governing body that would require that techno-scientific plans, especially those with a global reach, take into consideration multigenerational impacts and multigenerational voices.”  

For Rubenstein, religion is the poison, but it may also offer the cure. She sees potential in a revival of pantheism, which is the belief that all the contents of the universe—from rocks to humans to galaxies—are divine and perhaps alive on some level. She hasn’t fully converted herself to this movement, let alone become an evangelist, but she says it’s a spiritual direction that could be an effective counterweight to dominionist views of the universe.

“It doesn’t matter whether … any sort of pantheism is ‘true,’” she writes. “What matters is the way any given mythology prompts us to interact with the world we’re a part of—the world each of our actions helps to make and unmake. And frankly, some mythologies prompt us to act better than others.”

All these authors ultimately conclude that it would be great if humans lived in space—someday, if and when we’ve matured. But the three books all express concerns about efforts by commercial space companies, with the help of the US government, to bypass established space laws and norms—concerns that have been thoroughly validated in 2025.  

The combustible relationship between Elon Musk and Donald Trump has raised eyebrows about cronyism—and retribution—between governments and space companies. Space is rapidly becoming weaponized. And recent events have reminded us of the immense challenges of human spaceflight. SpaceX’s next-­generation Starship vehicle has suffered catastrophic failures in several test flights, while Boeing’s Starliner capsule experienced malfunctions that kept two astronauts on the International Space Station for months longer than expected. Even space tourism is developing a bad rap: In April, a star-studded all-woman crew on a Blue Origin suborbital flight was met with widespread backlash as a symbol of out-of-touch wealth and privilege.

It is at this point that we must loop back to the issue of “suckitude,” which Mandel also channels in her book through the killer opening of M.T. Anderson’s novel Feed: “We went to the moon to have fun, but the moon turned out to completely suck.”

The dreams of space settlements put forward by Musk and Bezos are insanely fun. The reality may well suck. But it’s doubtful that any degree of suckitude will slow down the commercial space race, and the authors do at times seem to be yelling into the cosmic void. 

Still, the books challenge space enthusiasts of all stripes to imagine new ways of relating to space that aren’t so tactile and exploitative. Along those lines, Rubenstein shares a compelling anecdote in Astrotopia about an anthropologist who lived with an Inuit community in the early 1970s. When she told them about the Apollo moon landings, her hosts burst out in laughter. 

“We didn’t know this was the first time you white people had been to the moon,” they said. “Our shamans go all the time … The issue is not whether we go to visit our relatives, but how we treat them and their homeland when we go.” 

Becky Ferreira is a science reporter based in upstate New York, and author of First Contact, a book about the search for alien life, which will be published in September. 

NASA’s new AI model can predict when a solar storm may strike

NASA and IBM have released a new open-source machine learning model to help scientists better understand and predict the physics and weather patterns of the sun. Surya, trained on over a decade’s worth of NASA solar data, should help give scientists an early warning when a dangerous solar flare is likely to hit Earth.

Solar storms occur when the sun erupts energy and particles into space. They can produce solar flares and slower-moving coronal mass ejections that can disrupt radio signals, flip computer bits onboard satellites, and endanger astronauts with bursts of radiation. 

There’s no way to prevent these sorts of effects, but being able to predict when a large solar flare will occur could let people work around them. However, as Louise Harra, an astrophysicist at ETH Zurich, puts it, “when it erupts is always the sticking point.”

Scientists can easily tell from an image of the sun if there will be a solar flare in the near future, says Harra, who did not work on Surya. But knowing the exact timing and strength of a flare is much harder, she says. That’s a problem because a flare’s size can make the difference between small regional radio blackouts every few weeks (which can still be disruptive) or a devastating solar superstorm that would cause satellites to fall out of orbit and electrical grids to fail. Some solar scientists believe we are overdue for a solar superstorm of this magnitude.

While machine learning has been used to study solar weather events before, the researchers behind Surya hope the quality and sheer scale of their data will help it predict a wider range of events more accurately. 

The model’s training data came from NASA’s Solar Dynamics Observatory, which collects pictures of the sun at many different wavelengths of light simultaneously. That made for a dataset of over 250 terabytes in total.

Early testing of Surya showed it could predict some solar flares two hours in advance. “It can predict the solar flare’s shape, the position in the sun, the intensity,” says Juan Bernabe-Moreno, an AI researcher at IBM who led the Surya project. Two hours may not be enough to protect against all the impacts a strong flare could have, but every moment counts. IBM claims in a blog post that this can as much as double the warning time currently possible with state-of-the-art methods, though exact reported lead times vary. It’s possible this predictive power could be improved through, for example, fine-tuning or by adding other data, as well. 

According to Harra, the hidden patterns underlying events like solar flares are hard to understand from Earth. She says that while astrophysicists know the conditions that make these events happen, they still do not understand why they occur when they do. “It’s just those tiny destabilizations that we know happen, but we don’t know when,” says Harra. The promise of Surya lies in whether it can find the patterns underlying those destabilizations faster than any existing methods, buying us extra time.

However, Bernabe-Moreno is excited for the potential beyond predicting solar flares. He hopes to use Surya alongside previous models he worked on for IBM and NASA that predict weather here on Earth to better understand how solar storms and Earth weather are connected. “There is some evidence about solar weather influencing lightning, for example,” he says. “What are the cross effects, and where and how do you map the influence from one type of weather to the other?”

Because Surya is a foundation model, trained without a specialized job, NASA and IBM hope that it can find many patterns in the sun’s physics, much as general-purpose large language models like ChatGPT can take on many different tasks. They believe Surya could even enable new understandings about how other celestial bodies work. 

“Understanding the sun is a proxy for understanding many other stars,” Bernabe-Moreno says. “We look at the sun as a laboratory.”

Inside the most dangerous asteroid hunt ever

If you were told that the odds of something were 3.1%, it really wouldn’t seem like much. But for the people charged with protecting our planet, it was huge. 

On February 18, astronomers determined that a 130- to 300-foot-long asteroid had a 3.1% chance of crashing into Earth in 2032. Never had an asteroid of such dangerous dimensions stood such a high chance of striking the planet. For those following this developing story in the news, the revelation was unnerving. For many scientists and engineers, though, it turned out to be—despite its seriousness—a little bit exciting.

While possible impact locations included patches of empty ocean, the space rock, called 2024 YR4, also had several densely populated cities in its possible crosshairs, including Mumbai, Lagos, and Bogotá. If the asteroid did in fact hit such a metropolis, the best-case scenario was severe damage; the worst case was outright, total ruin. And for the first time, a group of United Nations–backed researchers began to have high-level discussions about the fate of the world: If this asteroid was going to hit the planet, what sort of spaceflight mission might be able to stop it? Would they ram a spacecraft into it to deflect it? Would they use nuclear weapons to try to swat it away or obliterate it completely

At the same time, planetary defenders all over the world crewed their battle stations to see if we could avoid that fate—and despite the sometimes taxing new demands on their psyches and schedules, they remained some of the coolest customers in the galaxy. “I’ve had to cancel an appointment saying, I cannot come—I have to save the planet,” says Olivier Hainaut, an astronomer at the European Southern Observatory and one of those who tracked down 2024 YR4. 

Then, just as quickly as history was made, experts declared that the danger had passed. On February 24, asteroid trackers issued the all-clear: Earth would be spared, just as many planetary defense researchers had felt assured it would. 

How did they do it? What was it like to track the rising (and rising and rising) danger of this asteroid, and to ultimately determine that it’d miss us?

This is the inside story of how, over a span of just two months, a sprawling network of global astronomers found, followed, mapped, planned for, and finally dismissed 2024 YR4, the most dangerous asteroid ever found—all under the tightest of timelines and, for just a moment, with the highest of stakes. 

“It was not an exercise,” says Hainaut. This was the real thing: “We really [had] to get it right.”


IN THE BEGINNING

December 27, 2024

THE ASTEROID TERRESTRIAL-IMPACT LAST ALERT SYSTEM, HAWAII

Long ago, an asteroid in the space-rock highway between Mars and Jupiter felt a disturbance in the force: the gravitational pull of Jupiter itself, king of the planets. After some wobbling back and forth, this asteroid was thrown out of the belt, skipped around the sun, and found itself on an orbit that overlapped with Earth’s own. 

“I was the first one to see the detections of it,” Larry Denneau, of the University of Hawai‘i, recalls. “A tiny white pixel on a black background.” 

Denneau is one of the principal investigators at the NASA-funded Asteroid Terrestrial-impact Last Alert System (ATLAS) telescopic network. It may have been just two days after Christmas, but he followed procedure as if it were any other day of the year and sent the observations of the tiny pixel onward to another NASA-funded facility, the Minor Planet Center (MPC) in Cambridge, Massachusetts. 

There’s an alternate reality in which none of this happened. Fortunately, in our timeline, various space agencies—chiefly NASA, but also the European Space Agency and the Japan Aerospace Exploration Agency—invest millions of dollars every year in asteroid-spotting efforts. 

And while multiple nations host observatories capable of performing this work, the US clearly leads the way: Its planetary defense program provides funding to a suite of telescopic facilities solely dedicated to identifying potentially hazardous space rocks. (At least, it leads the way for the moment. The White House’s proposal for draconian budget cuts to NASA and the National Science Foundation mean that several observatories and space missions linked to planetary defense are facing funding losses or outright terminations.) 

Astronomers working at these observatories are tasked with finding threatening asteroids before they find us—because you can’t fight what you can’t see. “They are the first line of planetary defense,” says Kelly Fast, the acting planetary defense officer at NASA’s Planetary Defense Coordination Office in Washington, DC.

ATLAS is one part of this skywatching project, and it consists of four telescopes: two in Hawaii, one in Chile, and another in South Africa. They don’t operate the way you’d think, with astronomers peering through them all night. Instead, they operate “completely robotically and automatically,” says Denneau. Driven by coding scripts that he and his colleagues have developed, these mechanical eyes work in harmony to watch out for any suspicious space rocks. Astronomers usually monitor their survey of the sky from a remote location.

ATLAS telescopes are small, so they can’t see particularly distant objects. But they have a wide field of view, allowing them to see large patches of space at any one moment. “As long as the weather is good, we’re constantly monitoring the night sky, from the North Pole to the South Pole,” says Denneau. 

Larry Denneau
Larry Denneau is a principal investigator at the Asteroid Terrestrial-impact Last Alert System telescopic network.
COURTESY PHOTO

If they detect the starlight reflecting off a moving object, an operator, such as Denneau, gets an alert and visually verifies that the object is real and not some sort of imaging artifact. When a suspected asteroid (or comet) is identified, the observations are sent to the MPC, which is home to a bulletin board featuring (among other things) orbital data on all known asteroids and comets. 

If the object isn’t already listed, a new discovery is announced, and other astronomers can perform follow-up observations. 

In just the past few years, ATLAS has detected more than 1,200 asteroids with near-Earth orbits. Finding ultimately harmless space rocks is routine work—so much so that when the new near-Earth asteroid was spotted by ATLAS’s Chilean telescope that December day, it didn’t even raise any eyebrows. 

Denneau had simply been sitting at home, doing some late-night work on his computer. At the time, of course, he didn’t know that his telescope had just spied what would soon become a history-making asteroid—one that could alter the future of the planet.

The MPC quickly confirmed the new space rock hadn’t already been “found,” and astronomers gave it a provisional designation: 2024 YR4

CATALINA SKY SURVEY, ARIZONA

Around the same time, the discovery was shared with another NASA-funded facility: the Catalina Sky Survey, a nest of three telescopes in the Santa Catalina Mountains north of Tucson that works out of the University of Arizona. “We run a very tight operation,” says Kacper Wierzchoś, one of its comet and asteroid spotters. Unlike ATLAS, these telescopes (although aided by automation) often have an in-person astronomer available to quickly alter the surveys in real time.

“We run a very tight operation,” says Kacper Wierzchoś, one of the comet and asteroid spotters at the Catalina Sky Survey north of Tucson, Arizona.
COURTESY PHOTO

So when Catalina was alerted about what its peers at ATLAS had spotted, staff deployed its Schmidt telescope—a smaller one that excels at seeing bright objects moving extremely quickly. As they fed their own observations of 2024 YR4 to the MPC, Catalina engineer David Rankin looked back over imagery from the previous days and found the new asteroid lurking in a night-sky image taken on December 26. Around then, ATLAS also realized that it had caught sight of 2024 YR4 in a photograph from December 25. 

The combined observations confirmed it: The asteroid had made its closest approach to Earth on Christmas Day, meaning it was already heading back out into space. But where, exactly, was this space rock going? Where would it end up after it swung around the sun? 

CENTER FOR NEAR-EARTH OBJECT STUDIES, CALIFORNIA 

If the answer to that question was Earth, Davide Farnocchia would be one of the first to know. You could say he’s one of NASA’s watchers on the wall. 

And he’s remarkably calm about his duties. When he first heard about 2024 YR4, he barely flinched. It was just another asteroid drifting through space not terribly far from Earth. It was another box to be ticked.

Once it was logged by the MPC, it was Farnocchia’s job to try to plot out 2024 YR4’s possible paths through space, checking to see if any of them overlapped with our planet’s. He works at NASA’s Center for Near-Earth Object Studies (CNEOS) in California, where he’s partly responsible for keeping track of all the known asteroids and comets in the solar system. “We have 1.4 million objects to deal with,” he says, matter-of-factly. 

In the past, astronomers would have had to stitch together multiple images of this asteroid and plot out its possible trajectories. Today, fortunately, Farnocchia has some help: He oversees the digital brain Sentry, an autonomous system he helped code. (Two other facilities in Italy perform similar work: the European Space Agency’s Near-Earth Object Coordination Centre, or NEOCC, and the privately owned Near-Earth Objects Dynamics Site, or NEODyS.)

To chart their courses, Sentry uses every new observation of every known asteroid or comet listed on the MPC to continuously refine the orbits of all those objects, using the immutable laws of gravity and the gravitational influences of any planets, moons, or other sizable asteroids they pass. A recent update to the software means that even the ever-so-gentle push afforded by sunlight is accounted for. That allows Sentry to confidently project the motions of all these objects at least a century into the future. 

Davide Farnocchia
Davide Farnocchia helps track all the known asteroids and comets in the solar system at NASA’s Center for Near-Earth Object Studies.
COURTESY PHOTO

Almost all newly discovered asteroids are quickly found to pose no impact risk. But those that stand even an infinitesimally small chance of smashing into our planet within the next 100 years are placed on the Sentry Risk List until additional observations can rule out those awful possibilities. Better safe than sorry. 

In late December, with just a limited set of data, Sentry concluded that there was a non-negligible chance 2024 YR4 would strike Earth in 2032. Aegis, the equivalent software at Europe’s NEOCC site, agreed. No bother. More observations would very likely remove 2024 YR4 from the Risk List. Just another day at the office for Farnocchia.

It’s worth noting that an asteroid heading toward Earth isn’t always a problem. Small rocks burn up in the planet’s atmosphere several times a day; you’ve probably seen one already this year, on a moonless night. But above a certain size, these rocks turn from innocuous shooting stars into nuclear-esque explosions. 

Reflected starlight is great for initially spotting asteroids, but it’s a terrible way to determine how big they are. A large, dull rock reflects as much light as a bright, tiny rock, making them appear the same to many telescopes. And that’s a problem, considering that a rock around 30 feet long will explode loudly but inconsequentially in Earth’s atmosphere, while a 3,000-foot-long asteroid would slam into the ground and cause devastation on a global scale, imperiling all of civilization. Roughly speaking, if you double the size of an asteroid, it becomes eight times more energetic upon impact—so finding out the size of an Earthbound asteroid is of paramount importance.

In those first few hours after it was discovered, and before anyone knew how shiny or dull its surface was, 2024 YR4 was estimated by astronomers to be as small as 65 feet across or as large as 500 feet. An object of the former size would blow up in mid-air, shattering windows over many miles and likely injuring thousands of people. At the latter size it would vaporize the heart of any city it struck, turning solid rock and metal into liquid and vapor, while its blast wave would devastate the rest of it, killing hundreds of thousands or even millions in the process. 

So now the question was: Just how big was 2024 YR4?


REFINING THE PICTURE

Mid-January 2025

VERY LARGE TELESCOPE, CHILE

Understandably dissatisfied with that level of imprecision, the European Southern Observatory’s Very Large Telescope (VLT), high up on the Cerro Paranal mountain in Chile’s Atacama Desert, entered the chat. As the name suggests, this flagship facility is vast, and it’s capable of really zooming in on distant objects. Or to put it another way: “The VLT is the largest, biggest, best telescope in the world,” says Hainaut, one of the facility’s operators, who usually commands it from half a world away in Germany.  

In reality, the VLT—which lends a hand to the European Space Agency in its asteroid-hunting duties—is actually made up of four massive telescopes, each fixed on four separate corners of the sky. They can be combined to act as a huge light bucket, allowing astronomers to see very faint asteroids. Four additional, smaller, movable telescopes can also team up with their bigger siblings to provide remarkably high-resolution images of even the stealthiest space rocks. 

In this sequence of infrared images taken by ESO’s VLT, the individual image frames have been aligned so that the asteroid remains in the center as other stars appear to move around it.
ESO/O. HAINAUT ET AL.

With so much tech to oversee, the control room of the VLT looks a bit like the inside of the Death Star. “You have eight consoles, each of them with a dozen screens. It’s big, it’s large, it’s spectacular,” says Hainaut. 

In mid-January, the European Space Agency asked the VLT to study several asteroids that had somewhat suspicious near-Earth orbits—including 2024 YR4. With just a few lines of code, the VLT could easily train its sharp eyes on an asteroid like 2024 YR4, allowing astronomers to narrow down its size range. It was found to be at least 130 feet long (big enough to cause major damage in a city) and as much as 300 feet (able to annihilate one).

January 29, 2025

INTERNATIONAL ASTEROID WARNING NETWORK
Marco Fenucci
Marco Fenucci is a near-Earth-object dynamicist at the European Space Agency’s Near-Earth Object Coordination Centre.
COURTESY PHOTO

By the end of the month, there was no mistaking it: 2024 YR4 stood a greater than 1% chance of impacting Earth on December 22, 2032. 

“It’s not something you see very often,” says Marco Fenucci, a near-Earth-object dynamicist at NEOCC. He admits that although it was “a serious thing,” this escalation was also “exciting to see”—something straight out of a sci-fi flick.

Sentry and Aegis, along with the systems at NEODyS, had been checking one another’s calculations. “There was a lot of care,” says Farnocchia, who explains that even though their programs worked wonders, their predictions were manually verified by multiple experts. When a rarity like 2024 YR4 comes along, he says, “you kind of switch gears, and you start being more cautious. You start screening everything that comes in.”

At this point, the klaxon emanating from these three data centers pushed the International Asteroid Warning Network (IAWN), a UN-backed planetary defense awareness group, to issue a public alert to the world’s governments: The planet may be in peril. For the most part, it was at this moment that the media—and the wider public—became aware of the threat. Earth, we may have a problem.

Denneau, along with plenty of other astronomers, received an urgent email from Fast at NASA’s Planetary Defense Coordination Office, requesting that all capable observatories track this hazardous asteroid. But there was one glaring problem. When 2024 YR4 was discovered on December 27, it was already two days after it had made its closest approach to Earth. And since it was heading back out into the shadows of space, it was quickly fading from sight.

Once it gets too faint, “there’s not much ATLAS can do,” Denneau says. By the time of IAWN’s warning, planetary defenders had just weeks to try to track 2024 YR4 and refine the odds of its hitting Earth before they’d lose it to the darkness. 

And if their scopes failed, the odds of an Earth impact would have stayed uncomfortably high until 2028, when the asteroid was due to make another flyby of the planet. That’d be just four short years before the space rock might actually hit.

“In that situation, we would have been … in trouble,” says NEOCC’s Fenucci.

The hunt was on.


PREPARING FOR THE WORST

February 5 and February 6, 2025

SPACE MISSION PLANNING ADVISORY GROUP, AUSTRIA

In early February, spaceflight mission specialists, including those at the UN-supported Space Mission Planning Advisory Group in Vienna, began high-level talks designed to sketch out ways in which 2024 YR4 could be either deflected away from Earth or obliterated—you know, just in case.

A range of options were available—including ramming it with several uncrewed spacecraft or assaulting it with nuclear weapons—but there was no silver bullet in this situation. Nobody had ever launched a nuclear explosive device into deep space before, and the geopolitical ramifications of any nuclear-armed nations doing so in the present day would prove deeply unwelcome. Asteroids are also extremely odd objects; some, perhaps including 2024 YR4, are less like single chunks of rock and more akin to multiple cliffs flying in formation. Hit an asteroid like that too hard and you could fail to deflect it—and instead turn an Earthbound cannonball into a spray of shotgun pellets. 

It’s safe to say that early on, experts were concerned about whether they could prevent a potential disaster. Crucially, eight years was not actually much time to plan something of this scale. So they were keen to better pinpoint how likely, or unlikely, it was that 2024 YR4 was going to collide with the planet before any complex space mission planning began in earnest. 

The people involved with these talks—from physicists at some of America’s most secretive nuclear weapons research laboratories to spaceflight researchers over in Europe—were not feeling close to anything resembling panic. But “the timeline was really short,” admits Hainaut. So there was an unprecedented tempo to their discussions. This wasn’t a drill. This was the real deal. What would they do to defend the planet if an asteroid impact couldn’t be ruled out?

Luckily, over the next few days, a handful of new observations came in. Each helped Sentry, Aegis, and the system at NEODyS rule out more of 2024 YR4’s possible future orbits. Unluckily, Earth remained a potential port of call for this pesky asteroid—and over time, our planet made up a higher proportion of those remaining possibilities. That meant that the odds of an Earth impact “started bubbling up,” says Denneau. 

a telescope in each of the four corners points to an asteroid

EVA REDAMONTI

By February 6, they jumped to 2.3%—a one-in-43 chance of an impact. 

“How much anxiety someone should feel over that—it’s hard to say,” Denneau says, with a slight shrug. 

In the past, several elephantine asteroids have been found to stand a small chance of careening unceremoniously into the planet. Such incidents tend to follow a pattern. As more observations come in and the asteroid’s orbit becomes better known, an Earth impact trajectory remains a possibility while other outlying orbits are removed from the calculations—so for a time, the odds of an impact rise. Finally, with enough observations in hand, it becomes clear that the space rock will miss our world entirely, and the impact odds plummet to zero.

Astronomers expected this to repeat itself with 2024 YR4. But there was no guarantee. There’s no escaping the fact that one day, sooner or later, scientists will discover a dangerous asteroid that will punch Earth in the face—and raze a city in the process. 

After all, asteroids capable of trashing a city have found their way to Earth plenty of times before, and not just in the very distant past. In 1908, an 800-square-mile patch of forest in Siberia—one that was, fortunately, very sparsely populated—was decimated by a space rock just 180 feet long. It didn’t even hit the ground; it exploded in midair with the force of a 15-megaton blast.

But only one other asteroid comparable in size to 2024 YR4 had its 2.3% figure beat: in 2004, Apophis—capable of causing continental-scale damage—had (briefly) stood a 2.7% chance of impacting Earth in 2029.

Rapidly approaching uncharted waters, the powers that be at NASA decided to play a space-based wild card: the James Webb Space Telescope, or JWST.

THE JAMES WEBB SPACE TELESCOPE, DEEP SPACE, ONE MILLION MILES FROM EARTH

A large dull asteroid reflects the same amount of light as a small shiny one, but that doesn’t mean astronomers sizing up an asteroid are helpless. If you view both asteroids in the infrared, the larger one glows brighter than the smaller one no matter the surface coating—making infrared, or the thermal part of the electromagnetic spectrum, a much better gauge of a space rock’s proportions. 

Observatories on Earth do have infrared capabilities, but our planet’s atmosphere gets in their way, making it hard for them to offer highly accurate readings of an asteroid’s size. 

But the James Webb Space Telescope (JWST), hanging out in space, doesn’t have that problem. 

A collage of three images showing the black expanse of space. Two-thirds of the collage is taken up by the black background sprinkled with small, blurry galaxies in orange, blue, and white. There are two images in a column at the right side of the collage. On the right side of the main image, not far from the top, a very faint dot is outlined with a white square. At the right, there are two zoomed in views of this area. The top box is labeled NIRCam and shows a fuzzy dot at the center of the inset. The bottom box is labeled MIRI and shows a fuzzy pinkish dot.
Asteroid 2024 YR4 is the smallest object targeted by JWST to date, and one of the smallest objects to have its size directly measured. Observations were taken using both its NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) to study the thermal properties of the asteroid.
NASA, ESA, CSA, A. RIVKIN (APL), A. PAGAN (STSCI)

This observatory, which sits at a gravitationally stable point about a million miles from Earth, is polymathic. Its sniper-like scope can see in the infrared and allows it to peer at the edge of the observable universe, meaning it can study galaxies that formed not long after the Big Bang. It can even look at the light passing through the atmospheres of distant planets to ascertain their chemical makeups. And its remarkably sharp eye means it can also track the thermal glow of an asteroid long after all ground-based telescopes lose sight of it.

In a fortuitous bit of timing, by the moment 2024 YR4 came along, planetary defenders had recently reasoned that JWST could theoretically be used to track ominous asteroids using its own infrared scope, should the need arise. So after IAWN’s warning went out, operators of JWST ran an analysis: Though the asteroid would vanish from most scopes by late March, this one might be able to see the rock until sometime in May, which would allow researchers to greatly refine their assessment of the asteroid’s orbit and its odds of making Earth impact.

Understanding 2024 YR4’s trajectory was important, but “the size was the main motivator,” says Andy Rivkin, an astronomer at Johns Hopkins University’s Applied Physics Laboratory, who led the proposal to use JWST to observe the asteroid. The hope was that even if the impact odds remained high until 2028, JWST would find that 2024 YR4 was on the smaller side of the 130-to-300-feet size range—meaning it would still be a danger, but a far less catastrophic one. 

The JWST proposal was accepted by NASA on February 5. But the earliest it could conduct its observations was early March. And time really wasn’t on Earth’s side.

February 7, 2025

GEMINI SOUTH TELESCOPE, CHILE

“At this point, [2024 YR4] was too faint for the Catalina telescopes,” says Catalina’s Wierzchoś. “In our opinion, this was a big deal.” 

So Wierzchoś and his colleagues put in a rare emergency request to commandeer the Gemini Observatory, an internationally funded and run facility featuring two large, eagle-eyed telescopes—one in Chile and one atop Hawaii’s Mauna Kea volcano. Their request was granted, and on February 7, they trained the Chile-based Gemini South telescope onto 2024 YR4. 

This composite image was captured by a team of astronomers using the Gemini Multi-Object Spectrograph (GMOS). The hazy dot at the center is asteroid 2024 YR4.
INTERNATIONAL GEMINI OBSERVATORY/NOIRLAB/NSF/AURA/M. ZAMANI

The odds of Earth impact dropped ever so slightly, to 2.2%—a minor, but still welcome, development. 

Mid-February 2025

MAGDALENA RIDGE OBSERVATORY, NEW MEXICO

By this point, the roster of 2024 YR4 hunters also included the tiny team operating the Magdalena Ridge Observatory (MRO), which sits atop a tranquil mountain in New Mexico.

“It’s myself and my husband,” says Eileen Ryan, the MRO director. “We’re the only two astronomers running the telescope. We have a daytime technician. It’s kind of a mom-and-pop organization.” 

Still, the scope shouldn’t be underestimated. “We can see maybe a cell-phone-size object that’s illuminated at geosynchronous orbit,” Ryan says, referring to objects 22,000 miles away. But its most impressive feature is its mobility. While other observatories have slowly swiveling telescopes, MRO’s scope can move like the wind. “We can track the fastest objects,” she says, with a grin—noting that the telescope was built in part to watch missiles for the US Air Force. Its agility and long-distance vision explain why the Space Force is one of MRO’s major clients: It can be used to spy on satellites and spacecraft anywhere from low Earth orbit right out to the lunar regions. And that meant spying on the super-speedy, super-sneaky 2024 YR4 wasn’t a problem for MRO, whose own observations were vital in refining the asteroid’s impact odds.

Dr Eileen Ryan
Eileen Ryan is the director of the Magdalena Ridge Observatory in New Mexico.
COURTESY PHOTO

Then, in mid-February, MRO and all ground-based observatories came up against an unsolvable problem: The full moon was out, shining so brightly that it blinded any telescope that dared point at the night sky. “During the full moon, the observatories couldn’t observe for a week or so,” says NEOCC’s Fenucci. To most of us, the moon is a beautiful silvery orb. But to astronomers, it’s a hostile actor. “We abhor the moon,” says Denneau. 

All any of them could do was wait. Those tracking 2024 YR4 vacillated between being animated and slightly trepidatious. The thought that the asteroid could still stand a decent chance of impacting Earth after it faded from view did weigh a little on their minds. 

Nevertheless, Farnocchia maintained his characteristic sangfroid throughout. “I try to stress about the things I can control,” he says. “All we can do is to explain what the situation is, and that we need new data to say more.”

February 18, 2025

CENTER FOR NEAR-EARTH OBJECT STUDIES, CALIFORNIA 

As the full moon finally faded into a crescent of light, the world’s largest telescopes sprang back into action for one last shot at glory. “The dark time came again,” says Hainaut, with a smile.

New observations finally began to trickle in, and Sentry, Aegis, and NEODyS readjusted their forecasts. It wasn’t great news: The odds of an Earth impact in 2032 jumped up to 3.1%, officially making 2024 YR4 the most dangerous asteroid ever discovered.

This declaration made headlines across the world—and certainly made the curious public sit up and wonder if they had yet another apocalyptic concern to fret about. But, as ever, the asteroid hunters held fast in their prediction that sooner or later—ideally sooner—more observations would cause those impact odds to drop. 

“We kept at it,” says Ryan. But time was running short; they started to “search for out-of-the-box ways to image this asteroid,” says Fenucci. 

Planetary defense researchers soon realized that 2024 YR4 wasn’t too far away from NASA’s Lucy spacecraft, a planetary science mission making a series of flybys of various asteroids. If Lucy could be redirected to catch up to 2024 YR4 instead, it would give humanity its best look at the rock, allowing Sentry and company to confirm or dispel our worst fears. 

Sadly, NASA ran the numbers, and it proved to be a nonstarter: 2024 YR4 was too speedy and too far for Lucy to pursue. 

It was really starting to look as if JWST would be the last, best hope to track 2024 YR4. 


A CHANGE OF FATE

February 19, 2025

VERY LARGE TELESCOPE, CHILE and MAGDALENA RIDGE OBSERVATORY, NEW MEXICO

Just one day after 2024 YR made history, the VLT, MRO, and others caught sight of it again, and Sentry, Aegis, and NEODyS voraciously consumed their new data. 

The odds of an Earth impact suddenly dropped to 1.5%

Astronomers didn’t really have time to react to the possibility that this was a good sign—they just kept sending their observations onward.

February 20, 2025

SUBARU TELESCOPE, HAWAII

Yet another observatory had been itching to get into the game for weeks, but it wasn’t until February 20 that Tsuyoshi Terai, an astronomer at Japan’s Subaru Telescope, sitting atop Mauna Kea, finally caught 2024 YR4 shifting between the stars. He added his data to the stream.

And all of a sudden, the asteroid lost its lethal luster. The odds of its hitting Earth were now just 0.3%. 

At this point, you might expect that all those tracking it would be in a single control room somewhere, eyes glued to their screens, watching the odds drop before bursting into cheers and rapturous applause. But no—the astronomers who had spent so long observing this asteroid remained scattered across the globe. And instead of erupting into cheers, they exchanged modestly worded emails of congratulations—the digital equivalent of a nod or a handshake.

Dr. Tsuyoshi Tera at a workstation with many monitors
In late February, data from Tsuyoshi Terai, an astronomer at Japan’s Subaru Telescope, which sits atop Mauna Kea, confirmed that 2024 YR4 was not so lethal after all.
NAOJ

“It was a relief,” says Terai. “I was very pleased that our data contributed to put an end to the risk of 2024 YR4.” 

February 24, 2025

INTERNATIONAL ASTEROID WARNING NETWORK

Just a few days later, and thanks to a litany of observations continuing to flood in, IAWN issued the all-clear. This once-ominous asteroid’s odds of inconveniencing our planet were at 0.004%—one in 25,000. Today, the odds of an Earth impact in 2032 are exactly zero.

“It was kinda fun while it lasted,” says Denneau. 

Planetary defenders may have had a blast defending the world, but these astronomers still took the cosmic threat deeply seriously—and never once took their eyes off the prize. “In my mind, the observers and orbit teams were the stars of this story,” says Fast, NASA’s acting planetary defense officer.

Farnocchia shrugs off the entire thing. “It was the expected outcome,” he says. “We just didn’t know when that would happen.”

Looking back on it now, though, some 2024 YR4 trackers are allowing themselves to dwell on just how close this asteroid came to being a major danger. “It’s wild to watch it all play out,” says Denneau. “We were weeks away from having to spin up some serious mitigation planning.” But there was no need to work out how the save the world. It turned out that 2024 YR4 was never a threat to begin with—it just took a while to check. 

And these experiences in handling a dicey space rock will only serve to make the world a safer place to live. One day, an asteroid very much like 2024 YR4 will be seen heading straight for Earth. And those tasked with tracking it will be officially battle-tested, and better prepared than ever to do what needs to be done.


A POSTSCRIPT

March 27, 2025

JAMES WEBB SPACE TELESCOPE, DEEP SPACE, ONE MILLION MILES FROM EARTH

But the story of 2024 YR4 is not quite over—in fact, if this were a movie, it would have an after-credits scene.

After the Earth-impact odds fell off a cliff, JWST went ahead with its observations in March anyway. It found out that 2024 YR4 was 200 feet across—so large that a direct strike on a city would have proved horrifically lethal. Earth just didn’t have to worry about it anymore. 

But the moon might. Thanks in part to JWST, astronomers calculated a 3.8% chance that 2024 YR4 will impact the lunar surface in 2032. Additional JWST observations in May bumped those odds up slightly, to 4.3%, and the orbit can no longer be refined until the asteroid’s next Earth flyby in 2028. 

“It may hit the moon!” says Denneau. “Everybody’s still very excited about that.” 

A lunar collision would give astronomers a wonderful opportunity not only to study the physics of an asteroid impact, but also to demonstrate to the public just how good they are at precisely predicting the future motions of potentially lethal space rocks. “It’s a thing we can plan for without having to defend the Earth,” says Denneau.

If 2024 YR4 is truly going to smash into the moon, the impact—likely on the side facing Earth—would unleash an explosion equivalent to hundreds of nuclear bombs. An expansive crater would be carved out in the blink of an eye, and a shower of debris would erupt in all directions. 

None of this supersonic wreckage would pose any danger to Earth, but it would look spectacular: You’d be able to see the bright flash of the impact from terra firma with the naked eye.

“If that does happen, it’ll be amazing,” says Denneau. It will be a spectacular way to see the saga of 2024 YR4—once a mere speck on his computer screen—come to an explosive end, from a front-row seat.

Robin George Andrews is an award-winning science journalist and doctor of volcanoes based in London. He regularly writes about the Earth, space, and planetary sciences, and is the author of two critically acclaimed books: Super Volcanoes (2021) and How to Kill An Asteroid (2024).

See the stunning first images from the Vera C. Rubin Observatory

The first spectacular images taken by the Vera C. Rubin Observatory have been released for the world to peruse: a panoply of iridescent galaxies and shimmering nebulas. “This is the dawn of the Rubin Observatory,” says Meg Schwamb, a planetary scientist and astronomer at Queen’s University Belfast in Northern Ireland.

Much has been written about the observatory’s grand promise: to revolutionize our understanding of the cosmos by revealing a once-hidden population of far-flung galaxies, erupting stars, interstellar objects, and elusive planets. And thanks to its unparalleled technical prowess, few doubted its ability to make good on that. But over the past decade, during its lengthy construction period, “everything’s been in the abstract,” says Schwamb.

Today, that promise has become a staggeringly beautiful reality. 

Rubin’s view of the universe is unlike any that preceded it—an expansive vision of the night sky replete with detail, including hazy envelopes of matter coursing around galaxies and star-paved bridges arching between them. “These images are truly stunning,” says Pedro Bernardinelli, an astronomer at the University of Washington.

During its brief perusal of the night sky, Rubin even managed to spy more than 2,000 never-before-seen asteroids, demonstrating that it should be able to spotlight even the sneakiest denizens, and darkest corners, of our own solar system.

A small section of the Vera C. Rubin Observatory’s view of the Virgo Cluster. Three merging galaxies can be seen on the upper right. The view also includes two striking spiral galaxies (lower right), distant galaxies, and many Milky Way stars.
NSF-DOE VERA C. RUBIN OBSERVATORY

Today’s reveal is a mere amuse-bouche compared with what’s to come: Rubin, funded by the US National Science Foundation and the Department of Energy, is set for at least 10 years of planned observations. But this moment, and these glorious inaugural images, are worth celebrating for what they represent: the culmination of over a decade of painstaking work. 

“This is a direct demonstration that Rubin is no longer in the future,” says Bernardinelli. “It’s the present.”

The observatory is named after the late Vera Rubin, an astronomer who uncovered strong evidence for dark matter, a mysterious and as-yet-undetected something that’s binding galaxies together more strongly than the gravity of ordinary, visible matter alone can explain. Trying to make sense of dark matter—and its equally mysterious, universe-stretching cousin, dubbed dark energy—is a monumental task, one that cannot be addressed by just one line of study or scrutiny of one type of cosmic object.

That’s why Rubin was designed to document anything and everything that shifts or sparkles in the night sky. Sitting atop Chile’s Cerro Pachón mountain range, it boasts a 7,000-pound, 3,200-megapixel digital camera that can take detailed snapshots of a large patch of the night sky; a house-size cradle of mirrors that can drink up extremely distant and faint starlight; and a maze of joints and pistons that allow it to swivel about with incredible speed and precision. A multinational computer network permits its sky surveys to be largely automated, its images speedily processed, any new objects easily detected, and the relevant groups of astronomers quickly alerted.

All that technical wizardry allows Rubin to take a picture of the entire visible night sky once every few days, filling in the shadowed gaps and unseen activity between galaxies. “The sky [isn’t] static. There are asteroids zipping by, and supernovas exploding,” says Yusra AlSayyad, Rubin’s overseer of image processing. By conducting a continuous survey over the next decade, the facility will create a three-dimensional movie of the universe’s ever-changing chaos that could help address all sorts of astronomic queries. What were the very first galaxies like? How did the Milky Way form? Are there planets hidden in our own solar system’s backyard?

Rubin’s first glimpse of the firmament is predictably bursting with galaxies and stars. But the resolution, breadth, and depth of the images have taken astronomers aback. “I’m very impressed with these images. They’re really incredible,” says Christopher Conselice, an extragalactic astronomer at the University of Manchester in England.

One shot, created from 678 individual exposures, showcases the Trifid and Lagoon nebulas—two oceans of luminescent gas and dust where stars are born. Others depict a tiny portion of Rubin’s view of the Virgo Cluster, a zoo of galaxies. Hues of blue are coming from relatively nearby whirlpools of stars, while red tints emanate from remarkably distant and primeval galaxies. 

The rich detail in these images is already proving to be illuminating. “As galaxies merge and interact, the galaxies are pulling stars away from each other,” says Conselice. This behavior can be seen in plumes of diffuse light erupting from several galaxies, creating halos around them or illuminated bridges between them—records of these ancient galaxies’ pasts.

Images like these are also likely to contain several supernovas, the explosive final moments of sizable stars. Not only do supernovas seed the cosmos with all the heavy elements that planets—and life—rely on, but they can also hint at how the universe has expanded over time. 

Anais Möller, an astrophysicist at the Swinburne University of Technology in Melbourne, Australia, is a supernova hunter. “I search for exploding stars in very far away galaxies,” she says. Older sky surveys have found plenty, but they can lack context: You can see the explosion, but not what galaxy it’s from. Thanks to Rubin’s resolution—amply demonstrated by the Virgo Cluster set of images—astronomers can now “find where those exploding stars live,” says Möller.

Another small section of the observatory’s view of the Virgo Cluster. The image includes many distant galaxies along with stars from our own Milky Way galaxy.
NSF-DOE VERA C. RUBIN OBSERVATORY

While taking these images of the distant universe, Rubin also discovered 2,104 asteroids flitting about in our own solar system—including seven whose orbits hew close to Earth’s own. This number may sound impressive, but it’s just par for the course for Rubin. In just a few months, it will find over a million new asteroids—doubling the current known tally. And over the course of its decadal survey, Rubin is projected to identify 89,000 near-Earth asteroids, 3.7 million asteroids in the belt between Mars and Jupiter, and 32,000 icy objects beyond Neptune. 

Finding more than 2,000 previously hidden asteroids in just a few hours of observations, then, “wasn’t even hard” for Rubin, says Mario Jurić, an astronomer at the University of Washington. “The asteroids really popped out.”

Rubin’s comprehensive inventorying of the solar system has two benefits. The first is scientific: All those lumps of rocks and ice are the remnants of the solar system’s formative days, which means astronomers can use them to understand how everything around us was pieced together. 

The second benefit is security. Somewhere out there, there could be an asteroid on an Earthbound trajectory—one whose impact could devastate an entire city or even several countries. Engineers are working on defensive tech designed to either deflect or obliterate such asteroids, but if astronomers don’t know where they are, those defenses are useless. In quickly finding so many asteroids, Rubin has clearly shown that it will bolster Earth’s planetary defense capabilities like no other ground-based telescope.

Altogether, Rubin’s debut has validated the hopes of countless astronomers: The observatory won’t just be an incremental improvement on what’s come before. “I think it’s a generational leap,” says Möller. It is a ruthlessly efficient, discovery-making behemoth—and a firehose of astronomic delights is about to inundate the scientific community. “It’s very scary,” says Möller. “But very exciting at the same time.”

It’s going to be a very hectic decade. As Schwamb puts it, “The roller-coaster starts now.”

Inside the race to find GPS alternatives

Later this month, an inconspicuous 150-kilogram satellite is set to launch into space aboard the SpaceX Transporter 14 mission. Once in orbit, it will test super-accurate next-generation satnav technology designed to make up for the shortcomings of the US Global Positioning System (GPS). 

The satellite is the first of a planned constellation called Pulsar, which is being developed by California-based Xona Space Systems. The company ultimately plans to have a constellation of 258 satellites in low Earth orbit. Although these satellites will operate much like those used to create GPS, they will orbit about 12,000 miles closer to Earth’s surface, beaming down a much stronger signal that’s more accurate—and harder to jam. 

“Just because of this shorter distance, we will put down signals that will be approximately a hundred times stronger than the GPS signal,” says Tyler Reid, chief technology officer and cofounder of Xona. “That means the reach of jammers will be much smaller against our system, but we will also be able to reach deeper into indoor locations, penetrating through multiple walls.”

A satnav system for the 21st century

The first GPS system went live in 1993. In the decades since, it has become one of the foundational technologies that the world depends on. The precise positioning, navigation, and timing (PNT) signals beamed by its  satellites underpin much more than Google Maps in your phone. They guide drill heads at offshore oil rigs, time-stamp financial transactions, and help sync power grids all over the world.

But despite the system’s indispensable nature, the GPS signal is easily suppressed or disrupted by everything from space weather to 5G cell towers to phone-size jammers worth a few tens of dollars. The problem has been whispered about among experts for years, but it has really come to the fore in the last three years, since Russia invaded Ukraine. The boom in drone warfare that came to characterize that war also triggered a race to develop technology for thwarting drone attacks by jamming the GPS signals they need to navigate—or spoofing the signal, creating convincing but fake positioning data. 

The crucial problem is one of distance: The GPS constellation, which consists of 24 satellites plus a handful of spares, orbits 12,550 miles (20,200 kilometers) above Earth, in a region known as medium Earth orbit. By the time their signals get all the way down to ground-based receivers, they are so faint that they can easily be overridden by jammers.

Other existing Global Navigation Satellite System constellations, such as Europe’s Galileo, Russia’s GLONASS, and China’s Beidou, have similar architectures and experience the same problems.

But when Reid and cofounder Brian Manning founded Xona Space Systems in 2019, they didn’t think about jamming and spoofing. Their goal was to make autonomous driving ready for prime time. 

assembled GPS unit on a wheeled stand in a clean room
Xona Space System’s completed Pulsar-0 satellite is launching this June.
AEROSPACELAB

Dozens of robocars from Uber and Waymo were already cruising American freeways at that time, equipped with expensive suites of sensors like high-resolution cameras and lidar. The engineers figured a more precise satellite navigation system could reduce the need for those sensors, making it possible to create a safe autonomous vehicle affordable enough to go mainstream. One day, cars might even be able to share their positioning data with one another, Reid says. But they knew that GPS was nowhere near accurate enough to keep self-driving cars within the lane lines and away from other objects on the road. That is especially true in densely built-up urban environments that provide many chances for signals to bounce off walls, creating errors.

“GPS has the superpower of being a ubiquitous system that works the same anywhere in the world,” Reid says. “But it’s a system that was designed primarily to support military missions, virtually to enable them to drop five bombs in the same bowl. But this meter-level accuracy is not enough to guide machines where they need to go and share that physical space with humans safely.”

Reid and Manning began to think about how to build a space-based PNT system that would do what GPS does but better, with accuracy of three inches (10 centimeters) or less and ironclad reliability in all sorts of challenging conditions.

The easiest way to do that is to bring the satellites closer to Earth so that data reaches receivers in real time without inaccuracy-causing delays. The stronger signal of satellites in low Earth orbit is more resistant to disruptions of all sorts. 

When GPS was conceived, none of that was possible. Constellations in low Earth orbit—altitudes up to 1,200 miles (2,000 km)—require hundreds of satellites to provide constant coverage over the entire globe. For a long time, space technology was too bulky and expensive to make such large constellations viable. Over the past decade, however, smaller electronics and lower launch costs have changed the equation.

“In 2019, when we started, the ecosystem of low Earth orbit was really exploding,” Reid says. “We could see things like Starlink, OneWeb, and other constellations take off.”

Matter of urgency

In the few years since Xona launched, concerns about GPS’s vulnerability have begun to grow amid rising geopolitical tensions. As a result, finding a reliable replacement has become a matter of strategic importance. 

In Ukraine especially, GPS jamming and spoofing have become so common that prized US precision munitions such as the High Mobility Artillery Rocket System became effectively blind. Makers of first-person-view drones, which came to symbolize the war, had to refocus on AI-driven autonomous navigation to keep those drones in the game. 

The problem quickly spilled beyond Ukraine. Countries bordering Russia, such as Finland and Estonia, complained that the increasing prevalence of GPS jamming and spoofing was affecting commercial flights and ships in the region.

But Clémence Poirier, a space security researcher at ETH Zurich, says that the problem of GPS disruption isn’t limited to the vicinity of war zones.

“Basic jammers are very cheap and super easily accessible to everyone online,” Poirier says. “Even with the simplest ones, which can be the size of your phone, you can disrupt GPS signals in [an] area of a hundred or more meters.”

In 2013, a truck driver using such a device to conceal his location from his boss accidently disrupted GPS signals around the Newark airport in New Jersey. In 2022, the Dallas Fort Worth International Airport reported a 24-hour GPS outage, which prompted a temporary closure of one of its runways. The source of the interference was never identified. That same year, Denver International Airport experienced a 33-hour GPS disruption. 

Race to securing PNT

“Xona is a promising solution to enhance the resilience of GPS-dependent critical infrastructures and mitigate the threat of GPS jamming and spoofing,” Poirier says. But, she adds, there is no “magic wand,” and a “variety of different approaches will be needed” to solve the problem.

And indeed, Xona is not the only company hoping to provide a backup for the indispensable yet increasingly vulnerable GPS. Companies such as Anello Photonics, based in Santa Clara, California, and Sydney-based Advanced Navigation are testing terrestrial solutions: inertial navigation devices that are small and affordable enough for use beyond high-end military tech. These systems rely on gyroscopes and accelerometers to deduce a vehicle’s position from its own motions. 

When integrated into PNT receivers, these technologies can help detect GPS spoofing and take over for the duration of the interference. Inertial navigation has been around for decades, but recent advances in photonic technologies and microelectromechanical systems have brought it into the mainstream.

The French aerospace and defense conglomerate Safran is developing a system that distributes PNT data via  optical-fiber networks, which form the backbone of the global internet infrastructure. But the allure of space remains strong: The ability to reach any place at any time is what turned GPS from an obscure military system into a piece of taken-for-granted infrastructure that most people today can hardly live without.

And Xona could have some space-based competition. Virginia-based TrustPoint is currently raising funds to build its own low-Earth-orbit PNT constellation, and some have proposed that signals from SpaceX’s Starlink could be repurposed to provide PNT services as well.

Xona hopes to secure its spot in the market by designing its signal to be compatible with that of GPS, allowing manufacturers of GPS receivers to easily slot the new constellation into existing tech. 

Although it will take at least until 2030 for the entire constellation to be up and running, Reid says Xona’s system will provide a valuable addition to the existing GPS infrastructure as soon as 16 of its satellites are in orbit. 

The upcoming launch comes three years after a demonstration mission known as Huginn tested the basics of the technology. The new satellite, called Pulsar-0, will be used to see how well the system can resist jamming or spoofing.

Xona plans to launch an additional four spacecraft next year and hopes to have most of the constellation deployed by 2030. 

A new atomic clock in space could help us measure elevations on Earth

In 2003, engineers from Germany and Switzerland began building a bridge across the Rhine River simultaneously from both sides. Months into construction, they found that the two sides did not meet. The German side hovered 54 centimeters above the Swiss side.

The misalignment occurred because the German engineers had measured elevation with a historic level of the North Sea as its zero point, while the Swiss ones had used the Mediterranean Sea, which was 27 centimeters lower. We may speak colloquially of elevations with respect to “sea level,” but Earth’s seas are actually not level. “The sea level is varying from location to location,” says Laura Sanchez, a geodesist at the Technical University of Munich in Germany. (Geodesists study our planet’s shape, orientation, and gravitational field.) While the two teams knew about the 27-centimeter difference, they mixed up which side was higher. Ultimately, Germany lowered its side to complete the bridge. 

To prevent such costly construction errors, in 2015 scientists in the International Association of Geodesy voted to adopt the International Height Reference Frame, or IHRF, a worldwide standard for elevation. It’s the third-dimensional counterpart to latitude and longitude, says Sanchez, who helps coordinate the standardization effort. 

Now, a decade after its adoption, geodesists are looking to update the standard—by using the most precise clock ever to fly in space.

That clock, called the Atomic Clock Ensemble in Space, or ACES, launched into orbit from Florida last month, bound for the International Space Station. ACES, which was built by the European Space Agency, consists of two connected atomic clocks, one containing cesium atoms and the other containing hydrogen, combined to produce a single set of ticks with higher precision than either clock alone. 

Pendulum clocks are only accurate to about a second per day, as the rate at which a pendulum swings can vary with humidity, temperature, and the weight of extra dust. Atomic clocks in current GPS satellites will lose or gain a second on average every 3,000 years. ACES, on the other hand, “will not lose or gain a second in 300 million years,” says Luigi Cacciapuoti, an ESA physicist who helped build and launch the device. (In 2022, China installed a potentially stabler clock on its space station, but the Chinese government has not publicly shared the clock’s performance after launch, according to Cacciapuoti.) 

From space, ACES will link to some of the most accurate clocks on Earth to create a synchronized clock network, which will support its main purpose: to perform tests of fundamental physics. 

But it’s of special interest for geodesists because it can be used to make gravitational measurements that will help establish a more precise zero point from which to measure elevation across the world.

Alignment over this “zero point” (basically where you stick the end of the tape measure to measure elevation) is important for international collaboration. It makes it easier, for example, to monitor and compare sea-level changes around the world. It is especially useful for building infrastructure involving flowing water, such as dams and canals. In 2020, the international height standard even resolved a long-standing dispute between China and Nepal over Mount Everest’s height. For years, China said the mountain was 8,844.43 meters; Nepal measured it at 8,848. Using the IHRF, the two countries finally agreed that the mountain was 8,848.86 meters. 

Airbus worker performs critical tests on ACES in the Space Station Processing Facility cleanroom at the Kennedy Space Center.
A worker performs tests on ACES at a cleanroom at the Kennedy Space Center in Florida.
ESA-T. PEIGNIER

To create a standard zero point, geodesists create a model of Earth known as a geoid. Every point on the surface of this lumpy, potato-shaped model experiences the same gravity, which means that if you dug a canal at the height of the geoid, the water within the canal would be level and would not flow. Distance from the geoid establishes a global system for altitude.

However, the current model lacks precision, particularly in Africa and South America, says Sanchez. Today’s geoid has been built using instruments that directly measure Earth’s gravity. These have been carried on satellites, which excel at getting a global but low-resolution view, and have also been used to get finer details via expensive ground- and airplane-based surveys. But geodesists have not had the funding to survey Africa and South America as extensively as other parts of the world, particularly in difficult terrain such as the Amazon rainforest and Sahara Desert. 

To understand the discrepancy in precision, imagine a bridge that spans Africa from the Mediterranean coast to Cape Town, South Africa. If it’s built using the current geoid, the two ends of the bridge will be misaligned by tens of centimeters. In comparison, you’d be off by at most five centimeters if you were building a bridge spanning North America. 

To improve the geoid’s precision, geodesists want to create a worldwide network of clocks, synchronized from space. The idea works according to Einstein’s theory of general relativity, which states that the stronger the gravitational field, the more slowly time passes. The 2014 sci-fi movie Interstellar illustrates an extreme version of this so-called time dilation: Two astronauts spend a few hours in extreme gravity near a black hole to return to a shipmate who has aged more than two decades. Similarly, Earth’s gravity grows weaker the higher in elevation you are. Your feet, for example, experience slightly stronger gravity than your head when you’re standing. Assuming you live to be about 80 years old, over a lifetime your head will age tens of billionths of a second more than your feet. 

A clock network would allow geodesists to compare the ticking of clocks all over the world. They could then use the variations in time to map Earth’s gravitational field much more precisely, and consequently create a more precise geoid. The most accurate clocks today are precise enough to measure variations in time that map onto centimeter-level differences in elevation. 

“We want to have the accuracy level at the one-centimeter or sub-centimeter level,” says Jürgen Müller, a geodesist at Leibniz University Hannover in Germany. Specifically, geodesists would use the clock measurements to validate their geoid model, which they currently do with ground- and plane-based surveying techniques. They think that a clock network should be considerably less expensive.

ACES is just a first step. It is capable of measuring altitudes at various points around Earth with 10-centimeter precision, says Cacciapuoti. But the point of ACES is to prototype the clock network. It will demonstrate the optical and microwave technology needed to use a clock in space to connect some of the most advanced ground-based clocks together. In the next year or so, Müller plans to use ACES to connect to clocks on the ground, starting with three in Germany. Müller’s team could then make more precise measurements at the location of those clocks.

These early studies will pave the way for work connecting even more precise clocks than ACES to the network, ultimately leading to an improved geoid. The best clocks today are some 50 times more precise than ACES. “The exciting thing is that clocks are getting even stabler,” says Michael Bevis, a geodesist at Ohio State University, who was not involved with the project. A more precise geoid would allow engineers, for example, to build a canal with better control of its depth and flow, he says. However, he points out that in order for geodesists to take advantage of the clocks’ precision, they will also have to improve their mathematical models of Earth’s gravitational field. 

Even starting to build this clock network has required decades of dedicated work by scientists and engineers. It took ESA three decades to make a clock as small as ACES that is suitable for space, says Cacciapuoti. This meant miniaturizing a clock the size of a laboratory into the size of a small fridge. “It was a huge engineering effort,” says Cacciapuoti, who has been working on the project since he began at ESA 20 years ago. 

Geodesists expect they’ll need at least another decade to develop the clock network and launch more clocks into space. One possibility would be to slot the clocks onto GPS satellites. The timeline depends on the success of the ACES mission and the willingness of government agencies to invest, says Sanchez. But whatever the specifics, mapping the world takes time.

NASA has made an air traffic control system for drones

On Thanksgiving weekend of 2013, Jeff Bezos, then Amazon’s CEO, took to 60 Minutes to make a stunning announcement: Amazon was a few years away from deploying drones that would deliver packages to homes in less than 30 minutes. 

It lent urgency to a problem that Parimal Kopardekar, director of the NASA Aeronautics Research Institute, had begun thinking about earlier that year.

“How do you manage and accommodate large-scale drone operations without overloading the air traffic control system?” Kopardekar, who goes by PK, recalls wondering. Busy managing all airplane takeoffs and landings, air traffic controllers clearly wouldn’t have the capacity to oversee the fleets of package-delivering drones Amazon was promising. 

The solution PK devised, which subsequently grew into a collaboration between federal agencies, researchers, and industry, is a system called unmanned-­aircraft-system traffic management, or UTM. Instead of verbally communicating with air traffic controllers, drone operators using UTM share their intended flight paths with each other via a cloud-based network.

This highly scalable approach may finally open the skies to a host of commercial drone applications that have yet to materialize. Amazon Prime Air launched in 2022 but was put on hold after crashes at a testing facility, for example. On any given day, only 8,500 or so unmanned aircraft fly in US airspace, the vast majority of which are used for recreational purposes rather than for services like search and rescue missions, real estate inspections, video surveillance, or farmland surveys. 

One obstacle to wider use has been concern over possible midair drone-to-drone collisions. (Drones are typically restricted to airspace below 400 feet and their access to airports is limited, which significantly lowers the risk of drone-airplane collisions.) Under Federal Aviation Administration regulations, drones generally cannot fly beyond an operator’s visual line of sight, limiting flights to about a third of a mile. This prevents most collisions but also most use cases, such as delivering medication to a patient’s doorstep or dispatching a police drone to an active crime scene so first responders can better prepare before arriving.

Now, though, drone operators are increasingly incorporating UTM into their flights. The system uses path planning algorithms, like those that run in Google Maps, to chart a course that considers not only weather and obstacles like buildings and trees but the flight paths of nearby drones. It’ll automatically reroute a flight before takeoff if another drone has reserved the same volume of airspace at the same time, making the new flight trajectory visible to subsequent pilots. Drones can then fly autonomously to and from their destination, and no air traffic controller is required. 

Over the past decade, NASA and industry have demonstrated to the FAA through a series of tests that drones can safely maneuver around each other by adhering to UTM. And last summer, the agency gave the go-ahead for multiple drone delivery companies using UTM to begin flying simultaneously in the same airspace above Dallas—a first in US aviation history. Drone operators without in-house UTM capabilities have also begun licensing UTM services from FAA-approved third-party providers.

UTM only works if all participants abide by the same rules and agree to share data, and it’s enabled a level of collaboration unusual for companies competing to gain a foothold in a young, hot field, notes Peter Sachs, head of airspace integration strategy at Zipline, a drone delivery company based in South San Francisco that’s approved to use UTM. 

“We all agree that we need to collaborate on the practical, behind-the-scenes nuts and bolts to make sure that this preflight deconfliction for drones works really well,” Sachs says. (“Strategic deconfliction” is the technical term for processes that minimize drone-drone collisions.) Zipline and the drone delivery companies Wing, Flytrex, and DroneUp all operate in the Dallas area and are racing to expand to more cities, yet they disclose where they’re flying to one another in the interest of keeping the airspace conflict-free.

Greater adoption of UTM may be on the way. The FAA is expected to soon release a new rule called Part 108 that may allow operators to fly beyond visual line of sight if, among other requirements, they have some UTM capability, eliminating the need for the difficult-­to-obtain waiver the agency currently requires for these flights. To safely manage this additional drone traffic, drone companies will have to continue working together to keep their aircraft out of each other’s way. 

Yaakov Zinberg is a writer based in Cambridge, Massachusetts.

The world’s biggest space-based radar will measure Earth’s forests from orbit

Forests are the second-largest carbon sink on the planet, after the oceans. To understand exactly how much carbon they trap, the European Space Agency and Airbus have built a satellite called Biomass that will use a long-prohibited band of the radio spectrum to see below the treetops around the world. It will lift off from French Guiana toward the end of April and will boast the largest space-based radar in history, though it will soon be tied in orbit by the US-India NISAR imaging satellite, due to launch later this year.

Roughly half of a tree’s dry mass is made of carbon, so getting a good measure of how much a forest weighs can tell you how much carbon dioxide it’s taken from the atmosphere. But scientists have no way of measuring that mass directly. 

“To measure biomass, you need to cut the tree down and weigh it, which is why we use indirect measuring systems,” says Klaus Scipal, manager of the Biomass mission. 

These indirect systems rely on a combination of field sampling—foresters roaming among the trees to measure their height and diameter—and remote sensing technologies like lidar scanners, which can be flown over the forests on airplanes or drones and used to measure treetop height along lines of flight. This approach has worked well in North America and Europe, which have well-established forest management systems in place. “People know every tree there, take lots of measurements,” Scipal says. 

But most of the world’s trees are in less-mapped places, like the Amazon jungle, where less than 20% of the forest has been studied in depth on the ground. To get a sense of the biomass in those remote, mostly inaccessible areas, space-based forest sensing is the only feasible option. The problem is, the satellites we currently have in orbit are not equipped for monitoring trees. 

Tropical forests seen from space look like green plush carpets, because all we can see are the treetops; from imagery like this, we can’t tell how high or thick the trees are. Radars we have on satellites like Sentinel 1 use short radio wavelengths like those in the C band, which fall between 3.9 and 7.5 centimeters. These bounce off the leaves and smaller branches and can’t penetrate the forest all the way to the ground. 

This is why for the Biomass mission ESA went with P-band radar. P-band radio waves, which are about 10 times longer in wavelength, can see bigger branches and the trunks of trees, where most of their mass is stored. But fitting a P-band radar system on a satellite isn’t easy. The first problem is the size. 

“Radar systems scale with wavelengths—the longer the wavelength, the bigger your antennas need to be. You need bigger structures,” says Scipal. To enable it to carry the P-band radar, Airbus engineers had to make the Biomass satellite two meters wide, two meters thick, and four meters tall. The antenna for the radar is 12 meters in diameter. It sits on a long, multi-joint boom, and Airbus engineers had to fold it like a giant umbrella to fit it into the Vega C rocket that will lift it into orbit. The unfolding procedure alone is going to take several days once the satellite gets to space. 

Sheer size, though, is just one reason we have generally avoided sending P-band radars to space. Operating such radar systems in space is banned by International Telecommunication Union regulations, and for a good reason: interference. 

workers moving the BIOMASS satellite in a clean space
Workers roll the BIOMASS satellite out into a cleanroom to be inspected before the launch
ESA-CNES-ARIANESPACE/OPTIQUE VIDéO DU CSG–S. MARTIN

“The primary frequency allocation in P band is for huge SOTR [single-object-tracking radars] Americans use to detect incoming intercontinental ballistic missiles. That was, of course, a problem for us,” Scipal says. To get an exemption from the ban on space-based P-band radars, ESA had to agree to several limitations, the most painful of which was turning the Biomass radar off over North America and Europe to avoid interfering with SOTR coverage.

“This was a pity. It’s a European mission, so we wanted to do observations in Europe,” Scipal says. The rest of the world, though, is fair game.

The Biomass mission is scheduled to last five years. Calibration of the radar and other systems is going to take the first five months. After that, Biomass will enter its tomography phase, gathering data to create detailed biomass maps of the forests in India, Australia, Siberia, South America, Africa—everywhere but North America and Europe. “Tomography will work like a CT scan in a hospital. We will take images of each area from various different positions and create the 3D map of the forests,” Scipal says. 

Getting full, global coverage is expected to take 18 months. Then, for the rest of the mission, Biomass will switch to a different measurement method, capturing one full global map every nine months to measure how the condition of our forests changes over time. 

“The scientific goal here is to really understand the role of forests in the global carbon cycle. The main interest is the tropics because it’s the densest forest which is under the biggest threat of deforestation and the one we know the least about,” Scipal says.

Biomass is going to provide hectare-scale-resolution 3D maps of those tropical forests, including everything from the tree heights to ground topography—something we’ve never had before. But there are limits to what it can do. 

“One drawback is that we won’t get insights into seasonal deviations in forest throughout the year because of the time it takes for Biomass to do global coverage,” says Irena Hajnsek, a professor of Earth observation at ETH Zurich, who is not involved in the Biomass mission. And Biomass is still going to leave some of our questions about carbon sinks unanswered.

“In all our estimations of climate change, we know how much carbon is in the atmosphere, but we do not know so much about how much carbon is stored on land,” says Hajnsek. Biomass will have its limits, she says, since significant amounts of carbon are trapped in the soil in permafrost areas, which the mission won’t be able to measure.

“But we’re going to learn how much carbon is stored in the forests and also how much of it is getting released due to disturbances like deforestation or fires,” she says. “And that is going to be a huge contribution.”

Meet the researchers testing the “Armageddon” approach to asteroid defense

One day, in the near or far future, an asteroid about the length of a football stadium will find itself on a collision course with Earth. If we are lucky, it will land in the middle of the vast ocean, creating a good-size but innocuous tsunami, or in an uninhabited patch of desert. But if it has a city in its crosshairs, one of the worst natural disasters in modern times will unfold. As the asteroid steams through the atmosphere, it will begin to fragment—but the bulk of it will likely make it to the ground in just a few seconds, instantly turning anything solid into a fluid and excavating a huge impact crater in a heartbeat. A colossal blast wave, akin to one unleashed by a large nuclear weapon, will explode from the impact site in every direction. Homes dozens of miles away will fold like cardboard. Millions of people could die.

Fortunately for all 8 billion of us, planetary defense—the science of preventing asteroid impacts—is a highly active field of research. Astronomers are watching the skies, constantly on the hunt for new near-Earth objects that might pose a threat. And others are actively working on developing ways to prevent a collision should we find an asteroid that seems likely to hit us.

We already know that at least one method works: ramming the rock with an uncrewed spacecraft to push it away from Earth. In September 2022, NASA’s Double Asteroid Redirection Test, or DART, showed it could be done when a semiautonomous spacecraft the size of a small car, with solar panel wings, was smashed into an (innocuous) asteroid named Dimorphos at 14,000 miles per hour, successfully changing its orbit around a larger asteroid named Didymos. 

But there are circumstances in which giving an asteroid a physical shove might not be enough to protect the planet. If that’s the case, we could need another method, one that is notoriously difficult to test in real life: a nuclear explosion. 

Scientists have used computer simulations to explore this potential method of planetary defense. But in an ideal world, researchers would ground their models with cold, hard, practical data. Therein lies a challenge. Sending a nuclear weapon into space would violate international laws and risk inflaming political tensions. What’s more, it could do damage to Earth: A rocket malfunction could send radioactive debris into the atmosphere. 

Over the last few years, however, scientists have started to devise some creative ways around this experimental limitation. The effort began in 2023, with a team of scientists led by Nathan Moore, a physicist and chemical engineer at the Sandia National Laboratories in Albuquerque, New Mexico. Sandia is a semi-secretive site that serves as the engineering arm of America’s nuclear weapons program. And within that complex lies the Z Pulsed Power Facility, or Z machine, a cylindrical metallic labyrinth of warning signs and wiring. It’s capable of summoning enough energy to melt diamond. 

About 25,000 asteroids more than 460 feet long—a size range that starts with midsize “city killers” and goes up in impact from there—are thought to exist close to Earth. Just under half of them have been found.

The researchers reckoned they could use the Z machine to re-create the x-ray blast of a nuclear weapon—the radiation that would be used to knock back an asteroid—on a very small and safe scale.

It took a while to sort out the details. But by July 2023, Moore and his team were ready. They waited anxiously inside a control room, monitoring the thrumming contraption from afar. Inside the machine’s heart were two small pieces of rock, stand-ins for asteroids, and at the press of a button, a maelstrom of x-rays would thunder toward them. If they were knocked back by those x-rays, it would prove something that, until now, was purely theoretical: You can deflect an asteroid from Earth using a nuke.

This experiment “had never been done before,” says Moore. But if it succeeded, its data would contribute to the safety of everyone on the planet. Would it work?

Monoliths and rubble piles

Asteroid impacts are a natural disaster like any other. You shouldn’t lose sleep over the prospect, but if we get unlucky, an errant space rock may rudely ring Earth’s doorbell. “The probability of an asteroid striking Earth during my lifetime is very small. But what if one did? What would we do about it?” says Moore. “I think that’s worth being curious about.”

Forget about the gigantic asteroids you know from Hollywood blockbusters. Space rocks over two-thirds of a mile (about one kilometer) in diameter—those capable of imperiling civilization—are certainly out there, and some hew close to Earth’s own orbit. But because these asteroids are so elephantine, astronomers have found almost all of them already, and none pose an impact threat. 

Rather, it’s asteroids a size range down—those upwards of 460 feet (140 meters) long—that are of paramount concern. About 25,000 of those are thought to exist close to our planet, and just under half have been found. The day-to-day odds of an impact are extremely low, but even one of the smaller ones in that size range could do significant damage if it found Earth and hit a populated area—a capacity that has led astronomers to dub such midsize asteroids “city killers.”

If we find a city killer that looks likely to hit Earth, we’ll need a way to stop it. That could be technology to break or “disrupt” the asteroid into fragments that will either miss the planet entirely or harmlessly ignite in the atmosphere. Or it could be something that can deflect the asteroid, pushing it onto a path that will no longer intersect with our blue marble. 

Because disruption could accidentally turn a big asteroid into multiple smaller, but still deadly, shards bound for Earth, it’s often considered to be a strategy of last resort. Deflection is seen as safer and more elegant. One way to achieve it is to deploy a spacecraft known as a kinetic impactor—a battering ram that collides with an asteroid and transfers its momentum to the rocky interloper, nudging it away from Earth. NASA’s DART mission demonstrated that this can work, but there are some important caveats: You need to deflect the asteroid years in advance to make sure it completely misses Earth, and asteroids that we spot too late—or that are too big—can’t be swatted away by just one DART-like mission. Instead, you’d need several kinetic impactors—maybe many of them—to hit one side of the asteroid perfectly each time in order to push it far enough to save our planet. That’s a tall order for orbital mechanics, and not something space agencies may be willing to gamble on. 

In that case, the best option might instead be to detonate a nuclear weapon next to the asteroid. This would irradiate one hemisphere of the asteroid in x-rays, which in a few millionths of a second would violently shatter and vaporize the rocky surface. The stream of debris spewing out of that surface and into space would act like a rocket, pushing the asteroid in the opposite direction. “There are scenarios where kinetic impact is insufficient, and we’d have to use a nuclear explosive device,” says Moore.

IKEA-style diagram of an asteroid trailed by a cloud of particles with an inset of an explosion

MCKIBILLO

This idea isn’t new. Several decades ago, Peter Schultz, a planetary geologist and impacts expert at Brown University, was giving a planetary defense talk at the Lawrence Livermore National Laboratory in California, another American lab focused on nuclear deterrence and nuclear physics research. Afterwards, he recalls, none other than Edward Teller, the father of the hydrogen bomb and a key member of the Manhattan Project, invited him into his office for a chat. “He wanted to do one of these near-Earth-­asteroid flybys and wanted to test the nukes,” Schultz says. What, he wondered, would happen if you blasted an asteroid with a nuclear weapon’s x-rays? Could you forestall a spaceborne disaster using weapons of mass destruction?

But Teller’s dream wasn’t fulfilled—and it’s unlikely to become a reality anytime soon. The United Nations’ 1967 Outer Space Treaty states that no nation can deploy or use nuclear weapons off-world (even if it’s not clear how long certain spacefaring nations will continue to adhere to that rule).

Even raising the possibility of using nukes to defend the planet can be tricky. “There’re still many folks that don’t want to talk about it at all … even if that were the only option to prevent an impact,” says Megan Bruck Syal, a physicist and planetary defense researcher at Lawrence Livermore. Nuclear weapons have long been a sensitive subject, and with relations between several nuclear nations currently at a new nadir, anxiety over the subject is understandable. 

But in the US, there are groups of scientists who “recognize that we have a special responsibility as a spacefaring nation and as a nuclear-­capable nation to look at this,” Syal says. “It isn’t our preference to use a nuclear explosive, of course. But we are still looking at it, in case it’s needed.” 

But how? 

Mostly, researchers have turned to the virtual world, using supercomputers at various US laboratories to simulate the asteroid-­agitating physics of a nuclear blast. To put it mildly, “this is very hard,” says Mary Burkey, a physicist and planetary defense researcher at Lawrence Livermore. You cannot simply flick a switch on a computer and get immediate answers. “When a nuke goes off in space, there’s just x-ray light that’s coming out of it. It’s shining on the surface of your asteroid, and you’re tracking those little photons penetrating maybe a tiny little bit into the surface, and then somehow you have to take that micro­meter worth of resolution and then propagate it out onto something that might be on the order of hundreds of meters wide, watching that shock wave propagate and then watching fragments spin off into space. That’s four different problems.” 

Mimicking the physics of x-ray rock annihilation with as much verisimilitude as possible is difficult work. But recent research using these high-fidelity simulations does suggest that nukes are an effective planetary defense tool for both disruption and deflection. The thing is, though, no two asteroids are alike; each is mechanically and geologically unique, meaning huge uncertainties remain. A more monolithic asteroid might respond in a straightforward way to a nuclear deflection campaign, whereas a rubble pile asteroid—a weakly bound fleet of boulders barely held together by their own gravity—might respond in a chaotic, uncontrollable way. Can you be sure the explosion wouldn’t accidentally shatter the asteroid, turning a cannonball into a hail of bullets still headed for Earth? 

Simulations can go a long way toward answering these questions, but they remain virtual re-creations of reality, with built-in assumptions. “Our models are only as good as the physics that we understand and that we put into them,” says Angela Stickle, a hypervelocity impact physicist at the Johns Hopkins University Applied Physics Laboratory in Maryland. To make sure the simulations are reproducing the correct physics and delivering realistic data, physical experiments are needed to ground them.

Every firing of the Z machine carries the energy of more than 1,000 lightning bolts, and each shot lasts a few millionths of a second.

Researchers studying kinetic impactors can get that sort of real-world data. Along with DART, they can use specialized cannons—like the Vertical Gun Range at NASA’s Ames Research Center in California—to fire all sorts of projectiles at meteorites. In doing so, they can find out how tough or fragile asteroid shards can be, effectively reproducing a kinetic impact mission on a small scale. 

Battle-testing nuke-based asteroid defense simulations is another matter. Re-creating the physics of these confrontations on a small scale was long considered to be exceedingly difficult. Fortunately, those keen on fighting asteroids are as persistent as they are creative—and several teams, including Moore’s at Sandia, think they have come up with a solution.

X-ray scissors

The prime mission of Sandia, like that of Lawrence Livermore, is to help maintain the nation’s nuclear weapons arsenal. “It’s a national security laboratory,” says Moore. “Planetary defense affects the entire planet,” he adds—making it, by default, a national security issue as well. And that logic, in part, persuaded the powers that be in July 2022 to try a brand-new kind of experiment. Moore took charge of the project in January 2023—and with the shot scheduled for the summer, he had only a few months to come up with the specific plan for the experiment. There was “lots of scribbling on my whiteboard, running computer simulations, and getting data to our engineers to design the test fixture for the several months it would take to get all the parts machined and assembled,” he says.

Although there were previous and ongoing experiments that showered asteroid-like targets with x-rays, Moore and his team were frustrated by one aspect of them. Unlike actual asteroids floating freely in space, the micro-­asteroids on Earth were fixed in place. To truly test whether x-rays could deflect asteroids, targets would have to be suspended in a vacuum—and it wasn’t immediately clear how that could be achieved.

Generating the nuke-like x-rays was the easy part, because Sandia had the Z machine, a hulking mass of diodes, pipes, and wires interwoven with an assortment of walkways that circumnavigate a vacuum chamber at its core. When it’s powered up, electrical currents are channeled into capacitors—and, when commanded, blast that energy at a target or substance to create radiation and intense magnetic pressures. 

Flanked by klaxons and flashing lights, it’s an intimidating sight. “It’s the size of a building—about three stories tall,” says Moore. Every firing of the Z machine carries the energy of more than 1,000 lightning bolts, and each shot lasts a few millionths of a second: “You can’t even blink that fast.” The Z machine is named for the axis along which its energetic particles cascade, but the Z could easily stand for “Zeus.”

The Z Pulsed Power Facility, or Z machine, at Sandia National Laboratories in Albuquerque, New Mexico, concentrates electricity into short bursts of intense energy that can be used to create x-rays and gamma rays and compress matter to high densities.
RANDY MONTOYA/SANDIA NATIONAL LABORATORY

The original purpose of the Z machine, whose first form was built half a century ago, was nuclear fusion research. But over time, it’s been tinkered with, upgraded, and used for all kinds of science. “The Z machine has been used to compress matter to the same densities [you’d find at] the centers of planets. And we can do experiments like that to better understand how planets form,” Moore says, as an example. And the machine’s preternatural energies could easily be used to generate x-rays—in this case, by electrifying and collapsing a cloud of argon gas.

“The idea of studying asteroid deflection is completely different for us,” says Moore. And the machine “fires just once a day,” he adds, “so all the experiments are planned more than a year in advance.” In other words, the researchers had to be near certain their one experiment would work, or they would be in for a long wait to try again—if they were permitted a second attempt. 

For some time, they could not figure out how to suspend their micro-asteroids. But eventually, they found a solution: Two incredibly thin bits of aluminum foil would hold their targets in place within the Z machine’s vacuum chamber. When the x-ray blast hit them and the targets, the pieces of foil would be instantly vaporized, briefly leaving the targets suspended in the chamber and allowing them to be pushed back as if they were in space. “It’s like you wave your magic wand and it’s gone,” Moore says of the foil. He dubbed this technique “x-ray scissors.” 

In July 2023, after considerable planning, the team was ready. Within the Z machine’s vacuum chamber were two fingernail-size targets—a bit of quartz and some fused silica, both frequently found on real asteroids. Nearby, a pocket of argon gas swirled away. Satisfied that the gigantic gizmo was ready, everyone left and went to stand in the control room. For a moment, it was deathly quiet.

Stand by.

Fire.

It was over before their ears could even register a metallic bang. A tempest of electricity shocked the argon gas cloud, causing it to implode; as it did, it transformed into a plasma and x-rays screamed out of it, racing toward the two targets in the chamber. The foil vanished, the surfaces of both targets erupted outward as supersonic sprays of debris, and the targets flew backward, away from the x-rays, at 160 miles per hour.

Moore wasn’t there. “I was in Spain when the experiment was run, because I was celebrating my anniversary with my wife, and there was no way I was going to miss that,” he says. But just after the Z machine was fired, one of his colleagues sent him a very concise text: IT WORKED.

“We knew right away it was a huge success,” says Moore. The implications were immediately clear. The experimental setup was complex, but they were trying to achieve something extremely fundamental: a real-world demonstration that a nuclear blast could make an object in space move. 

“We’re genuinely looking at this from the standpoint of ‘This is a technology that could save lives.’”

Patrick King, a physicist at the Johns Hopkins University Applied Physics Laboratory, was impressed. Previously, pushing back objects using x-ray vaporization had been extremely difficult to demonstrate in the lab. “They were able to get a direct measurement of that momentum transfer,” he says, calling the x-ray scissors an “elegant” technique.

Sandia’s work took many in the community by surprise. “The Z machine experiment was a bit of a newcomer for the planetary defense field,” says Burkey. But she notes that we can’t overinterpret the results. It isn’t clear, from the deflection of the very small and rudimentary asteroid-like targets, how much a genuine nuclear explosion would deflect an actual asteroid. As ever, more work is needed. 

King leads a team that is also working on this question. His NASA-funded project involves the Omega Laser Facility, a complex based at the University of Rochester in upstate New York. Omega can generate x-rays by firing powerful lasers at a target within a specialized chamber. Upon being irradiated, the target generates an x-ray flash, similar to the one produced during a nuclear explosion in space, which can then be used to bombard various objects—in this case, some Earth rocks acting as asteroid mimics, and (crucially) some bona fide meteoritic material too. 

King’s Omega experiments have tried to answer a basic question: “How much material actually gets removed from the surface?” says King. The amount of material that flies off the pseudo-asteroids, and the vigor with which it’s removed, will differ from target to target. The hope is that these results—which the team is still considering—will hint at how different types of asteroids will react to being nuked. Although experiments with Omega cannot produce the kickback seen in the Z machine, King’s team has used a more realistic and diverse series of targets and blasted them with x-rays hundreds of times. That, in turn, should clue us in to how effectively, or not, actual asteroids would be deflected by a nuclear explosion.

“I wouldn’t say one [experiment] has definitive advantages over the other,” says King. “Like many things in science, each approach can yield insight along different ‘axes,’ if you will, and no experimental setup gives you the whole picture.”

Ikea-style diagram of the Earth with a chat bubble inset of two figures high-fiving.

MCKIBILLO

Experiments like Moore’s and King’s may sound technologically baroque—a bit like lightning-fast Rube Goldberg machines overseen by wizards. But they are likely the first in a long line of increasingly sophisticated tests. “We’ve just scratched the surface of what we can do,” Moore says. As with King’s experiments, Moore hopes to place a variety of materials in the Z machine, including targets that can stand in for the wetter, more fragile carbon-rich asteroids that astronomers commonly see in near-Earth space. “If we could get our hands on real asteroid material, we’d do it,” he says. And it’s expected that all this experimental data will be fed back into those nuke-versus-­asteroid computer simulations, helping to verify the virtual results.

Although these experiments are perfectly safe, planetary defenders remain fully cognizant of the taboo around merely discussing the use of nukes for any reason—even if that reason is potentially saving the world. “We’re genuinely looking at this from the standpoint of ‘This is a technology that could save lives,’” King says.

Inevitably, Earth will be imperiled by a dangerous asteroid. And the hope is that when that day arrives, it can be dealt with using something other than a nuke. But comfort should be taken from the fact that scientists are researching this scenario, just in case it’s our only protection against the firmament. “We are your taxpayer dollars at work,” says Burkey. 

There’s still some way to go before they can be near certain that this asteroid-stopping technique will succeed. Their progress, though, belongs to everyone. “Ultimately,” says Moore, “we all win if we solve this problem.” 

Robin George Andrews is an award-winning science journalist based in London and the author, most recently, of How to Kill an Asteroid: The Real Science of Planetary Defense.