Creating psychological safety in the AI era

Rolling out enterprise-grade AI means climbing two steep cliffs at once. First, understanding and implementing the tech itself. And second, creating the cultural conditions where employees can maximize its value. While the technical hurdles are significant, the human element can be even more consequential; fear and ambiguity can stall momentum of even the most promising initiatives.

Psychological safety—feeling free to express opinions and take calculated risks without worrying about career repercussions1—is essential for successful AI adoption. In psychologically safe workspaces, employees are empowered to challenge assumptions and raise concerns about new tools without fear of reprisal. This is nothing short of a necessity when introducing a nascent and profoundly powerful technology that still lacks established best practices.

“Psychological safety is mandatory in this new era of AI,” says Rafee Tarafdar, executive vice president and chief technology officer at Infosys. “The tech itself is evolving so fast—companies have to experiment, and some things will fail. There needs to be a safety net.”

To gauge how psychological safety influences success with enterprise-level AI, MIT Technology Review Insights conducted a survey of 500 business leaders. The findings reveal high self-reported levels of psychological safety, but also suggest that fear still has a foothold. Anecdotally, industry experts highlight a reason for the disconnect between rhetoric and reality: while organizations may promote a safe to experiment message publicly, deeper cultural undercurrents can counteract that intent.

Building psychological safety requires a coordinated, systems-level approach, and human resources (HR) alone cannot deliver such transformation. Instead, enterprises must deeply embed psychological safety into their collaboration processes.

Key findings for this report include:

  • Companies with experiment-friendly cultures have greater success with AI projects. The majority of executives surveyed (83%) believe a company culture that prioritizes psychological safety measurably improves the success of AI initiatives. Four in five leaders agree that organizations fostering such safety are more successful at adopting AI, and 84% have observed connections between psychological safety and tangible AI outcomes.
  • Psychological barriers are proving to be greater obstacles to enterprise AI adoption than technological challenges. Encouragingly, nearly three-quarters (73%) of respondents indicated they feel safe to provide honest feedback and express opinions freely in their workplace. Still, a significant share (22%) admit they’ve hesitated to lead an AI project because they might be blamed if it misfires.
  • Achieving psychological safety is a moving target for many organizations. Fewer than half of leaders (39%) rate their organization’s current level of psychological safety as “very high.” Another 48%report a “moderate” degree of it. This may mean that some enterprises are pursuing AI adoption on cultural foundations that are not yet fully stable.

Download the report.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. It was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

The fast and the future-focused are revolutionizing motorsport

When the ABB FIA Formula E World Championship launched its first race through Beijing’s Olympic Park in 2014, the idea of all-electric motorsport still bordered on experimental. Batteries couldn’t yet last a full race, and drivers had to switch cars mid-competition. Just over a decade later, Formula E has evolved into a global entertainment brand broadcast in 150 countries, driving both technological innovation and cultural change in sport.  

“Gen4, that’s to come next year,” says Dan Cherowbrier, Formula E’s chief technology and information officer. “You will see a really quite impressive car that starts us to question whether EV is there. It’s actually faster—it’s actually more than traditional [internal combustion engines] ICE.” 

That acceleration isn’t just happening on the track. Formula E’s digital transformation, powered by its partnership with Infosys, is redefining what it means to be a fan. “It’s a movement to make motor sport accessible and exciting for the new generation,” says principal technologist at Infosys, Rohit Agnihotri. 

From real-time leaderboards and predictive tools to personalized storylines that adapt to what individual fans care most about—whether it’s a driver rivalry or battery performance—Formula E and Infosys are using AI-powered platforms to create fan experiences as dynamic as the races themselves. “Technology is not just about meeting expectations; it’s elevating the entire fan experience and making the sport more inclusive,” says Agnihotri.  

AI is also transforming how the organization itself operates. “Historically, we would be going around the company, banging on everyone’s doors and dragging them towards technology, making them use systems, making them move things to the cloud,” Cherowbrier notes. “What AI has done is it’s turned that around on its head, and we now have people turning up, banging on our door because they want to use this tool, they want to use that tool.” 

As audiences diversify and expectations evolve, Formula E is also a case study in sustainable innovation. Machine learning tools now help determine the most carbon-optimal way to ship batteries across continents, while remote broadcast production has sharply reduced travel emissions and democratized the company’s workforce. These advances show how digital intelligence can expand reach without deepening carbon footprints. 

For Cherowbrier, this convergence of sport, sustainability, and technology is just the beginning. With its data-driven approach to performance, experience, and impact, Formula E is offering a glimpse into how entertainment, innovation, and environmental responsibility can move forward in tandem. 

“Our goal is clear,” says Agnihotri. “Help Formula E be the most digital and sustainable motor sport in the world. The future is electric, and with AI, it’s more engaging than ever.” 

This episode of Business Lab is produced in partnership with Infosys. 

Full Transcript:  

Megan Tatum: From MIT Technology Review, I’m Megan Tatum, and this is Business Lab, the show that helps business leaders make sense of new technologies coming out of the lab, and into the marketplace.  

The ABB FIA Formula E World Championship, the world’s first all-electric racing series, made its debut in the grounds of the Olympic Park in Beijing in 2014. A little more than 10 years later, it’s a global entertainment brand with 10 teams, 20 drivers, and broadcasts in 150 countries. Technology is central to how Formula E is navigating that scale and to how it’s delivering more powerful personalized experiences.  

Two words for you: elevated fandom.  

My guests today are Rohit Agnihotri, principal technologist at Infosys, and Dan Cherowbrier, CTIO of Formula E.  

This episode is produced in partnership with Infosys.  

Welcome, Rohit and Dan. 

Dan Cherowbrier: Hi. Thanks for having us. 

Megan: Dan, as I mentioned there, the first season of the ABB FIA Formula E World Championship launched in 2014. Can you talk us through how the first all-electric motor sport has evolved in the last decade? How has it changed in terms of its scale, the markets it operates in, and also, its audiences, of course? 

Dan: When Formula E launched back in 2014, there were hardly any domestic EVs on the road. And probably if you’re from London, the ones you remember are the hybrid Priuses; that was what we knew of really. And at the time, they were unable to get a battery big enough for a car to do a full race. So the first generation of car, the first couple of seasons, the driver had to do a pit stop midway through the race, get out of one car, and get in another car, and then carry on, which sounds almost farcical now, but it’s what you had to do then to drive innovation, is to do that in order to go to the next stage. 

Then in Gen2, that came up four years later, they had a battery big enough to start full races and start to actually make it a really good sport. Gen3, they’re going for some real speeds and making it happen. Gen4, that’s to come next year, you’ll see acceleration in line with Formula One. I’ve been fortunate enough to see some of the testing. You will see a really quite impressive car that starts us to question whether EV is there. It’s actually faster, it’s actually more than traditional ICE. 

That’s the tech of the car. But then, if you also look at the sport and how people have come to it and the fans and the demographic of the fans, a lot has changed in the last 11 years. We were out to enter season 12. In the last 11 years, we’ve had a complete democratization of how people access content and what people want from content. And as a new generation of fan coming through. This new generation of fan is younger. They’re more gender diverse. We have much closer to 50-50 representation in our fan base. And they want things personalized, and they’re very demanding about how they want it and the experience they expect. No longer are you just able to give them one race and everybody watches the same thing. We need to make things for them. You see that sort of change that’s come through in the last 11 years. 

Megan: It’s a huge amount of change in just over a decade, isn’t it? To navigate. And I wonder, Rohit, what was the strategic plan for Infosys when associating with Formula E? What did Infosys see in partnering with such a young sport? 

Rohit: Yeah. That’s a great question, Megan. When we looked at Formula E, we didn’t just see a racing championship. We saw the future. A sport, that’s electric, sustainable, and digital first. That’s exactly where Infosys wants to be, at the intersection of technology, innovation, and purpose. Our plan has three big goals. First, grow the fan base. Formula E wants to reach 500 million fans by 2030. That is not just a number. It’s a movement to make motor sport accessible and exciting for the new generation. To make that happen, we are building an AI-powered platform that gives personalized content to the fans, so that every fan feels connected and valued. Imagine a fan in Tokyo getting race insights tailored for their favorite driver, while another in London gets a sustainability story that matters to him. That’s the level of personalization we are aiming for. 

Second, bringing technology innovation. We have already launched the Stats Centre, which turns race data into interactive stories. And soon, Race Centre will take this to the next level with real time leaderboards to the race or tracks, overtakes, attack mode timelines, and even AI generated live commentary. Fans will not just watch, they will interact, predict podium finishes, and share their views globally. And third, supports sustainability. Formula E is already net-zero, but now their goal is to cut carbon by 45% by 2030. We’ll be enabling that through AI-driven sustainability, data management, tracking every watt of energy, every logistics decision. and modeling scenarios to make racing even greener. Partnering with a young sport gives us a chance to shape its digital future and show how technology can make racing exciting and responsible. For us, Formula E is not just a sport, it’s a statement about where the world is headed. 

Megan: Fantastic. 500 million fans, that’s a huge number, isn’t it? And with more scale often comes a kind of greater expectation. Dan, I know you touched on this a little in your first question, but what is it that your fans now really want from their interactions? Can you talk a bit more about what experiences they’re looking for? And also, how complex that really is to deliver that as well? 

Dan: I think a really telling thing about the modern day fan is I probably can’t tell you what they want from their experiences, because it’s individual and it’s unique for each of them. 

Megan: Of course. 

Dan: And it’s changing and it’s changing so fast. What somebody wants this month is going to be different from what they want in a couple of months’ time. And we’re having to learn to adapt to that. My CTO title, we often put focus on the technology in the middle of it. That’s what the T is. Actually, if you think about it, it’s continual transformation officer. You are constantly trying to change what you deliver and how you deliver it. Because if fans come through, they find new experiences, they find that in other sports. Sometimes not in sports, they find it outside, and then they’re coming in, and they expect that from you. So how can we make them more part of the sport, more personalized experience, get to know the athletes and the personalities and the characters within it? We’re a very technology centric sport. A lot of motor sport is, but really, people want to see people, right? And even when it’s technology, they want to see people interacting with technology, and it’s how do you get that out to show people. 

Megan: Yeah, it’s no mean feat. Rohit, you’ve worked with brands on delivering these sort of fan experiences across different sports. Is motor sports perhaps more complicated than others, given that fans watch racing for different reasons than just a win? They could be focused on team dynamics, a particular driver, the way the engine is built, and so on and so forth. How does motor sports compare and how important is it therefore, that Formula E has embraced technology to manage expectations? 

Rohit: Yeah, that’s an interesting point. Motor sports are definitely more complex than other sports. Fans don’t just care about who wins, they care about how some follow team strategies, others love driver rivalries, and many are fascinated by the car technology. Formula E adds another layer, sustainability and electric innovation. This makes personalization really important. Fans want more than results. They want stories and insights. Formula E understood this early and embraced technology. 

Think about the data behind a single race, lap times, energy usage, battery performance, attack mode activation, pit strategies, it’s a lot of data. If you just show the raw numbers, it’s overwhelming. But with Infosys Topaz, we turn that into simple and engaging stories. Fans can see how a driver fought back from 10th place to finish on the podium, or how a team managed energy better to gain an edge. And for new fans, we are adding explainer videos and interactive tools in the Race Center, so that they can learn about their sport easily. This is important because Formula E is still young, and many fans are discovering it for the first time. Technology is not just about meeting expectations; it’s elevating the entire fan experience and making the sport more inclusive. 

Megan: There’s an awful lot going on there. What are some of the other ways that Formula E has already put generative AI and other emerging technologies to use? Dan, when we’ve spoken about the demand for more personalized experiences, for example. 

Dan: I see the implementation of AI for us in three areas. We have AI within the sport. That’s in our DNA of the sport. Now, each team is using that, but how can we use that as a championship as well? How do we make it a competitive landscape? Now, we have AI that is in the fan-facing product. That’s what we’re working heavily on Infosys with, but we also have it in our broadcast product. As an example, you might have heard of a super slow-mo camera. A super slow-mo camera is basically, by taking three cameras and having them in exactly the same place so that you get three times the frame rate, and then you can do a slow-motion shot from that. And they used to be really expensive. Quite bulky cameras to put in. We are now using AI to take a traditional camera and interpolate between two frames to make it into a super slow image, and you wouldn’t really know the difference. Now, the joy of that, it means every camera can now be a super slow-mo camera. 

Megan: Wow. 

Dan: In other ways, we use it a little bit in our graphics products, and we iterate and we use it for things like showing driver audio. When the driver is speaking to his engineer or her engineer in the garage, we show that text now on screen. We do that using AI. We use AI to pick out the difference between the driver and another driver and the team engineer or the team principal and show that in a really good way. 

And we wouldn’t be able to do that. We’re not big enough to have a team of 24 people on stenographers typing. We have to use AI to be able to do that. That’s what’s really helped us grow. And then the last one is, how we use it in our business. Because ultimately, as we’ve got the fans, we’ve got the sport, but we also are running a business and we have to pick up these racetracks and move them around the world, and we have all these staff who have to get places. We have insurance who has to do all that kind of stuff, and we use it heavily in that area, particularly when it comes to what has a carbon impact for us. 

So things like our freight and our travel. And we are using the AI tools to tell us, a battery for instance, should we fly it? Should we send it by sea freight? Should we send it by row freight? Or should we just have lots of them? And that sort of depends. Now, a battery, if it was heavy, you’d think you probably wouldn’t fly it. But actually, because of the materials in it, because of the source materials that make it, we’re better off flying it. We’ve used AI to work through all those different machinations of things that would be too difficult to do at speed for a person. 

Megan: Well, sounds like there’s some fascinating things going on. I mean, of course, for a global brand, there is also the challenge of working in different markets. You mentioned moving everything around the world there. Each market with its own legal frameworks around data privacy, AI. How has technology also helped you navigate all of that, Dan? 

Dan: The other really interesting thing about AI is… I’ve worked in technology leadership roles for some time now. And historically, we would be going around the company, banging on everyone’s doors and dragging them towards technology, making them use systems, making them move things to the cloud and things like that. What AI has done is it’s turned that around on its head, and we now have people turning up, banging on our door because they want to use this tool, they want to use that tool. And we’re trying to accommodate all of that and it’s a great pleasure to see people that are so keen. AI is driving the tech adoption in general, which really helps the business. 

Megan: Dan, as the world’s first all-electric motor sport series, sustainability is obviously a real cornerstone of what Formula E is looking to do. Can you share with us how technology is helping you to achieve some of your ambitions when it comes to sustainability? 

Dan: We’ve been the only sport with a certified net-zero pathway, and we have to stay that part. It’s a really core fundamental part of our DNA. I sit on our management team here. There is a sustainability VP that sits there as well, who checks and challenges everything we do. She looks at the data centers we use, why we use them, why we’ve made the decisions we’ve made, to make sure that we’re making them all for the right reasons and the right ways. We specifically embed technology in a couple of ways. One is, we mentioned a little bit earlier, on our freight. Formula E’s freight for the whole championship is probably akin to one Formula One team, but it’s still by far, our biggest contributor to our impact. So we look about how we can make sure that we’ve refined that to get the minimum amount of air freight and sea freight, and use local wherever we can. That’s also part of our pledge about investing in the communities that we race in. 

The second then is about our staff travel. And we’ve done a really big piece of work over the last four to five years, partly accelerated through the covid-19 era actually, of doing remote working and remote TV production. Used to be traditionally, you would fly a hundred plus people out to racetracks, and then they would make the television all on site in trucks, and then they would be satellite distributed out of the venue. Now, what we do is we put in some internet connections, dual and diverse internet connections, and we stream every single camera back. 

Megan: Right. 

Dan: That means on site, we only need camera operators. Some of them actually, are remotely operated anyway, but we need camera operators, and then some engineering teams to just keep everything running. And then back in our home base, which is in London, in the UK, we have our remote production center where we layer on direction, graphics, audio, replay, team radio, all of those bits that break the color and make the program and add to that significant body of people. We do that all remotely now. Really interesting actually, a bit. So that’s the carbon sustainability story, but there is a further ESG piece that comes out of it and we haven’t really accommodated when we went into it, is the diversity in our workforce by doing that. We were discovering that we had quite a young, equally diverse workforce until around the age of 30. And then once that happened, then we were finding we were losing women, and that’s really because they didn’t want to travel. 

Megan: Right. 

Dan: And that’s the age of people starting to have children, and things were starting to change. And then we had some men that were traveling instead, and they weren’t seeing their children and it was sort of dividing it unnecessarily. But by going remote, by having so much of our people able to remotely… Or even if they do have to travel, they’re not traveling every single week. They’re now doing that one in three. They’re able to maintain the careers and the jobs they want to do, whilst having a family lifestyle. And it also just makes a better product by having people in that environment. 

Megan: That’s such an interesting perspective, isn’t it? It’s a way of environmental sustainability intersects with social sustainability. And Rohit, and your work are so interesting. And Rohit, can you share any of the ways that Infosys has worked with Formula E, in terms of the role of technology as we say, in furthering those ambitions around sustainability? 

Rohit: Yeah. Infosys understands that sustainability is at the heart of Formula E, and it’s a big part of why this partnership matters. Formula E is already net-zero certified, but now, they have an ambitious goal to cut carbon emissions by 45%. Infosys is helping in two ways. First, we have built AI-powered sustainability data tools that make carbon reporting accurate and traceable. Every watt of energy, every logistic decision, every material use can be tracked. Second, we use predictive analytics to model scenarios, like how changing race logistics or battery technology impact emissions so Formula E can make smarter, greener decisions. For us, it’s about turning sustainability from a report into an action plan, and making Formula E a global leader in green motor sport. 

Megan: And in April 2025, Formula E working with Infosys launched its Stats Centre, which provides fans with interactive access to the performances of their drivers and teams, key milestones and narratives. I know you touched on this before, but I wonder if you could tell us a bit more about the design of that platform, Rohit, and how it fits into Formula E’s wider plans to personalize that fan experience? 

Rohit: Sure. The Stats Centre was a big step forward. Before this, fans had access to basic statistics on the website and the mobile app, but nothing told the full story and we wanted to change that. Built on Infosys Topaz, the Stats Centre uses AI to turn race data into interactive stories. Fans can explore key stat cards that adapt to race timelines, and even chat with an AI companion to get instant answers. It’s like having a person race analyst at your fingertips. And we are going further. Next year, we’ll launch Race Centre. It’ll have live data boards, 2D track maps showing every driver’s position, overtakes and more attack timelines, and AI-generated commentary. Fans can predict podium finishes, vote for the driver of the race, and share their views on social media. Plus, we are adding video explainers for new fans, covering rules, strategies, and car technology. Our goal is simple: make every moment exciting and easy to understand. Whether you are a hardcore fan or someone watching Formula E for the first time, you’ll feel connected and informed. 

Megan: Fantastic. Sounds brilliant. And as you’ve explained, Dan, leveraging data and AI can come with these huge benefits when it comes to the depth of fan experience that you can deliver, but it can also expose you to some challenges. How are you navigating those at Formula E? 

Dan: The AI generation has presented two significant challenges to us. One is that traditional SEO, traditional search engine optimization, goes out the window. Right? You are now looking at how do we design and build our systems and how do we populate them with the right content and the right data, so that the engines are picking it up correctly and displaying it? The way that the foundational models are built and the speed and the cadence of which they’re updated, means quite often… We’re a very fast-changing organization. We’re a fast-changing product. Often, the models don’t keep up. And that’s because they are a point in time when they were trained. And that’s something that the big organizations, the big tech organizations will fix with time. But for now, what we have to do is we have to learn about how we can present our fan-facing, web-facing products to show that correctly. That’s all about having really accurate first-party content, effectively earned media. That’s the piece we need to do. 

Then the second sort of challenge is sadly, whilst these tools are available to all of us, and we are using them effectively, so are another part of the technology landscape, and that is the cybersecurity basically they come with. If you look at the speed of the cadence and severity of hacks that are happening now, it’s just growing and growing and growing, and that’s because they have access to these tools too. And we’re having to really up our game and professionalize. And that’s really hard for an innovative organization. You don’t want to shut everything down. You don’t want to protect everything too much because you want people to be able to try new things. Right? If I block everything to only things that the IT team had heard of, we’d never get anything new in, and it’s about getting that balance right. 

Megan: Right. 

Dan: Rohit, you probably have similar experiences? 

Megan: How has Infosys worked with Formula E to help it navigate some of that, Rohit? 

Rohit: Yeah. Infosys has helped Formula E tackle some of the challenges in three key ways, simplify complex race data into engaging fan experience through platforms like Stats Centre, building a secure and scalable cloud data backbone for the real-time insights, and enabling sustainability goals with AI-driven carbon tracking and predictive analytics. This solution makes the sport interactive, more digital, and more responsible. 

Megan: Fantastic. I wondered if we could close with a bit of a future forward look. Can you share with us any innovations on the horizon at Formula E that you are really excited about, Dan? 

Dan: We have mentioned the Race Centre is going to launch in the next couple of months, but the really exciting thing for me is we’ve got an amazing season ahead of us. It’s the last season of our Gen3 car, with 10 really exciting teams on the grid. We are going at speed with our tech innovation roadmap and what our fans want. And we’re building up towards our Gen4 car, which will come out for season 13 in a year’s time. That will get launched in 2026, and I think it will be a game changer in how people perceive electric motor sport and electric cars in general. 

Megan: It sounds like there’s all sorts of exciting things going on. And Rohit too, what’s coming up via this partnership that you are really looking forward to sharing with everyone? 

Rohit: Two things stand out for me. First is the AI-powered fan data platform that I’ve already spoken about. Second is the launch of Race Centre. It’s going to change how fans experience live racing. And beyond final engagement, we are helping Formula E lead in sustainability with AI tools that model carbon impact and optimize logistics. This means every race can be smarter and greener. Our goal is clear: help Formula E be the most digital and sustainable motor sport in the world. The future is electric, and with AI, it’s more engaging than ever. 

Megan: Fantastic. Thank you so much, both. That was Rohit Agnihotri, principal technologist at Infosys, and Dan Cherowbrier, CITO of Formula E, whom I spoke with from Brighton, England.  

That’s it for this episode of Business Lab. I’m your host, Megan Tatum. I’m a contributing editor and host for Insights, the custom publishing division of MIT Technology Review. We were founded in 1899 at the Massachusetts Institute of Technology, and you can find us in print, on the web and at events each year around the world. For more information about us and the show, please check out our website at technologyreview.com.  

This show is available wherever you get your podcasts. And if you enjoyed this episode, we hope you’ll take a moment to rate and review us. Business Lab is a production of MIT Technology Review and this episode was produced by Giro Studios. Thanks for listening. 

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. It was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

Securing VMware workloads in regulated industries

At a regional hospital, a cardiac patient’s lab results sit behind layers of encryption, accessible to his surgeon but shielded from those without strictly need-to-know status. Across the street at a credit union, a small business owner anxiously awaits the all-clear for a wire transfer, unaware that fraud detection systems have flagged it for further review.

Such scenarios illustrate how companies in regulated industries juggle competing directives: Move data and process transactions quickly enough to save lives and support livelihoods, but carefully enough to maintain ironclad security and satisfy regulatory scrutiny.

Organizations subject to such oversight walk a fine line every day. And recently, a number of curveballs have thrown off that hard-won equilibrium. Agencies are ramping up oversight thanks to escalating data privacy concerns; insurers are tightening underwriting and requiring controls like MFA and privileged-access governance as a condition of coverage. Meanwhile, the shifting VMware landscape has introduced more complexity for IT teams tasked with planning long-term infrastructure strategies. 

Download the full article

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

This content was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

Harnessing human-AI collaboration for an AI roadmap that moves beyond pilots

The past year has marked a turning point in the corporate AI conversation. After a period of eager experimentation, organizations are now confronting a more complex reality: While investment in AI has never been higher, the path from pilot to production remains elusive. Three-quarters of enterprises remain stuck in experimentation mode, despite mounting pressure to convert early tests into operational gains.

“Most organizations can suffer from what we like to call PTSD, or process technology skills and data challenges,” says Shirley Hung, partner at Everest Group. “They have rigid, fragmented workflows that don’t adapt well to change, technology systems that don’t speak to each other, talent that is really immersed in low-value tasks rather than creating high impact. And they are buried in endless streams of information, but no unified fabric to tie it all together.”

The central challenge, then, lies in rethinking how people, processes, and technology work together.

Across industries as different as customer experience and agricultural equipment, the same pattern is emerging: Traditional organizational structures—centralized decision-making, fragmented workflows, data spread across incompatible systems—are proving too rigid to support agentic AI. To unlock value, leaders must rethink how decisions are made, how work is executed, and what humans should uniquely contribute.

“It is very important that humans continue to verify the content. And that is where you’re going to see more energy being put into,” Ryan Peterson, EVP and chief product officer at Concentrix.

Much of the conversation centered on what can be described as the next major unlock: operationalizing human-AI collaboration. Rather than positioning AI as a standalone tool or a “virtual worker,” this approach reframes AI as a system-level capability that augments human judgment, accelerates execution, and reimagines work from end to end. That shift requires organizations to map the value they want to create; design workflows that blend human oversight with AI-driven automation; and build the data, governance, and security foundations that make these systems trustworthy.

“My advice would be to expect some delays because you need to make sure you secure the data,” says Heidi Hough, VP for North America aftermarket at Valmont. “As you think about commercializing or operationalizing any piece of using AI, if you start from ground zero and have governance at the forefront, I think that will help with outcomes.”

Early adopters are already showing what this looks like in practice: starting with low-risk operational use cases, shaping data into tightly scoped enclaves, embedding governance into everyday decision-making, and empowering business leaders, not just technologists, to identify where AI can create measurable impact. The result is a new blueprint for AI maturity grounded in reengineering how modern enterprises operate.

“Optimization is really about doing existing things better, but reimagination is about discovering entirely new things that are worth doing,” says Hung.

Watch the webcast.

This webcast is produced in partnership with Concentrix.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. It was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

Delivering securely on data and AI strategy 

Most organizations feel the imperative to keep pace with continuing advances in AI capabilities, as highlighted in a recent MIT Technology Review Insights report. That clearly has security implications, particularly as organizations navigate a surge in the volume, velocity, and variety of security data. This explosion of data, coupled with fragmented toolchains, is making it increasingly difficult for security and data teams to maintain a proactive and unified security posture. 

Data and AI teams must move rapidly to deliver the desired business results, but they must do so without compromising security and governance. As they deploy more intelligent and powerful AI capabilities, proactive threat detection and response against the expanded attack surface, insider threats, and supply chain vulnerabilities must remain paramount. “I’m passionate about cybersecurity not slowing us down,” says Melody Hildebrandt, chief technology officer at Fox Corporation, “but I also own cybersecurity strategy. So I’m also passionate about us not introducing security vulnerabilities.” 

That’s getting more challenging, says Nithin Ramachandran, who is global vice president for data and AI at industrial and consumer products manufacturer 3M. “Our experience with generative AI has shown that we need to be looking at security differently than before,” he says. “With every tool we deploy, we look not just at its functionality but also its security posture. The latter is now what we lead with.” 

Our survey of 800 technology executives (including 100 chief information security officers), conducted in June 2025, shows that many organizations struggle to strike this balance. 

Download the report.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. It was researched, designed, and written by human writers, editors, analysts, and illustrators. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

Accelerating VMware migrations with a factory model approach

In 1913, Henry Ford cut the time it took to build a Model T from 12 hours to just over 90 minutes. He accomplished this feat through a revolutionary breakthrough in process design: Instead of skilled craftsmen building a car from scratch by hand, Ford created an assembly line where standardized tasks happened in sequence, at scale.

The IT industry is having a similar moment of reinvention. Across operations from software development to cloud migration, organizations are adopting an AI-infused factory model that replaces manual, one-off projects with templated, scalable systems designed for speed and cost-efficiency.

Take VMware migrations as an example. For years, these projects resembled custom production jobs—bespoke efforts that often took many months or even years to complete. Fluctuating licensing costs added a layer of complexity, just as business leaders began pushing for faster modernization to make their organizations AI-ready. That urgency has become nearly universal: According to a recent IDC report, six in 10 organizations evaluating or using cloud services say their IT infrastructure requires major transformation, while 82% report their cloud environments need modernization.

Download the full article.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

This content was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

Moving toward LessOps with VMware-to-cloud migrations

Today’s IT leaders face competing mandates to do more (“make us an ‘AI-first’ enterprise—yesterday”) with less (“no new hires for at least the next six months”).

VMware has become a focal point of these dueling directives. It remains central to enterprise IT, with 80% of organizations using VMware infrastructure products. But shifting licensing models are prompting teams to reconsider how they manage and scale these workloads, often on tighter budgets.

For many organizations, the path forward involves adopting a LessOps model, an operational strategy that makes hybrid environments manageable without increasing headcount. This operational philosophy minimizes human intervention through extensive automation and selfservice capabilities while maintaining governance and compliance.

In practice, VMware-to-cloud migrations create a “two birds, one stone” opportunity. They present a practical moment to codify the automation and governance practices LessOps depends on—laying the groundwork for a leaner, more resilient IT operating model.

Download the full article.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

This content was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

Aligning VMware migration with business continuity

For decades, business continuity planning meant preparing for anomalous events like hurricanes, floods, tornadoes, or regional power outages. In anticipation of these rare disasters, IT teams built playbooks, ran annual tests, crossed their fingers, and hoped they’d never have to use them.

In recent years, an even more persistent threat has emerged. Cyber incidents, particularly ransomware, are now more common—and often, more damaging—than physical disasters. In a recent survey of more than 500 CISOs, almost three-quarters (72%) said their organization had dealt with ransomware in the previous year. Earlier in 2025, ransomware attack rates on enterprises reached record highs.

Mark Vaughn, senior director of the virtualization practice at Presidio, has witnessed the trend firsthand. “When I speak at conferences, I’ll ask the room, ‘How many people have been impacted?’ For disaster recovery, you usually get a few hands,” he says. “But a little over a year ago, I asked how many people in the room had been hit by ransomware, and easily two-thirds of the hands went up.”

Download the full article.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

This content was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

Designing digital resilience in the agentic AI era

Digital resilience—the ability to prevent, withstand, and recover from digital disruptions—has long been a strategic priority for enterprises. With the rise of agentic AI, the urgency for robust resilience is greater than ever.

Agentic AI represents a new generation of autonomous systems capable of proactive planning, reasoning, and executing tasks with minimal human intervention. As these systems shift from experimental pilots to core elements of business operations, they offer new opportunities but also introduce new challenges when it comes to ensuring digital resilience. That’s because the autonomy, speed, and scale at which agentic AI operates can amplify the impact of even minor data inconsistencies, fragmentation, or security gaps.

While global investment in AI is projected to reach $1.5 trillion in 2025, fewer than half of business leaders are confident in their organization’s ability to maintain service continuity, security, and cost control during unexpected events. This lack of confidence, coupled with the profound complexity introduced by agentic AI’s autonomous decision-making and interaction with critical infrastructure, requires a reimagining of digital resilience.

Organizations are turning to the concept of a data fabric—an integrated architecture that connects and governs information across all business layers. By breaking down silos and enabling real-time access to enterprise-wide data, a data fabric can empower both human teams and agentic AI systems to sense risks, prevent problems before they occur, recover quickly when they do, and sustain operations.

Machine data: A cornerstone of agentic AI and digital resilience

Earlier AI models relied heavily on human-generated data such as text, audio, and video, but agentic AI demands deep insight into an organization’s machine data: the logs, metrics, and other telemetry generated by devices, servers, systems, and applications.

To put agentic AI to use in driving digital resilience, it must have seamless, real-time access to this data flow. Without comprehensive integration of machine data, organizations risk limiting AI capabilities, missing critical anomalies, or introducing errors. As Kamal Hathi, senior vice president and general manager of Splunk, a Cisco company, emphasizes, agentic AI systems rely on machine data to understand context, simulate outcomes, and adapt continuously. This makes machine data oversight a cornerstone of digital resilience.

“We often describe machine data as the heartbeat of the modern enterprise,” says Hathi. “Agentic AI systems are powered by this vital pulse, requiring real-time access to information. It’s essential that these intelligent agents operate directly on the intricate flow of machine data and that AI itself is trained using the very same data stream.” 

Few organizations are currently achieving the level of machine data integration required to fully enable agentic systems. This not only narrows the scope of possible use cases for agentic AI, but, worse, it can also result in data anomalies and errors in outputs or actions. Natural language processing (NLP) models designed prior to the development of generative pre-trained transformers (GPTs) were plagued by linguistic ambiguities, biases, and inconsistencies. Similar misfires could occur with agentic AI if organizations rush ahead without providing models with a foundational fluency in machine data. 

For many companies, keeping up with the dizzying pace at which AI is progressing has been a major challenge. “In some ways, the speed of this innovation is starting to hurt us, because it creates risks we’re not ready for,” says Hathi. “The trouble is that with agentic AI’s evolution, relying on traditional LLMs trained on human text, audio, video, or print data doesn’t work when you need your system to be secure, resilient, and always available.”

Designing a data fabric for resilience

To address these shortcomings and build digital resilience, technology leaders should pivot to what Hathi describes as a data fabric design, better suited to the demands of agentic AI. This involves weaving together fragmented assets from across security, IT, business operations, and the network to create an integrated architecture that connects disparate data sources, breaks down silos, and enables real-time analysis and risk management. 

“Once you have a single view, you can do all these things that are autonomous and agentic,” says Hathi. “You have far fewer blind spots. Decision-making goes much faster. And the unknown is no longer a source of fear because you have a holistic system that’s able to absorb these shocks and disruption without losing continuity,” he adds.

To create this unified system, data teams must first break down departmental silos in how data is shared, says Hathi. Then, they must implement a federated data architecture—a decentralized system where autonomous data sources work together as a single unit without physically merging—to create a unified data source while maintaining governance and security. And finally, teams must upgrade data platforms to ensure this newly unified view is actionable for agentic AI. 

During this transition, teams may face technical limitations if they rely on traditional platforms modeled on structured data—that is, mostly quantitative information such as customer records or financial transactions that can be organized in a predefined format (often in tables) that is easy to query. Instead, companies need a platform that can also manage streams of unstructured data such as system logs, security events, and application traces, which lack uniformity and are often qualitative rather than quantitative. Analyzing, organizing, and extracting insights from these kinds of data requires more advanced methods enabled by AI.

Harnessing AI as a collaborator

AI itself can be a powerful tool in creating the data fabric that enables AI systems. AI-powered tools can, for example, quickly identify relationships between disparate data—both structured and unstructured—automatically merging them into one source of truth. They can detect and correct errors and employ NLP to tag and categorize data to make it easier to find and use. 

Agentic AI systems can also be used to augment human capabilities in detecting and deciphering anomalies in an enterprise’s unstructured data streams. These are often beyond human capacity to spot or interpret at speed, leading to missed threats or delays. But agentic AI systems, designed to perceive, reason, and act autonomously, can plug the gap, delivering higher levels of digital resilience to an enterprise.

“Digital resilience is about more than withstanding disruptions,” says Hathi. “It’s about evolving and growing over time. AI agents can work with massive amounts of data and continuously learn from humans who provide safety and oversight. This is a true self-optimizing system.”

Humans in the loop

Despite its potential, agentic AI should be positioned as assistive intelligence. Without proper oversight, AI agents could introduce application failures or security risks.

Clearly defined guardrails and maintaining humans in the loop is “key to trustworthy and practical use of AI,” Hathi says. “AI can enhance human decision-making, but ultimately, humans are in the driver’s seat.”

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. It was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

Scaling innovation in manufacturing with AI

Manufacturing is getting a major system upgrade. As AI amplifies existing technologies—like digital twins, the cloud, edge computing, and the industrial internet of things (IIoT)—it is enabling factory operations teams to shift from reactive, isolated problem-solving to proactive, systemwide optimization.

Digital twins—physically accurate virtual representations of a piece of equipment, a production line, a process, or even an entire factory—allow workers to test, optimize, and contextualize complex, real-world environments. Manufacturers are using digital twins to simulate factory environments with pinpoint detail.

“AI-powered digital twins mark a major evolution in the future of manufacturing, enabling real-time visualization of the entire production line, not just individual machines,” says Indranil Sircar, global chief technology officer for the manufacturing and mobility industry at Microsoft. “This is allowing manufacturers to move beyond isolated monitoring toward much wider insights.”

A digital twin of a bottling line, for example, can integrate one-dimensional shop-floor telemetry, two-dimensional enterprise data, and three-dimensional immersive modeling into a single operational view of the entire production line to improve efficiency and reduce costly downtime. Many high-speed industries face downtime rates as high as 40%, estimates Jon Sobel, co-founder and chief executive officer of Sight Machine, an industrial AI company that partners with Microsoft and NVIDIA to transform complex data into actionable insights. By tracking micro-stops and quality metrics via digital twins, companies can target improvements and adjustments with greater precision, saving millions in once-lost productivity without disrupting ongoing operations.

AI offers the next opportunity. Sircar estimates that up to 50% of manufacturers are currently deploying AI in production. This is up from 35% of manufacturers surveyed in a 2024 MIT Technology Review Insights report who said they have begun to put AI use cases into production. Larger manufacturers with more than $10 billion in revenue were significantly ahead, with 77% already deploying AI use cases, according to the report.

“Manufacturing has a lot of data and is a perfect use case for AI,” says Sobel. “An industry that has been seen by some as lagging when it comes to digital technology and AI may be in the best position to lead. It’s very unexpected.”

Download the report.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. It was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.