An experimental surgery is helping cancer survivors give birth

This week I want to tell you about an experimental surgical procedure that’s helping people have babies. Specifically, it’s helping people who have had treatment for bowel or rectal cancer.

Radiation and chemo can have pretty damaging side effects that mess up the uterus and ovaries. Surgeons are pioneering a potential solution: simply stitch those organs out of the way during cancer treatment. Once the treatment has finished, they can put the uterus—along with the ovaries and fallopian tubes—back into place.

It seems to work! Last week, a team in Switzerland shared news that a baby boy had been born after his mother had the procedure. Baby Lucien was the fifth baby to be born after the surgery and the first in Europe, says Daniela Huber, the gyno-oncologist who performed the operation. Since then, at least three others have been born, adds Reitan Ribeiro, the surgeon who pioneered the procedure. They told me the details.

Huber’s patient was 28 years old when a four-centimeter tumor was discovered in her rectum. Doctors at Sion Hospital in Switzerland, where Huber works, recommended a course of treatment that included multiple medications and radiotherapy—the use of beams of energy to shrink a tumor—before surgery to remove the tumor itself.

This kind of radiation can kill tumor cells, but it can also damage other organs in the pelvis, says Huber. That includes the ovaries and uterus. People who undergo these treatments can opt to freeze their eggs beforehand, but the harm caused to the uterus will mean they’ll never be able to carry a pregnancy, she adds. Damage to the lining of the uterus could make it difficult for a fertilized egg to implant there, and the muscles of the uterus are left unable to stretch, she says.

In this case, the woman decided that she did want to freeze her eggs. But it would have been difficult to use them further down the line—surrogacy is illegal in Switzerland.

Huber offered her an alternative.

She had been following the work of Ribeiro, a gynecologist oncologist formerly at the Erasto Gaertner Hospital in Curitiba, Brazil. There, Ribeiro had pioneered a new type of surgery that involved moving the uterus, fallopian tubes, and ovaries from their position in the pelvis and temporarily tucking them away in the upper abdomen, below the ribs.

Ribeiro and his colleagues published their first case report in 2017, describing a 26-year-old with a rectal tumor. (Ribeiro, who is now based at McGill University in Montreal, says the woman had been told by multiple doctors that her cancer treatment would destroy her fertility and had pleaded with him to find a way to preserve it.)

Huber remembers seeing Ribeiro present the case at a conference at the time. She immediately realized that her own patient was a candidate for the surgery, and that, as a surgeon who had performed many hysterectomies, she’d be able to do it herself. The patient agreed.

Huber’s colleagues at the hospital were nervous, she says. They’d never heard of the procedure before. “When I presented this idea to the general surgeon, he didn’t sleep for three days,” she tells me. After watching videos from Ribeiro’s team, however, he was convinced it was doable.

So before the patient’s cancer treatment was started, Huber and her colleagues performed the operation. The team literally stitched the organs to the abdominal wall. “It’s a delicate dissection,” says Huber, but she adds that “it’s not the most difficult procedure.” The surgery took two to three hours, she says. The stitches themselves were removed via small incisions around a week later. By that point, scar tissue had formed to create a lasting attachment.

The woman had two weeks to recover from the surgery before her cancer treatment began. That too was a success—within months, her tumor had shrunk so significantly that it couldn’t be seen on medical scans.

As a precaution, the medical team surgically removed the affected area of her colon. At the same time, they cut away the scar tissue holding the uterus, tubes, and ovaries in their new position and transferred the organs back into the pelvis.

Around eight months later, the woman stopped taking contraception. She got pregnant without IVF and had a mostly healthy pregnancy, says Huber. Around seven months into the pregnancy, there were signs that the fetus was not growing as expected. This might have been due to problems with the blood supply to the placenta, says Huber. Still, the baby was born healthy, she says.

Ribeiro says he has performed the surgery 16 times, and that teams in countries including the US, Peru, Israel, India, and Russia have performed it as well. Not every case has been published, but he thinks there may be around 40.

Since Baby Lucien was born last year, a sixth birth has been announced in Israel, says Huber. Ribeiro says he has heard of another two births since then, too. The most recent was to the first woman who had the procedure. She had a little girl a few months ago, he tells me.

No surgery is risk-free, and Huber points out there’s a chance that organs could be damaged during the procedure, or that a more developed cancer could spread. The uterus of one of Ribeiro’s patients failed following the surgery. Doctors are “still in the phase of collecting data to [create] a standardized procedure,” Huber says, but she hopes the surgery will offer more options to young people with some pelvic cancers. “I hope more young women could benefit from this procedure,” she says.

Ribeiro says the experience has taught him not to accept the status quo. “Everyone was saying … there was nothing to be done [about the loss of fertility in these cases],” he tells me. “We need to keep evolving and looking for different answers.”

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

How the sometimes-weird world of lifespan extension is gaining influence

For the last couple of years, I’ve been following the progress of a group of individuals who believe death is humanity’s “core problem.” Put simply, they say death is wrong—for everyone. They’ve even said it’s morally wrong.

They established what they consider a new philosophy, and they called it Vitalism.

Vitalism is more than a philosophy, though—it’s a movement for hardcore longevity enthusiasts who want to make real progress in finding treatments that slow or reverse aging. Not just through scientific advances, but by persuading influential people to support their movement, and by changing laws and policies to open up access to experimental drugs.

And they’re starting to make progress.

Vitalism was founded by Adam Gries and Nathan Cheng—two men who united over their shared desire to find ways to extend human lifespan. I first saw Cheng speak back in 2023, at Zuzalu, a pop-up city in Montenegro for people who were interested in life extension and some other technologies. (It was an interesting experience—you can read more about it here.)

Zuzalu was where Gries and Cheng officially launched Vitalism. But I’ve been closely following the longevity scene since 2022. That journey took me to Switzerland, Honduras, and a compound in Berkeley, California, where like-minded longevity enthusiasts shared their dreams of life extension.

It also took me to Washington, DC, where, last year, supporters of lifespan extension presented politicians including Mehmet Oz, who currently leads the Centers for Medicare & Medicaid Services, with their case for changes to laws and policies.

The journey has been fascinating, and at times weird and even surreal. I’ve heard biohacking stories that ended with smoking legs. I’ve been told about a multi-partner relationship that might be made possible through the cryopreservation—and subsequent reanimation—of a man and the multiple wives he’s had throughout his life. I’ve had people tell me to my face that they consider themselves eugenicists, and that they believe that parents should select IVF embryos for their propensity for a long life.

I’ve seen people draw blood during dinner in an upscale hotel restaurant to test their biological age. I’ve heard wild plans to preserve human consciousness and resurrect it in machines. Others have told me their plans to inject men’s penises with multiple doses of an experimental gene therapy in order to treat erectile dysfunction and ultimately achieve “radical longevity.”

I’ve been shouted at and threatened with legal action. I’ve received barefoot hugs. One interviewee told me I needed Botox. It’s been a ride.

My reporting has also made me realize that the current interest in longevity reaches beyond social media influencers and wellness centers. Longevity clinics are growing in number, and there’s been a glut of documentaries about living longer or even forever.

At the same time, powerful people who influence state laws, giant federal funding budgets, and even national health policy are prioritizing the search for treatments that slow or reverse aging. The longevity community was thrilled when longtime supporter Jim O’Neill was made deputy secretary of health and human services last year. Other members of Trump’s administration, including Oz, have spoken about longevity too. “It seems that now there is the most pro-longevity administration in American history,” Gries told me.

I recently spoke to Alicia Jackson, the new director of ARPA-H. The agency, established in 2022 under Joe Biden’s presidency, funds “breakthrough” biomedical research. And it appears to have a new focus on longevity. Jackson previously founded and led Evernow, a company focused on “health and longevity for every woman.”

“There’s a lot of interesting technologies, but they all kind of come back to the same thing: Could we extend life years?” she told me over a Zoom call a few weeks ago. She added that her agency had “incredible support” from “the very top of HHS.” I asked if she was referring to Jim O’Neill. “Yeah,” she said. She wouldn’t go into the specifics.

Gries is right: There is a lot of support for advances in longevity treatments, and some of it is coming from influential people in positions of power. Perhaps the field really is poised for a breakthrough.

And that’s what makes this field so fascinating to cover. Despite the occasional weirdness.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Measles is surging in the US. Wastewater tracking could help.

This week marked a rather unpleasant anniversary: It’s a year since Texas reported a case of measles—the start of a significant outbreak that ended up spreading across multiple states. Since the start of January 2025, there have been over 2,500 confirmed cases of measles in the US. Three people have died.

As vaccination rates drop and outbreaks continue, scientists have been experimenting with new ways to quickly identify new cases and prevent the disease from spreading. And they are starting to see some success with wastewater surveillance.

After all, wastewater contains saliva, urine, feces, shed skin, and more. You could consider it a rich biological sample. Wastewater analysis helped scientists understand how covid was spreading during the pandemic. It’s early days, but it is starting to help us get a handle on measles.

Globally, there has been some progress toward eliminating measles, largely thanks to vaccination efforts. Such efforts led to an 88% drop in measles deaths between 2000 and 2024, according to the World Health Organization. It estimates that “nearly 59 million lives have been saved by the measles vaccine” since 2000.

Still, an estimated 95,000 people died from measles in 2024 alone—most of them young children. And cases are surging in Europe, Southeast Asia, and the Eastern Mediterranean region.

Last year, the US saw the highest levels of measles in decades. The country is on track to lose its measles elimination status—a sorry fate that met Canada in November after the country recorded over 5,000 cases in a little over a year.

Public health efforts to contain the spread of measles—which is incredibly contagious—typically involve clinical monitoring in health-care settings, along with vaccination campaigns. But scientists have started looking to wastewater, too.

Along with various bodily fluids, we all shed viruses and bacteria into wastewater, whether that’s through brushing our teeth, showering, or using the toilet. The idea of looking for these pathogens in wastewater to track diseases has been around for a while, but things really kicked into gear during the covid-19 pandemic, when scientists found that the coronavirus responsible for the disease was shed in feces.

This led Marlene Wolfe of Emory University and Alexandria Boehm of Stanford University to establish WastewaterSCAN, an academic-led program developed to analyze wastewater samples across the US. Covid was just the beginning, says Wolfe. “Over the years we have worked to expand what can be monitored,” she says.

Two years ago, for a previous edition of the Checkup, Wolfe told Cassandra Willyard that wastewater surveillance of measles was “absolutely possible,” as the virus is shed in urine. The hope was that this approach could shed light on measles outbreaks in a community, even if members of that community weren’t able to access health care and receive an official diagnosis. And that it could highlight when and where public health officials needed to act to prevent measles from spreading. Evidence that it worked as an effective public health measure was, at the time, scant.

Since then, she and her colleagues have developed a test to identify measles RNA. They trialed it at two wastewater treatment plants in Texas between December 2024 and May 2025. At each site, the team collected samples two or three times a week and tested them for measles RNA.

Over that period, the team found measles RNA in 10.5% of the samples they collected, as reported in a preprint paper published at medRxiv in July and currently under review at a peer-reviewed journal. The first detection came a week before the first case of measles was officially confirmed in the area. That’s promising—it suggests that wastewater surveillance might pick up measles cases early, giving public health officials a head start in efforts to limit any outbreaks.

There are more promising results from a team in Canada. Mike McKay and Ryland Corchis-Scott at the University of Windsor in Ontario and their colleagues have also been testing wastewater samples for measles RNA. Between February and November 2025, the team collected samples from a wastewater treatment facility serving over 30,000 people in Leamington, Ontario. 

These wastewater tests are somewhat limited—even if they do pick up measles, they won’t tell you who has measles, where exactly infections are occurring, or even how many people are infected. McKay and his colleagues have begun to make some progress here. In addition to monitoring the large wastewater plant, the team used tampons to soak up wastewater from a hospital lateral sewer.

They then compared their measles test results with the number of clinical cases in that hospital. This gave them some idea of the virus’s “shedding rate.” When they applied this to the data collected from the Leamington wastewater treatment facility, the team got estimates of measles cases that were much higher than the figures officially reported. 

Their findings track with the opinions of local health officials (who estimate that the true number of cases during the outbreak was around five to 10 times higher than the confirmed case count), the team members wrote in a paper published on medRxiv a couple of weeks ago.

There will always be limits to wastewater surveillance. “We’re looking at the pool of waste of an entire community, so it’s very hard to pull in information about individual infections,” says Corchis-Scott.

Wolfe also acknowledges that “we have a lot to learn about how we can best use the tools so they are useful.” But her team at WastewaterSCAN has been testing wastewater across the US for measles since May last year. And their findings are published online and shared with public health officials.

In some cases, the findings are already helping inform the response to measles. “We’ve seen public health departments act on this data,” says Wolfe. Some have issued alerts, or increased vaccination efforts in those areas, for example. “[We’re at] a point now where we really see public health departments, clinicians, [and] families using that information to help keep themselves and their communities safe,” she says.

McKay says his team has stopped testing for measles because the Ontario outbreak “has been declared over.” He says testing would restart if and when a single new case of measles is confirmed in the region, but he also thinks that his research makes a strong case for maintaining a wastewater surveillance system for measles.

McKay wonders if this approach might help Canada regain its measles elimination status. “It’s sort of like [we’re] a pariah now,” he says. If his approach can help limit measles outbreaks, it could be “a nice tool for public health in Canada to [show] we’ve got our act together.”

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Three technologies that will shape biotech in 2026

Earlier this week, MIT Technology Review published its annual list of Ten Breakthrough Technologies. As always, it features technologies that made the news last year, and which—for better or worse—stand to make waves in the coming years. They’re the technologies you should really be paying attention to.

This year’s list includes tech that’s set to transform the energy industry, artificial intelligence, space travel—and of course biotech and health. Our breakthrough biotechnologies for 2026 involve editing a baby’s genes and, separately, resurrecting genes from ancient species. We also included a controversial technology that offers parents the chance to screen their embryos for characteristics like height and intelligence. Here’s the story behind our biotech choices.

A base-edited baby!

In August 2024, KJ Muldoon was born with a rare genetic disorder that allowed toxic ammonia to build up in his blood. The disease can be fatal, and KJ was at risk of developing neurological disorders. At the time, his best bet for survival involved waiting for a liver transplant.

Then he was offered an experimental gene therapy—a personalized “base editing” treatment designed to correct the specific genetic “misspellings” responsible for his disease. It seems to have worked! Three doses later, KJ is doing well. He took his first steps in December, shortly before spending his first Christmas at home.

KJ’s story is hugely encouraging. The team behind his treatment is planning a clinical trial for infants with similar disorders caused by different genetic mutations. The team members hope to win regulatory approval on the back of a small trial—a move that could make the expensive treatment (KJ’s cost around $1 million) more accessible, potentially within a few years.

Others are getting in on the action, too. Fyodor Urnov, a gene-editing scientist at the University of California, Berkeley, assisted the team that developed KJ’s treatment. He recently cofounded Aurora Therapeutics, a startup that hopes to develop gene-editing drugs for another disorder called phenylketonuria (PKU). The goal is to obtain regulatory approval for a single drug that can then be adjusted or personalized for individuals without having to go through more clinical trials.

US regulators seem to be amenable to the idea and have described a potential approval pathway for such “bespoke, personalized therapies.” Watch this space.

Gene resurrection

It was a big year for Colossal Biosciences, the biotech company hoping to “de-extinct” animals like the woolly mammoth and the dodo. In March, the company created what it called “woolly mice”—rodents with furry coats and curly whiskers akin to those of woolly mammoths.

The company made an even more dramatic claim the following month, when it announced it had created three dire wolves. These striking snow-white animals were created by making 20 genetic changes to the DNA of gray wolves based on genetic research on ancient dire wolf bones, the company said at the time.

Whether these animals can really be called dire wolves is debatable, to say the least. But the technology behind their creation is undeniably fascinating. We’re talking about the extraction and analysis of ancient DNA, which can then be introduced into cells from other, modern-day species.

Analysis of ancient DNA can reveal all sorts of fascinating insights into human ancestors and other animals. And cloning, another genetic tool used here, has applications not only in attempts to re-create dead pets but also in wildlife conservation efforts. Read more here.

Embryo scoring

IVF involves creating embryos in a lab and, typically, “scoring” them on their likelihood of successful growth before they are transferred to a person’s uterus. So far, so uncontroversial.

Recently, embryo scoring has evolved. Labs can pinch off a couple of cells from an embryo, look at its DNA, and screen for some genetic diseases. That list of diseases is increasing. And now some companies are taking things even further, offering prospective parents the opportunity to select embryos for features like height, eye color, and even IQ.

This is controversial for lots of reasons. For a start, there are many, many factors that contribute to complex traits like IQ (a score that doesn’t capture all aspects of intelligence at any rate). We don’t have a perfect understanding of those factors, or how selecting for one trait might influence another.

Some critics warn of eugenics. And others note that whichever embryo you end up choosing, you can’t control exactly how your baby will turn out (and why should you?!). Still, that hasn’t stopped Nucleus, one of the companies offering these services, from inviting potential customers to have their “best baby.” Read more here.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

America’s new dietary guidelines ignore decades of scientific research

The new year has barely begun, but the first days of 2026 have brought big news for health. On Monday, the US’s federal health agency upended its recommendations for routine childhood vaccinations—a move that health associations worry puts children at unnecessary risk of preventable disease.

There was more news from the federal government on Wednesday, when health secretary Robert F. Kennedy Jr. and his colleagues at the Departments of Health and Human Services and Agriculture unveiled new dietary guidelines for Americans. And they are causing a bit of a stir.

That’s partly because they recommend products like red meat, butter, and beef tallow—foods that have been linked to cardiovascular disease, and that nutrition experts have been recommending people limit in their diets.

These guidelines are a big deal—they influence food assistance programs and school lunches, for example. So this week let’s look at the good, the bad, and the ugly advice being dished up to Americans by their government.

The government dietary guidelines have been around since the 1980s. They are updated every five years, in a process that typically involves a team of nutrition scientists who have combed over scientific research for years. That team will first publish its findings in a scientific report, and, around a year later, the finalized Dietary Guidelines for Americans are published.

The last guidelines covered the period 2020 to 2025, and new guidelines were expected in the summer of 2025. Work had already been underway for years; the scientific report intended to inform them was published back in 2024. But the publication of the guidelines was delayed by last year’s government shutdown, Kennedy said last year. They were finally published yesterday.

Nutrition experts had been waiting with bated breath. Nutrition science has evolved slightly over the last five years, and some were expecting to see new recommendations. Research now suggests, for example, that there is no “safe” level of alcohol consumption.

We are also beginning to learn more about health risks associated with some ultraprocessed foods (although we still don’t have a good understanding of what they might be, or what even counts as “ultraprocessed”.) And some scientists were expecting to see the new guidelines factor in environmental sustainability, says Gabby Headrick, the associate director of food and nutrition policy at George Washington University’s Institute for Food Safety & Nutrition Security in Washington DC.

They didn’t.

Many of the recommendations are sensible. The guidelines recommend a diet rich in whole foods, particularly fresh fruits and vegetables. They recommend avoiding highly processed foods and added sugars. They also highlight the importance of dietary protein, whole grains, and “healthy” fats.

But not all of them are, says Headrick. The guidelines open with a “new pyramid” of foods. This inverted triangle is topped with “protein, dairy, and healthy fats” on one side and “vegetables and fruits” on the other.

USDA

There are a few problems with this image. For starters, its shape—nutrition scientists have long moved on from the food pyramids of the 1990s, says Headrick. They’re confusing and make it difficult for people to understand what the contents of their plate should look like. That’s why scientists now use an image of a plate to depict a healthy diet.

“We’ve been using MyPlate to describe the dietary guidelines in a very consumer-friendly, nutrition-education-friendly way for over the last decade now,” says Headrick. (The UK’s National Health Service takes a similar approach.)

And then there’s the content of that food pyramid. It puts a significant focus on meat and whole-fat dairy produce. The top left image—the one most viewers will probably see first—is of a steak. Smack in the middle of the pyramid is a stick of butter. That’s new. And it’s not a good thing.

While both red meat and whole-fat dairy can certainly form part of a healthy diet, nutrition scientists have long been recommending that most people try to limit their consumption of these foods. Both can be high in saturated fat, which can increase the risk of cardiovascular disease—the leading cause of death in the US. In 2015, on the basis of limited evidence, the World Health Organization classified red meat as “probably carcinogenic to humans.” 

Also concerning is the document’s definition of “healthy fats,” which includes butter and beef tallow (a MAHA favorite). Neither food is generally considered to be as healthy as olive oil, for example. While olive oil contains around two grams of saturated fat per tablespoon, a tablespoon of beef tallow has around six grams of saturated fat, and the same amount of butter contains around seven grams of saturated fat, says Headrick.

“I think these are pretty harmful dietary recommendations to be making when we have established that those specific foods likely do not have health-promoting benefits,” she adds.

Red meat is not exactly a sustainable food, and neither are dairy products. And the advice on alcohol is relatively vague, recommending that people “consume less alcohol for better overall health” (which might leave you wondering: Less than what?).

There are other questionable recommendations in the guidelines. Americans are advised to include more protein in their diets—at levels between 1.2 and 1.6 grams daily per kilo of body weight, 50% to 100% more than recommended in previous guidelines. There’s a risk that increasing protein consumption to such levels could raise a person’s intake of both calories and saturated fats to unhealthy levels, says José Ordovás, a senior nutrition scientist at Tufts University. “I would err on the low side,” he says.

Some nutrition scientists are questioning why these changes have been made. It’s not as though the new recommendations were in the 2024 scientific report. And the evidence on red meat and saturated fat hasn’t changed, says Headrick.

In reporting this piece, I contacted many contributors to the previous guidelines, and some who had led research for 2024’s scientific report. None of them agreed to comment on the new guidelines on the record. Some seemed disgruntled. One merely told me that the process by which the new guidelines had been created was “opaque.”

“These people invested a lot of their time, and they did a thorough job [over] a couple of years, identifying [relevant scientific studies],” says Ordovás. “I’m not surprised that when they see that [their] work was ignored and replaced with something [put together] quickly, that they feel a little bit disappointed,” he says.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Take our quiz on the year in health and biotechnology

In just a couple of weeks, we’ll be bidding farewell to 2025. And what a year it has been! Artificial intelligence is being incorporated into more aspects of our lives, weight-loss drugs have expanded in scope, and there have been some real “omg” biotech stories from the fields of gene therapy, IVF, neurotech, and more.   

As always, the team at MIT Technology Review has been putting together our 2026 list of breakthrough technologies. That will be published in the new year (watch this space). In the meantime, my colleague Antonio Regalado has compiled his traditional list of the year’s worst technologies.

I’m inviting you to put your own memory to the test. Just how closely have you been paying attention to the Checkup emails that have been landing in your inbox this year?!

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Expanded carrier screening: Is it worth it?

This week I’ve been thinking about babies. Healthy ones. Perfect ones. As you may have read last week, my colleague Antonio Regalado came face to face with a marketing campaign in the New York subway asking people to “have your best baby.”

The company behind that campaign, Nucleus Genomics, says it offers customers a way to select embryos for a range of traits, including height and IQ. It’s an extreme proposition, but it does seem to be growing in popularity—potentially even in the UK, where it’s illegal.

The other end of the screening spectrum is transforming too. Carrier screening, which tests would-be parents for hidden genetic mutations that might affect their children, initially involved testing for specific genes in at-risk populations.

Now, it’s open to almost everyone who can afford it. Companies will offer to test for hundreds of genes to help people make informed decisions when they try to become parents. But expanded carrier screening comes with downsides. And it isn’t for everyone.

That’s what I found earlier this week when I attended the Progress Educational Trust’s annual conference in London.

First, a bit of background. Our cells carry 23 pairs of chromosomes, each with thousands of genes. The same gene—say, one that codes for eye color—can come in different forms, or alleles. If the allele is dominant, you only need one copy to express that trait. That’s the case for the allele responsible for brown eyes. 

If the allele is recessive, the trait doesn’t show up unless you have two copies. This is the case with the allele responsible for blue eyes, for example.

Things get more serious when we consider genes that can affect a person’s risk of disease. Having a single recessive disease-causing gene typically won’t cause you any problems. But a genetic disease could show up in children who inherit the same recessive gene from both parents. There’s a 25% chance that two “carriers” will have an affected child. And those cases can come as a shock to the parents, who tend to have no symptoms and no family history of disease.

This can be especially problematic in communities with high rates of those alleles. Consider Tay-Sachs disease—a rare and fatal neurodegenerative disorder caused by a recessive genetic mutation. Around one in 25 members of the Ashkenazi Jewish population is a healthy carrier for Tay-Sachs. Screening would-be parents for those recessive genes can be helpful. Carrier screening efforts in the Jewish community, which have been running since the 1970s, have massively reduced cases of Tay-Sachs.

Expanded carrier screening takes things further. Instead of screening for certain high-risk alleles in at-risk populations, there’s an option to test for a wide array of diseases in prospective parents and egg and sperm donors. The companies offering these screens “started out with 100 genes, and now some of them go up to 2,000,” Sara Levene, genetics counsellor at Guided Genetics, said at the meeting. “It’s becoming a bit of an arms race amongst labs, to be honest.”

There are benefits to expanded carrier screening. In most cases, the results are reassuring. And if something is flagged, prospective parents have options; they can often opt for additional testing to get more information about a particular pregnancy, for example, or choose to use other donor eggs or sperm to get pregnant. But there are also downsides. For a start, the tests can’t entirely rule out the risk of genetic disease.

Earlier this week, the BBC reported news of a sperm donor who had unwittingly passed on to at least 197 children in Europe a genetic mutation that dramatically increased the risk of cancer. Some of those children have already died.

It’s a tragic case. That donor had passed screening checks. The (dominant) mutation appears to have occurred in his testes, affecting around 20% of his sperm. It wouldn’t have shown up in a screen for recessive alleles, or even a blood test.

Even recessive diseases can be influenced by many genes, some of which won’t be included in the screen. And the screens don’t account for other factors that could influence a person’s risk of disease, such as epigenetics, microbiome, or even lifestyle.

“There’s always a 3% to 4% chance [of having] a child with a medical issue regardless of the screening performed,” said Jackson Kirkman-Brown, professor of reproductive biology at the University of Birmingham, at the meeting.

The tests can also cause stress. As soon as a clinician even mentions expanded carrier screening, it adds to the mental load of the patient, said Kirkman-Brown: “We’re saying this is another piece of information you need to worry about.”

People can also feel pressured to undergo expanded carrier screening even when they are ambivalent about it, said Heidi Mertes, a medical ethicist at Ghent University. “Once the technology is there, people feel like if they don’t take this opportunity up, then they are kind of doing something wrong or missing out,” she said.

My takeaway from the presentations was that while expanded carrier screening can be useful, especially for people from populations with known genetic risks, it won’t be for everyone.

I also worry that, as with the genetic tests offered by Nucleus, its availability gives the impression that it is possible to have a “perfect” baby—even if that only means “free from disease.” The truth is that there’s a lot about reproduction that we can’t control.

The decision to undergo expanded carrier screening is a personal choice. But as Mertes noted at the meeting: “Just because you can doesn’t mean you should.”

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

The ads that sell the sizzle of genetic trait discrimination

One day this fall, I watched an electronic sign outside the Broadway-Lafayette subway station in Manhattan switch seamlessly between an ad for makeup and one promoting the website Pickyourbaby.com, which promises a way for potential parents to use genetic tests to influence their baby’s traits, including eye color, hair color, and IQ.

Inside the station, every surface was wrapped with more ads—babies on turnstiles, on staircases, on banners overhead. “Think about it. Makeup and then genetic optimization,” exulted Kian Sadeghi, the 26-year-old founder of Nucleus Genomics, the startup running the ads. To his mind, one should be as accessible as the other. 

Nucleus is a young, attention-seeking genetic software company that says it can analyze genetic tests on IVF embryos to score them for 2,000 traits and disease risks, letting parents pick some and reject others. This is possible because of how our DNA shapes us, sometimes powerfully. As one of the subway banners reminded the New York riders: “Height is 80% genetic.”

The day after the campaign launched, Sadeghi and I had briefly sparred online. He’d been on X showing off a phone app where parents can click through traits like eye color and hair color. I snapped back that all this sounded a lot like Uber Eats—another crappy, frictionless future invented by entrepreneurs, but this time you’d click for a baby.

I agreed to meet Sadeghi that night in the station under a banner that read, “IQ is 50% genetic.” He appeared in a puffer jacket and told me the campaign would soon spread to 1,000 train cars. Not long ago, this was a secretive technology to whisper about at Silicon Valley dinner parties. But now? “Look at the stairs. The entire subway is genetic optimization. We’re bringing it mainstream,” he said. “I mean, like, we are normalizing it, right?”

Normalizing what, exactly? The ability to choose embryos on the basis of predicted traits could lead to healthier people. But the traits mentioned in the subway—height and IQ—focus the public’s mind toward cosmetic choices and even naked discrimination. “I think people are going to read this and start realizing: Wow, it is now an option that I can pick. I can have a taller, smarter, healthier baby,” says Sadeghi.

Entrepreneur Kian Sadeghi stands under advertising banner in the Broadway-Lafayette subway station in Manhattan, part of a campaign called “Have Your Best Baby.”
COURTESY OF THE AUTHOR

Nucleus got its seed funding from Founders Fund, an investment firm known for its love of contrarian bets. And embryo scoring fits right in—it’s an unpopular concept, and professional groups say the genetic predictions aren’t reliable. So far, leading IVF clinics still refuse to offer these tests. Doctors worry, among other things, that they’ll create unrealistic parental expectations. What if little Johnny doesn’t do as well on the SAT as his embryo score predicted?

The ad blitz is a way to end-run such gatekeepers: If a clinic won’t agree to order the test, would-be parents can take their business elsewhere. Another embryo testing company, Orchid, notes that high consumer demand emboldened Uber’s early incursions into regulated taxi markets. “Doctors are essentially being shoved in the direction of using it, not because they want to, but because they will lose patients if they don’t,” Orchid founder Noor Siddiqui said during an online event this past August.

Sadeghi prefers to compare his startup to Airbnb. He hopes it can link customers to clinics, becoming a digital “funnel” offering a “better experience” for everyone. He notes that Nucleus ads don’t mention DNA or any details of how the scoring technique works. That’s not the point. In advertising, you sell the sizzle, not the steak. And in Nucleus’s ad copy, what sizzles is height, smarts, and light-colored eyes.

It makes you wonder if the ads should be permitted. Indeed, I learned from Sadeghi that the Metropolitan Transportation Authority had objected to parts of the campaign. The metro agency, for instance, did not let Nucleus run ads saying “Have a girl” and “Have a boy,” even though it’s very easy to identify the sex of an embryo using a genetic test. The reason was an MTA policy that forbids using government-owned infrastructure to promote “invidious discrimination” against protected classes, which include race, religion and biological sex.

Since 2023, New York City has also included height and weight in its anti-discrimination law, the idea being to “root out bias” related to body size in housing and in public spaces. So I’m not sure why the MTA let Nucleus declare that height is 80% genetic. (The MTA advertising department didn’t respond to questions.) Perhaps it’s because the statement is a factual claim, not an explicit call to action. But we all know what to do: Pick the tall one and leave shorty in the IVF freezer, never to be born.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

What we still don’t know about weight-loss drugs

<div data-chronoton-summary="

  • Mixed research results Despite promising applications, recent studies delivered disappointments: GLP-1 drugs failed to slow Alzheimer’s progression in a major trial.
  • Pregnancy concerns People who stop taking GLP-1s before pregnancy may experience excessive weight gain and potentially higher risks of complications. Conflicting studies have created confusion about pre-pregnancy use, while postpartum usage is increasing without understanding potential impacts.
  • Long-term questions When people stop taking GLP-1s, most regain significant weight and see worsening heart health. Scientists still don’t know if indefinite use is necessary or safe, nor understand long-term effects on children or healthy-weight people using them for weight loss.

” data-chronoton-post-id=”1128511″ data-chronoton-expand-collapse=”1″ data-chronoton-analytics-enabled=”1″>

MIT Technology Review Explains: Let our writers untangle the complex, messy world of technology to help you understand what’s coming next. You can read more from the series here.

Weight-loss drugs have been back in the news this week. First, we heard that Eli Lilly, the company behind the drugs Mounjaro and Zepbound, became the first healthcare company in the world to achieve a trillion-dollar valuation.

Those two drugs, which are prescribed for diabetes and obesity respectively, are generating billions of dollars in revenue for the company. Other GLP-1 agonist drugs—a class that includes Mounjaro and Zepbound, which have the same active ingredient—have also been approved to reduce the risk of heart attack and stroke in overweight people. Many hope these apparent wonder drugs will also treat neurological disorders and potentially substance use disorders, too.

But this week we also learned that, disappointingly, GLP-1 drugs don’t seem to help people with Alzheimer’s disease. And that people who stop taking the drugs when they become pregnant can experience potentially dangerous levels of weight gain during their pregnancies. On top of that, some researchers worry that people are using the drugs postpartum to lose pregnancy weight without understanding potential risks.

All of this news should serve as a reminder that there’s a lot we still don’t know about these drugs. This week, let’s look at the enduring questions surrounding GLP-1 agonist drugs.

First a quick recap. Glucagon-like peptide-1 is a hormone made in the gut that helps regulate blood sugar levels. But we’ve learned that it also appears to have effects across the body. Receptors that GLP-1 can bind to have been found in multiple organs and throughout the brain, says Daniel Drucker, an endocrinologist at the University of Toronto who has been studying the hormone for decades.

GLP-1 agonist drugs essentially mimic the hormone’s action. Quite a few have been developed, including semaglutide, tirzepatide, liraglutide, and exenatide, which have brand names like Ozempic, Saxenda and Wegovy. Some of them are recommended for some people with diabetes.

But because these drugs also seem to suppress appetite, they have become hugely popular weight loss aids. And studies have found that many people who take them for diabetes or weight loss experience surprising side effects; that their mental health improves, for example, or that they feel less inclined to smoke or consume alcohol. Research has also found that the drugs seem to increase the growth of brain cells in lab animals.

So far, so promising. But there are a few outstanding gray areas.

Are they good for our brains?

Novo Nordisk, a competitor of Eli Lilly, manufactures GLP-1 drugs Wegovy and Saxenda. The company recently trialed an oral semaglutide in people with Alzheimer’s disease who had mild cognitive impairment or mild dementia. The placebo-controlled trial included 3808 volunteers.

Unfortunately, the company found that the drug did not appear to delay the progression of Alzheimer’s disease in the volunteers who took it.

The news came as a huge disappointment to the research community. “It was kind of crushing,” says Drucker. That’s despite the fact that, deep down, he wasn’t expecting a “clear win.” Alzheimer’s disease has proven notoriously difficult to treat, and by the time people get a diagnosis, a lot of damage has already taken place.

But he is one of many that isn’t giving up hope entirely. After all, research suggests that GLP-1 reduces inflammation in the brain and improves the health of neurons, and that it appears to improve the way brain regions communicate with each other. This all implies that GLP-1 drugs should benefit the brain, says Drucker. There’s still a chance that the drugs might help stave off Alzheimer’s in those who are still cognitively healthy.

Are they safe before, during or after pregnancy?

Other research published this week raises questions about the effects of GLP-1s taken around the time of pregnancy. At the moment, people are advised to plan to stop taking the medicines two months before they become pregnant. That’s partly because some animal studies suggest the drugs can harm the development of a fetus, but mainly because scientists haven’t studied the impact on pregnancy in humans.

Among the broader population, research suggests that many people who take GLP-1s for weight loss regain much of their lost weight once they stop taking those drugs. So perhaps it’s not surprising that a study published in JAMA earlier this week saw a similar effect in pregnant people.

The study found that people who had been taking those drugs gained around 3.3kg more than others who had not. And those who had been taking the drugs also appeared to have a slightly higher risk of gestational diabetes, blood pressure disorders and even preterm birth.

It sounds pretty worrying. But a different study published in August had the opposite finding—it noted a reduction in the risk of those outcomes among women who had taken the drugs before becoming pregnant.

If you’re wondering how to make sense of all this, you’re not the only one. No one really knows how these drugs should be used before pregnancy—or during it for that matter.

Another study out this week found that people (in Denmark) are increasingly taking GLP-1s postpartum to lose weight gained during pregnancy. Drucker tells me that, anecdotally, he gets asked about this potential use a lot.

But there’s a lot going on in a postpartum body. It’s a time of huge physical and hormonal change that can include bonding, breastfeeding and even a rewiring of the brain. We have no idea if, or how, GLP-1s might affect any of those.

Howand whencan people safely stop using them?

Yet another study out this week—you can tell GLP-1s are one of the hottest topics in medicine right now—looked at what happens when people stop taking tirzepatide (marketed as Zepbound) for their obesity.

The trial participants all took the drug for 36 weeks, at which point half continued with the drug, and half were switched to a placebo for another 52 weeks. During that first 36 weeks, the weight and heart health of the participants improved.

But by the end of the study, most of those that had switched to a placebo had regained more than 25% of the weight they had originally lost. One in four had regained more than 75% of that weight, and 9% ended up at a higher weight than when they’d started the study. Their heart health also worsened.

Does that mean that people need to take these drugs forever? Scientists don’t have the answer to that one, either. Or if taking the drugs indefinitely is safe. The answer might depend on the individual, their age or health status, or what they are using the drug for.

There are other gray areas. GLP-1s look promising for substance use disorders, but we don’t yet know how effective they might be. We don’t know the long-term effects these drugs have on children who take them. And we don’t know the long-term consequences these drugs might have for healthy-weight people who take them for weight loss.

Earlier this year, Drucker accepted a Breakthrough Prize in Life Sciences at a glitzy event in California. “All of these Hollywood celebrities were coming up to me and saying ‘thank you so much,’” he says. “A lot of these people don’t need to be on these medicines.”

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

We’re learning more about what vitamin D does to our bodies

It has started to get really wintry here in London over the last few days. The mornings are frosty, the wind is biting, and it’s already dark by the time I pick my kids up from school. The darkness in particular has got me thinking about vitamin D, a.k.a. the sunshine vitamin.

At a checkup a few years ago, a doctor told me I was deficient in vitamin D. But he wouldn’t write me a prescription for supplements, simply because, as he put it, everyone in the UK is deficient. Putting the entire population on vitamin D supplements would be too expensive for the country’s national health service, he told me.

But supplementation—whether covered by a health-care provider or not—can be important. As those of us living in the Northern Hemisphere spend fewer of our waking hours in sunlight, let’s consider the importance of vitamin D.

Yes, it is important for bone health. But recent research is also uncovering surprising new insights into how the vitamin might influence other parts of our bodies, including our immune systems and heart health.

Vitamin D was discovered just over 100 years ago, when health professionals were looking for ways to treat what was then called “the English disease.” Today, we know that rickets, a weakening of bones in children, is caused by vitamin D deficiency. And vitamin D is best known for its importance in bone health.

That’s because it helps our bodies absorb calcium. Our bones are continually being broken down and rebuilt, and they need calcium for that rebuilding process. Without enough calcium, bones can become weak and brittle. (Depressingly, rickets is still a global health issue, which is why there is global consensus that infants should receive a vitamin D supplement at least until they are one year old.)

In the decades since then, scientists have learned that vitamin D has effects beyond our bones. There’s some evidence to suggest, for example, that being deficient in vitamin D puts people at risk of high blood pressure. Daily or weekly supplements can help those individuals lower their blood pressure.

A vitamin D deficiency has also been linked to a greater risk of “cardiovascular events” like heart attacks, although it’s not clear whether supplements can reduce this risk; the evidence is pretty mixed.

Vitamin D appears to influence our immune health, too. Studies have found a link between low vitamin D levels and incidence of the common cold, for example. And other research has shown that vitamin D supplements can influence the way our genes make proteins that play important roles in the way our immune systems work.

We don’t yet know exactly how these relationships work, however. And, unfortunately, a recent study that assessed the results of 37 clinical trials found that overall, vitamin D supplements aren’t likely to stop you from getting an “acute respiratory infection.”

Other studies have linked vitamin D levels to mental health, pregnancy outcomes, and even how long people survive after a cancer diagnosis. It’s tantalizing to imagine that a cheap supplement could benefit so many aspects of our health.

But, as you might have gathered if you’ve got this far, we’re not quite there yet. The evidence on the effects of vitamin D supplementation for those various conditions is mixed at best.

In fairness to researchers, it can be difficult to run a randomized clinical trial for vitamin D supplements. That’s because most of us get the bulk of our vitamin D from sunlight. Our skin converts UVB rays into a form of the vitamin that our bodies can use. We get it in our diets, too, but not much. (The main sources are oily fish, egg yolks, mushrooms, and some fortified cereals and milk alternatives.)

The standard way to measure a person’s vitamin D status is to look at blood levels of 25-hydroxycholecalciferol (25(OH)D), which is formed when the liver metabolizes vitamin D. But not everyone can agree on what the “ideal” level is.

Even if everyone did agree on a figure, it isn’t obvious how much vitamin D a person would need to consume to reach this target, or how much sunlight exposure it would take. One complicating factor is that people respond to UV rays in different ways—a lot of that can depend on how much melanin is in your skin. Similarly, if you’re sitting down to a meal of oily fish and mushrooms and washing it down with a glass of fortified milk, it’s hard to know how much more you might need.

There is more consensus on the definition of vitamin D deficiency, though. (It’s a blood level below 30 nanomoles per liter, in case you were wondering.) And until we know more about what vitamin D is doing in our bodies, our focus should be on avoiding that.

For me, that means topping up with a supplement. The UK government advises everyone in the country to take a 10-microgram vitamin D supplement over autumn and winter. That advice doesn’t factor in my age, my blood levels, or the amount of melanin in my skin. But it’s all I’ve got for now.