Oropouche virus is spreading. Here’s what we know.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

There have been plenty of reports of potentially concerning viruses this last year. Covid is still causing thousands of deaths, and bird flu appears set to make the jump to human-to-human transmission. Now there are new concerns over Oropouche, a virus largely spread by bites from insects called midges (sometimes called no-see-ums in the US).

There have been outbreaks of the Oropouche virus in Latin America for decades. But this one is different. The virus is being detected in all-new environments. It is turning up in countries that have never seen it before. The spread is being described as “unprecedented.”

It may also be causing more severe disease. People with Oropouche fever typically have a sudden fever, aches and pains, and nausea. Most cases are mild, but some people have developed encephalitis and meningitis. And this year, two otherwise healthy young women who caught the virus have died.

Oropouche can be passed from mother to fetus, and it has been linked to stillbirths and birth anomalies. There are no treatments. There are no vaccines, either. This week, let’s take a look at why Oropouche is spreading, and what we can do about it.

Oropouche virus was first identified in 1955, in a person and a pool of mosquitoes from the village of Vega de Oropouche in Trinidad and Tobago. It was found in a sloth in Brazil in 1960. Since then, there have been over 30 outbreaks—in those countries as well as Peru, Panama, Colombia, French Guiana, and Venezuela. At least 500,000 cases have been reported in South America, largely in areas close to forest.

That’s probably because of the way the virus is transmitted. Oropouche virus is thought to be carried by some populations of sloths, and potentially some nonhuman primates. These animals can host the virus, which can then spread to people via insect bites, usually from midges or some types of mosquitoes.

Since late 2023, outbreaks have been reported in a number of countries in South America, Central America, and the Caribbean, including Cuba, a first for the country. 

There has been an especially large surge of cases in Brazil. Since the beginning of this year, 10,275 cases of Oropouche have been confirmed in the Americas, according to a situation summary report published by the Pan American Health Organization (PAHO) earlier this week. And 8,258 of them were in Brazil. Travelers have also imported cases to the US and Europe for the first time—90 such cases have been reported in the US, and 30 in Europe.

Another change is that this time around, the virus has been infecting people in urban settings far from forests. It is not entirely clear why, but there are probably a few reasons. Climate change, for a start, has led to increased temperatures and rainfall, both of which can help create breeding grounds for the insects that transmit the virus. And deforestation and urbanization, both of which have caused people to encroach on the habitats of wild animals, have also raised the risk of transmission to people, says Ana Pereiro do Vale, a veterinarian and microbiologist at University College Dublin in Ireland.

The virus itself also appears to have changed, according to new research published this week. William de Souza at the University of Kentucky and his colleagues analyzed blood samples taken from people with an Oropouche diagnosis between 2015 and 2024, enabling them to compare the form of the virus that is currently circulating with a historical strain.

The team found evidence that the virus has swapped genetic material with a related one, creating a new “virus reassortment.” It is this new form of the virus that has spread since the end of 2023, the team says.

That’s not all. The genetic changes have endowed the virus with new features. The current reassortment appears to be better at replicating in mammalian cells. That might mean that infected people—and sloths—have more of the virus in their blood, making it easier for biting insects to pick it up and pass it on.

The new form of the virus also seems to be more virulent. The team’s lab tests suggest that compared with the historical strain, it appears to cause more damage to the cells it infects.

We are still getting to grips with how the virus can spread, too. We know midges and mosquitoes are responsible for spreading Oropouche, but the virus can also pass to a fetus during pregnancy, with potentially harmful consequences. According to the PAHO report, Brazil has reported “13 fetal deaths, three spontaneous miscarriages, and four cases of birth anomalies” linked to Oropouche infections.

In a separate study published earlier this week, Raimunda do Socorro da Silva Azevedo at the Evandro Chagas Institute in Ananindeua, Brazil, and her colleagues assessed 65 unexplained cases of microcephaly—a birth anomaly in which babies have an unexpectedly small head—that had been recorded in Brazil between 2015 and 2024. The team found evidence of an Oropouche infection in six of the babies—and in all three that had been born in 2024.

It’s still not clear whether or how the virus might affect fetuses and babies, and research is ongoing. But the US Centers for Disease Control and Prevention (CDC) recommends that pregnant travelers “reconsider non-essential travel” to Cuba

Some scientists worry that the virus might also spread via sex. In August, a 42-year-old Italian man who fell ill after returning from a trip to Cuba was found to have Oropouche virus in his semen. And it was still there 58 days later. The CDC currently recommends that men diagnosed with Oropouche should use condoms or not have sex for at least six weeks from the start of their symptoms. They should avoid donating semen, too, according to the organization.

There are a lot of unanswered questions when it comes to Oropouche. Some scientists have suggested that this is because outbreaks have historically been seen in poorer countries in the Global South.

“There is sufficient colonialism in disease research—if it doesn’t affect the industrial world and Western business interests, it’s not important,” Shahid Jameel, a virologist at the University of Oxford, told Gavi, an organization focused on global vaccination efforts. “Now that the virus has been found in Cuba—not far from Miami—the wheels of public health will turn.”

Let’s hope they get in gear quickly. As Vale says: “We don’t know what will happen with the virus, the mutation rate of the virus, or if the virus will jump to another host. We need to be careful and pay attention.”


Now read the rest of The Checkup

Read more from MIT Technology Review‘s archive

Oropouche infections can look similar to dengue—another viral disease, also spread by mosquitoes, that affects people in Brazil. The country is attempting to tackle the problem with bacteria-infected mosquitoes, Cassandra Willyard reported in March.

The spread of bird flu in dairy cattle in the US has virologists worried. The virus could stick around on US farms forever and is raising the risk of outbreaks in mammals—including humans—around the world.

Flu season is officially upon those of us in the Northern Hemisphere. This year, it could enable the creation of an all-new bird flu, too. 

Could gene editing help curb the spread of bird flu? Abdullahi Tsanni explored the possibility of using CRISPR to make chickens resistant to the virus.

Another option, of course, is vaccines. Most flu vaccines are made, ironically, in chicken eggs. mRNA vaccines could provide an alternative, egg-free approach.

From around the web

A fertility clinic in London has helped two transgender individuals have a baby in a process that involved egg freezing, donated sperm, IVF, embryo storage, and surrogacy. “To our knowledge this is the first report of family building by a transgender couple in which both partners had successfully achieved gender reassignment and the creation of a family through surrogacy,” write the team. (Reproductive BioMedicine Online)

“They showed me them in a mirror … and I looked like a witch,” says one woman who has experienced the horror of dental veneers gone wrong. Veneers have become as routine as Botox and lip filler. But what can people do when their dream of a perfect smile turns into a nightmare? (The Guardian)

Thinking about deleting your 23andMe data? The company will hold on to some of it regardless, to comply with legal regulations. Some of your genetic information, your date of birth and your sex, and data linked to your account deletion request will all be retained. (MIT Technology Review)

Pet dogs are spending more time indoors, in environments they aren’t suited to. Service dogs, on the other hand, are uniquely well adapted to life in the 21st century, say two researchers at the Duke Canine Cognition Center. Humans need to breed and train more puppies like service animals, they argue. (The Atlantic)

These are the best ways to measure your body fat

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

This week, an office conversation turned to body weight. We all know that being overweight is not great for your health—it’s linked to metabolic diseases like diabetes and cardiovascular problems. But weighing yourself won’t tell you all you need to know about your disease risk.

A friend of mine is a super-fit marathon runner. She’s all lean muscle. And yet according to her body mass index (BMI), which is a measure of weight relative to height, she’s overweight. Which is frankly ridiculous.

I, on the other hand, have never been all that muscular. I like to think I’m a healthy weight—but nurses in the past have advised me, on the basis of my BMI, to eat more butter and doughnuts. This is advice I never expected to receive from a health professional. (I should add here that my friend and I are roughly the same height and wear the same size in clothes.)

The BMI is flawed. So what should we be using instead? There are several high-tech alternatives, but a simple measure that involves lying on your back could also tell you about how your body size might influence your health.

First, let’s talk about fat—the most demonized of all body components. Fat is stored in adipose tissue, which has some really important functions. It stores energy, keeps us warm, and provides protective cushioning for our organs. It also produces a whole host of important substances, from hormones that control our appetite to chemicals that influence the way our immune systems work.

Not all fat is equal, either. Our bodies contain white fat, brown fat, and beige fat. While white fat stores energy, brown fat helps burn calories. Beige fat tissue contains a mixture of the two. And white fat can also be broken down into two additional categories: the type under your skin is different from that which covers your internal organs.

It’s the visceral fat—the type surrounding your organs—that is thought to be more harmful to your health, if there’s too much of it. Having more visceral fat has been linked to an increased risk of diabetes and cardiovascular disease. (That relationship isn’t straightforward either, though; studies have shown that removing this “excess” fat doesn’t improve metabolic health.)

Either way, having a good idea of how much fat is in your body, and where it is, would be valuable. It might at least give us some idea of our risk of metabolic disorders. There are quite a few different ways of measuring this.

BMI is the most widely adopted. It’s the official measure the World Health Organization uses to define overweight and obesity. On the plus side, it’s very easy to calculate your BMI. Unfortunately, it doesn’t tell you very much about the fat in your body or how it corresponds to your health. After all, your body weight includes your bones, muscles, blood, and everything else, not just your fat. (And as we’ve seen, it can lead well-meaning health practitioners to recommend weight loss or weight gain when it’s really not appropriate.)

Scanners that can specifically measure fat are more useful here. Typically, doctors can use a DEXA scan, which relies on x-rays, to give an idea of where and how much body fat a person has. CT scanners (which also makes use of x-rays) and MRI scanners (which use magnets) can give similar information. The problem is that these are not all that convenient—they’re expensive and require a hospital visit. Not only that, but standard equipment can’t accommodate people with severe obesity, and people with some medical implants can’t use MRI scanners. We need simpler and easier measures, too.

Measuring the circumference of a person’s waist seems to yield more useful information than BMI. Both waist-to-hip and waist-to-height ratios can give a better idea of a person’s risk of developing diseases associated with excess weight. But this isn’t all that easy either—measuring tapes can stretch or slip, and it can be difficult to measure the exact same part of a person’s waist multiple times. And the measure seems to be a better indicator of health in men than in women.

Instead, Emma Börgeson, who studies cardiometabolic disease at Aarhus University in Denmark, and her colleagues recommend the SAD measure. SAD stands for sagittal abdominal diameter, and it’s a measure of the size of a person’s belly from back to front.

To measure your SAD, you need to lie on your back. Bend your knees at a 90-degree angle to make sure your back is not arching and is flush with the floor. Then measure how much your belly protrudes from the ground when you exhale. (The best way to do this is with a sliding-beam caliper.)

In this position, the fat under the skin will slide to the sides of your body, while the visceral fat will be held in place. Because of this, the SAD can give you a good idea of how much of the more “dangerous” kind of fat you have. The fat can be trimmed down with diet and exercise.

This measure was first proposed in the 1980s but never took off. That needs to change, Börgeson and her colleagues argue in a paper published in Nature Reviews Endocrinology a few months ago. “SAD is simple, affordable, and easier to implement than waist-to-hip based measurements,” the team writes. “We would argue for its extended use.”


Now read the rest of The Checkup

Read more from MIT Technology Review‘s archive

Weight-loss drugs like Ozempic, Wegovy, and Mounjaro are wildly popular and effective; they were named one of MIT Technology Review’s 10 Breakthrough Technologies of 2024. Abdullahi Tsanni explored what we know—and don’t know—about their long-term effects.

Over the last couple of years, those weight-loss drugs have taken over the internet, with users sharing stories of their miraculous results on social media. But the day-to-day reality of weight-loss injections isn’t always pleasant—and some side effects are particularly nasty, Amelia Tait reported last year.

A future alternative could be vibrating pills that trick you into feeling full. For now, it seems to work in pigs, as Cassandra Willyard reported last year.

When you lose weight, where does it go? It kind of depends on your metabolism, as Bonnie Tsui explains.

We don’t fully understand how weight-loss drugs like Ozempic work. That’s partly because we don’t fully understand how hunger works. Adam Piore reported on the painstaking hunt for the neurons that control the primitive urge to eat.

From around the web

Hospitals in the US are facing shortages of IV fluids in the wake of Hurricane Helene. Some are having patients drink Gatorade instead. (STAT

Marcella Townsend’s face became unrecognizable after a propane explosion left her with second- and third-degree burns over most of her body. In an attempt to help her recover, surgeons applied a thin layer of donated placenta to her face. It was “the best thing they could have done, ever,” says Townsend, who says her face now “looks exactly like it did before.” (The New York Times)

Intermittent fasting can help mice live longer—but genes have a bigger effect on lifespan than diet does. (Nature)

This one-millimeter-long, doughnut-shaped robot can swim through snot. (Popular Science)

A new law in California protects consumers’ brain data. Some think it doesn’t go far enough.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

On September 28, California became the second US state to officially recognize the importance of mental privacy in state law. That pink, jelly-like, throbbing mass under your skull—a.k.a. your brain—contains all your thoughts, memories, and ideas. It controls your feelings and actions. Measuring brain activity can reveal a lot about a person—and that’s why neural data needs to be protected.

Regular Checkup readers will be familiar with some of the burgeoning uses of “mind-reading” technologies. We can track brain activity with all sorts of devices, some of which measure brain waves while others track electrical activity or blood flow. Scientists have been able to translate this data into signals to help paralyzed people move their limbs or even communicate by thought alone.

But this data also has uses beyond health care. Today, consumers can buy headsets that allow them to learn more about how their brains work and help them feel calm. Employers use devices to monitor how alert their employees are, and schools use them to check if students are paying attention.

Brain data is precious. It’s not the same as thought, but it can be used to work out how we’re thinking and feeling, and reveal our innermost preferences and desires. So let’s look at how California’s law might protect mental privacy—and how far we still have to go.

The new bill amends the California Consumer Privacy Act of 2018, which grants consumers rights over personal information that is collected by businesses. The term “personal information” already included biometric data (such as your face, voice, or fingerprints). Now it also explicitly includes neural data.

The bill defines neural data as “information that is generated by measuring the activity of a consumer’s central or peripheral nervous system, and that is not inferred from nonneural information.” In other words, data collected from a person’s brain or nerves.

The law prevents companies from selling or sharing a person’s data and requires them to make efforts to deidentify the data. It also gives consumers the right to know what information is collected and the right to delete it.

“This new law in California will make the lives of consumers safer while sending a clear signal to the fast-growing neurotechnology industry there are high expectations that companies will provide robust protections for mental privacy of consumers,” Jared Genser, general counsel to the Neurorights Foundation, which cosponsored the bill, said in a statement. “That said, there is much more work ahead.”

Genser hopes the California law will pave the way for national and international legislation that protects the mental privacy of individuals all over the world. California is a good place to start—the state is home to plenty of neurotechnology companies, so there’s a good chance we’ll see the effects of the bill ripple out from there.

But some proponents of mental privacy aren’t satisfied that the law does enough to protect neural data. “While it introduces important safeguards, significant ambiguities leave room for loopholes that could undermine privacy protections, especially regarding inferences from neural data,” Marcello Ienca, an ethicist at the Technical University of Munich, posted on X.

One such ambiguity concerns the meaning of “nonneural information,” according to Nita Farahany, a futurist and legal ethicist at Duke University in Durham, North Carolina. “The bill’s language suggests that raw data [collected from a person’s brain] may be protected, but inferences or conclusions—where privacy risks are most profound—might not be,” Farahany wrote in a post on LinkedIn.

Ienca and Farahany are coauthors of a recent paper on mental privacy. In it, they and Patrick Magee, also at Duke University, argue for broadening the definition of neural data to what they call “cognitive biometrics.” This category could include physiological and behavioral information along with brain data—in other words, pretty much anything that could be picked up by biosensors and used to infer a person’s mental state.

After all, it’s not just your brain activity that gives away how you’re feeling. An uptick in heart rate might indicate excitement or stress, for example. Eye-tracking devices might help give away your intentions, such as a choice you’re likely to make or a product you might opt to buy. These kinds of data are already being used to reveal information that might otherwise be extremely private. Recent research has used EEG data to predict volunteers’ sexual orientation or whether they use recreational drugs. And others have used eye-tracking devices to infer personality traits.

Given all that, it’s vital we get it right when it comes to protecting mental privacy. As Farahany, Ienca, and Magee put it: “By choosing whether, when, and how to share their cognitive biometric data, individuals can contribute to advancements in technology and medicine while maintaining control over their personal information.”


Now read the rest of The Checkup

Read more from MIT Technology Review‘s archive

Nita Farahany detailed her thoughts on tech that aims to read our minds and probe our memories in a fascinating Q&A last year. Targeted dream incubation, anyone? 

There are lots of ways that your brain data could be used against you (or potentially exonerate you). Law enforcement officials have already started asking neurotech companies for data from people’s brain implants. In one case, a person had been accused of assaulting a police officer but, as brain data proved, was just having a seizure at the time.

EEG, the technology that allows us to measure brain waves, has been around for 100 years. Neuroscientists are wondering how it might be used to read thoughts, memories, and dreams within the next 100 years.

Electrodes implanted in or on the brain can provide us with the most detailed insights into how our minds work. They can also provide us with amazing imagery, like this video that essentially shows what a thought looks like as it is being formed.

What exactly is going on in our brains, anyway? When neuroscientists used electrodes implanted deep in the brains of people being treated for epilepsy, they found order and chaos

From around the web

Infections are responsible for 13% of cancers. Here’s how to protect against four of them. (New York Times)

Scientists have created the first map of the neurons in a fruit fly’s brain. All 139,225 of them. (Nature)

Oropouche fever is surging in South America. Disturbingly, there are increasing reports of the virus harming pregnant women and their babies. (Viruses)

Women in heterosexual relationships already do more housework and household organization than their partners. Is technology making things worse? (BBC Future)

Do you sigh during your sleep? It could be a sign of something serious. (Nature)

Space travel is dangerous. Could genetic testing and gene editing make it safer?

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Recently, global news has been pretty bleak. So this week, I’ve decided to focus my thoughts beyond Earth’s stratosphere and well into space. A couple of weeks ago, SpaceX launched four private astronauts into orbit, where they performed the first ever spacewalk undertaken by private citizens (as opposed to astronauts trained by national agencies).

The company has more ambitious plans for space travel, and it’s not alone. Elon Musk, the founder of SpaceX, claimed on Sunday that he would launch uncrewed missions to Mars within two years, and crewed missions four years after that if the uncrewed missions were successful. (Other SpaceX timelines for reaching the Red Planet haven’t panned out.) NASA refers to Mars as its “​​horizon goal for human exploration.” China previously announced plans for a human mission as early as 2033 and recently moved up its timeline for an uncrewed sample return mission by two years. And the UAE has a 100-year plan to construct a habitable community on Mars by 2117.

None of this will be straightforward. Long-distance space travel can wreak havoc on human health. There’s radiation and microgravity to contend with, as well as the psychological toll of isolation and confinement. Research on identical twin astronauts has also revealed a slew of genetic changes that happen when a person spends a year in space.

That’s why some bioethicists are exploring the idea of radical treatments for future astronauts. Once we’ve figured out all the health impacts of space travel, they argue, we should edit the genomes of astronauts ahead of launch to offer them the best protection. Some have even suggested this might result in the creation of an all-new species: Homo spatialis. If this is starting to sound a bit like sci-fi, that’s because—for now, at least—it is. But there are biotechnologies we can use to help space travelers now, too.

Space travel is risky. When it comes down to it, a space launch essentially involves strapping humans into a capsule and exploding a bomb beneath them, says Paul Root Wolpe, who served as NASA’s senior bioethicist for 15 years.

Once you’re in space, you’re subject to far higher levels of radiation than you’d encounter on Earth. Too much radiation can increase a person’s risk of cancer and neurological disorders. It can also harm body tissues, resulting in cataracts or digestive diseases, for example. That’s why agencies like the US Department of Labor’s Occupational Safety and Health Administration set limits on radiation exposure. (NASA also sets limits on the amount of radiation astronauts can be exposed to.)

Then there’s microgravity. Our bodies have adapted to Earth’s gravity. Without that gravitational pull, strange things can happen. For one thing, internal fluids can start to pool at the top of the body. Muscles don’t need to work as hard when there’s no gravity, and astronauts tend to experience loss of muscle mass as well as bone.

Five years ago, scientists working with NASA published the results of a groundbreaking study comparing two identical twins—one of whom spent a year in space while the other remained on Earth. The twins, Mark and Scott Kelly, were both trained astronauts. And because they have the same set of genes, researchers were able to compare them to assess the impact of long-term space travel on how genes work.

The researchers found that both twins experienced some changes to the way their genes worked over that period, but they changed in different ways. Some of the effects in the space-faring brother lasted for more than six months. These changes are thought to be a response to the stress of space travel and perhaps a reaction to the DNA damage caused by space radiation.

Space travel comes with other risks, including weight loss, permanent eye damage caused by what is known as “spaceflight-associated neuro-ocular syndrome,” and psychological distress as a result of being far from friends and loved ones.

And if all that weren’t enough, injuries are also common on space missions, says Wolpe, who is now founding director of the Center for Peace Building and Conflict Transformation at Emory University. Tools and equipment can float around, knocking into people. Bungee cords snap. “Astronauts are supposed to wear safety goggles at all times, but they didn’t,” says Wolpe. “The injury list is lengthy … it’s really surprising how many injuries were [sustained] by astronauts on the space station.”

Commercial space travel brings a new set of dangers. Until very recently, the only people who traveled to space went through rigorous health tests and training programs overseen by national agencies. That isn’t the case for private space travel, where the rules are determined by the individual company, says Wolpe.

Astronauts are screened for common conditions like high blood pressure and diabetes. Space tourists might not be. We’re still learning the basics when it comes to the impact of space travel on health. We have no idea how it might affect a person who has various disorders and takes multiple medications.

Could gene editing protect astronauts from these potential problems? People who have adapted to high altitudes on Earth have genetic factors that allow them to thrive in low-oxygen environments—what if we could confer these factors to astronauts? And while we’re at it, why not throw in some more genetic changes—ones that might protect them from bone or muscle loss, for example?

Here’s where we get into Homo spatialis territory—the idea of a new species better suited to a life in space, or on a planet other than Earth. For the time being, this approach is not an option—there are currently no gene therapies that have been designed for people undertaking space travel. But one day “it might be in the best interests of the astronauts to undergo some genetic intervention, like gene editing, to safeguard them,” says Rosario Isasi, a bioethicist at the University of Miami. “It might be more than a duty, but a condition for an astronaut going on these missions.”

Wolpe is not keen on the idea. “There is some integrity to being human, and to the human body, that should not be breached,” he says. “These kinds of modifications are going to … end up with a number of disasters.” Isasi also hopes that advances in precision medicine, which will make possible bespoke treatments for individuals, might sidestep the need for genetic modifications.

In the meantime, genetic testing could be helpful for both astronauts and space tourists, says Wolpe. Some body tissues are more vulnerable to radiation damage, including the thyroid gland. Genetic tests that reveal a person’s risk of thyroid cancer might be useful for those considering space travel, he says.

Whether people are going into space as tourists, employees, scientists, or research subjects, figuring out how to send them safely is vitally important. After all, space tourism is nothing like regular tourism. “You’re putting [people] in a situation the human body was never designed to be in,” says Wolpe.


Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

Scientists can test-drive space missions in extreme and remote environments here on Earth. “Analogue astronaut facilities,” which have been set up in deserts and in the Antarctic, simulate the isolating experience of real space travel, Sarah Scoles reports.

Astronaut meals could be set for a slightly weird overhaul. The prepackaged food currently used has a shelf life of around a year and a half. Making food from astronauts’ breath could one day be an alternative solution for longer space missions, writes Jonathan O’Callaghan.

Only 11 people can fit on the International Space Station at once. Perhaps a self-assembling space habitat—complete with a sea-anemone-inspired sofa—could provide alternative living quarters, writes Sarah Ward.

More than a dozen robotic vehicles are scheduled to land on the moon in the 2020s, and there are plans in the works for “lunar economies” and “permanent settlements,” reports Jonathan O’Callaghan in this piece that explores what’s next for the moon.

The International Space Station is getting old, and there are plans to destroy it by 2030. Now NASA is partnering with private companies to develop new commercial space stations for research, manufacturing, and tourism, reports David W. Brown.

From around the web

The team that earned the Nobel Prize for developing CRISPR is asking to cancel two of their own seminal patents. My colleague Antonio Regalado has the scoop. (MIT Technology Review)

In an attempt to protect young children from allergic reactions, did pediatricians inadvertently create an epidemic of peanut allergies? (Wall Street Journal)

Only 6% of the plastic produced in the US in 2021 ended up getting recycled, according to a Greenpeace report. It’s one of the reasons why microplastics are so ubiquitous. (National Geographic)

Axolotls age slowly, and no one really knows what they die. It now appears they pause at least one aspect of the aging process partway through their lives. (New Scientist)

“Mpox” has become the established name for a viral disease that has been responsible for over 200 deaths in the last couple of years—but only in the English language. Multiple names are still used in Spanish, French, and Portuguese, some of which have racist connotations. (The Lancet)

Being a living kidney donor today is less risky than it was a couple of decades ago. Data collected between 1994 and 2009 estimated 3.1 deaths within 90 days per 10,000 donations. This figure declined in the years between 2013 and 2022, to less than 1 death per 10,000 donations. (JAMA Network)

Flu season is coming—and so is the risk of an all-new bird flu

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

September will soon be drawing to a close. The kids are back to school, and those of us in the Northern Hemisphere are experiencing the joys the end of summer brings: the cooling temperatures, the falling leaves, and, inevitably, the start of flu season.

I was reminded of that fact when my littlest woke me for an early-morning cuddle, sneezed into my face, and wiped her nose on my pajamas. I booked her flu vaccine the next morning.

In the US, the Centers for Disease Control and Prevention recommends the flu vaccine for everyone over six months old. This year, following the spread of the “bird flu” H5N1 in cattle, the CDC is especially urging dairy farm workers to get vaccinated. At the end of July, the organization announced a $10 million plan to deliver free flu shots to people who work with livestock.

The goal is not only to protect those workers from seasonal flu, but to protect us all from a potentially more devastating consequence: the emergence of a new form of flu that could trigger another pandemic. That hasn’t happened yet, but unfortunately, it’s looking increasingly possible.

First, it’s worth noting that flu viruses experience subtle changes in their genetic makeup all the time. This allows the virus to evolve rapidly, and it is why flu vaccines need to be updated every year, depending on which form of the virus is most likely to be circulating.

More dramatic genetic changes can take place when multiple flu viruses infect a single animal. The genome of a flu virus is made up of eight segments. When two different viruses end up in the same cell, they can swap segments with each other.

These swapping events can create all-new viruses. It’s impossible to predict exactly what will result, but there’s always a chance that the new virus will be easily spread or cause more serious disease than either of its predecessors.

The fear is that farm workers who get seasonal flu could also pick up bird flu from cows. Those people could become unwitting incubators for deadly new flu strains and end up passing them on to the people around them. “That is exactly how we think pandemics start,” says Thomas Peacock, a virologist at the Pirbright Institute in Woking, UK.

The virus responsible for the 2009 swine flu pandemic is thought to have come about this way. Its genome suggested it had resulted from the genetic reassortment of a mix of flu viruses, including some thought to largely infect pigs and others that originated in birds. Viruses with genes from both a human flu and a bird flu are thought to have been responsible for pandemics in 1918, 1957, and 1968, too.

The CDC is hoping that vaccinating these individuals against seasonal flu might lower the risk of history repeating. But unfortunately, it’s not an airtight solution. For a start, not everyone will get vaccinated. Around 45% of US agricultural workers are undocumented migrants, a group that tends to have low vaccination rates

Even if every farm worker were to be vaccinated, not all of them would be fully protected against getting sick with flu. The flu vaccine used in the US in 2019-2020 was 39% effective, but the one used in the 2004-2005 flu season was only 10% effective.

“It’s not a bad idea, but I don’t think it can get anywhere close to mitigating the underlying risk,” says Peacock.

I last reported on bird flu in February 2023. Back then, the virus was decimating bird populations, but there were no signs that it was making the jump to mammals, and it didn’t appear to be posing a risk to humans. “We don’t need to panic about a bird flu pandemic—yet,” was my conclusion at the time. Today, the picture is different. After speaking to virologists and scientists who are trying to track the spread of the current bird flu, I’ll admit that I am much more concerned about the potential for another pandemic.

The main advice for people who don’t work on farms is to avoid raw milk and dead animals, both of which could be harboring the virus. For the most part, we’re reliant on government agencies to monitor and limit the spread of this virus. And the limited actions that have been taken to date don’t exactly inspire much confidence.

“The barn door’s already open,” says Peacock. “This virus is already out and about.”


Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

We don’t know how many dairy herds in the US are infected with H5N1 as the virus continues to spread. It could end up sticking around in farms forever, virologists told me earlier this week.

Manufacturing flu vaccines is a slow process that relies on eggs. But scientists hope mRNA flu vaccines could offer a quicker, cheaper, and more effective alternative.

Some flu vaccines are already made without eggs. One makes use of a virus synthesized in insect cells. Egg-free vaccines might even work better than those made using eggs, as Cassandra Willyard reported earlier this year.

Chickens are especially vulnerable to H5N1. Some scientists are exploring ways to edit the animals’ genes to make them more resilient to the virus, as Abdullahi Tsanni reported last year.

From around the web

Microplastics are everywhere. They even get inside our brains, possibly via our noses. (JAMA Network Open)

The majority of face transplants survive for at least 10 years, research has found. Of the 50 first face transplants, which were carried out across 11 countries, 85% survived for five years, and 74% for 10 years. (JAMA Surgery)

Don’t throw away that placenta! The organ holds clues to health and disease, and instead of being disposed of after birth, it should be carefully studied instead, scientists say. (Trends in Molecular Medicine)

In June, the drug lenacapavir was shown to be 100% effective at preventing HIV in women and adolescent girls. But while the drug was tested on women in Africa, it remains unavailable to most of them. (STAT)

We’re still getting to grips with what endometriosis is, how it works, and how to treat it. Women with the condition appear to have differences in their brain’s gray matter that can’t be explained by pelvic pain alone. (Human Reproduction)

Neuroscientists and architects are using this enormous laboratory to make buildings better

Have you ever found yourself lost in a building that felt impossible to navigate? Thoughtful building design should center on the people who will be using those buildings. But that’s no mean feat.

It’s not just about navigation, either. Just think of an office that left you feeling sleepy or unproductive, or perhaps a health center that had a less-than-reviving atmosphere. A design that works for some people might not work for others. People have different minds and bodies, and varying wants and needs. So how can we factor them all in?

To answer that question, neuroscientists and architects are joining forces at an enormous laboratory in East London—one that allows researchers to build simulated worlds. In this lab, scientists can control light, temperature, and sound. They can create the illusion of a foggy night, or the tinkle of morning birdsong.

And they can study how volunteers respond to these environments, whether they be simulations of grocery stores, hospitals, pedestrian crossings, or schools. That’s how I found myself wandering around a fake art gallery, wearing a modified baseball cap with a sensor that tracked my movements.

I first visited the Person-Environment-Activity Research Lab, referred to as PEARL, back in July. I’d been chatting to Hugo Spiers, a neuroscientist based at University College London, about the use of video games to study how people navigate. Spiers had told me he was working on another project: exploring how people navigate a lifelike environment, and how they respond during evacuations (which, depending on the situation, could be a matter of life or death).

For their research, Spiers and his colleagues set up what they call a “mocked-up art gallery” within PEARL. The center in its entirety is pretty huge as labs go, measuring around 100 meters in length and 40 meters across, with 10-meter-high ceilings in places. There’s no other research center in the world like this, Spiers told me.

The gallery setup looked a little like a maze from above, with a pathway created out of hanging black sheets. The exhibits themselves were videos of dramatic artworks that had been created by UCL students.

When I visited in July, Spiers and his colleagues were running a small pilot study to trial their setup. As a volunteer participant, I was handed a numbered black cap with a square board on top, marked with a large QR code. This code would be tracked by cameras above and around the gallery. The cap also carried a sensor, transmitting radio signals to devices around the maze that could pinpoint my location within a range of 15 centimeters.

At first, all the volunteers (most of whom seemed to be students) were asked to explore the gallery as we would any other. I meandered around, watching the videos, and eavesdropping on the other volunteers, who were chatting about their research and upcoming dissertation deadlines. It all felt pretty pleasant and calm.

That feeling dissipated in the second part of the experiment, when we were each given a list of numbers, told that each one referred to a numbered screen, and informed that we had to visit all the screens in the order in which they appeared on our lists. “Good luck, everybody,” Spiers said.

Suddenly everyone seemed to be rushing around, slipping past each other and trying to move quickly while avoiding collisions. “It’s all got a bit frantic, hasn’t it?” I heard one volunteer comment as I accidentally bumped into another. I hadn’t managed to complete the task by the time Spiers told us the experiment was over. As I walked to the exit, I noticed that some people were visibly out of breath.

The full study took place on Wednesday, September 11. This time, there were around 100 volunteers (I wasn’t one of them). And while almost everyone was wearing a modified baseball cap, some had more complicated gear, including EEG caps to measure brainwaves, or caps that use near-infrared spectroscopy to measure blood flow in the brain. Some people were even wearing eye-tracking devices that monitored which direction they were looking.

“We will do something quite remarkable today,” Spiers told the volunteers, staff, and observers as the experiment started. Taking such detailed measurements from so many individuals in such a setting represented “a world first,” he said.

I have to say that being an observer was much more fun than being a participant. Gone was the stress of remembering instructions and speeding around a maze. Here in my seat, I could watch as the data collected from the cameras and sensors was projected onto a screen. The volunteers, represented as squiggly colored lines, made their way through the gallery in a way that reminded me of the game Snake.

The study itself was similar to the pilot study, although this time the volunteers were given additional tasks. At one point, they were given an envelope with the name of a town or city in it, and asked to find others in the group who had been given the same one. It was fascinating to see the groups form. Some had the names of destination cities like Bangkok, while others had been assigned fairly nondescript English towns like Slough, made famous as the setting of the British television series The Office. At another point, the volunteers were asked to evacuate the gallery from the nearest exit.

The data collected in this study represents something of a treasure trove for researchers like Spiers and his colleagues. The team is hoping to learn more about how people navigate a space, and whether they move differently if they are alone or in a group. How do friends and strangers interact, and does this depend on whether they have certain types of material to bond over? How do people respond to evacuations—will they take the nearest exit as directed, or will they run on autopilot to the exit they used to enter the space in the first place?

All this information is valuable to neuroscientists like Spiers, but it’s also useful to architects like his colleague Fiona Zisch, who is based at UCL’s Bartlett School of Architecture. “We do really care about how people feel about the places we design for them,” Zisch tells me. The findings can guide not only the construction of new buildings, but also efforts to modify and redesign existing ones.

PEARL was built in 2021 and has already been used to help engineers, scientists, and architects explore how neurodivergent people use grocery stores, and the ideal lighting to use for pedestrian crossings, for example. Zisch herself is passionate about creating equitable spaces—particularly for health and education—that everyone can make use of in the best possible way.

In the past, models used in architecture have been developed with typically built, able-bodied men in mind. “But not everyone is a 6’2″ male with a briefcase,” Zisch tells me. Age, gender, height, and a range of physical and psychological factors can all influence how a person will use a building. “We want to improve not just the space, but the experience of the space,” says Zisch. Good architecture isn’t just about creating stunning features; it’s about subtle adaptations that might not even be noticeable to most people, she says.

The art gallery study is just the first step for researchers like Zisch and Spiers, who plan to explore other aspects of neuroscience and architecture in more simulated environments at PEARL. The team won’t have results for a while yet. But it’s a fascinating start. Watch this space.


Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

Brain-monitoring technology has come a long way, and tech designed to read our minds and probe our memories is already being used. Futurist and legal ethicist Nita Farahany explained why we need laws to protect our cognitive liberty in a previous edition of The Checkup.

Listening in on the brain can reveal surprising insights into how this mysterious organ works. One team of neuroscientists found that our brains seem to oscillate between states of order and chaos.

Last year, MIT Technology Review published our design issue of the magazine. If you’re curious, this piece on the history and future of the word “design,” by Nicholas de Monchaux, head of architecture at MIT, might be a good place to start

Design covers much more than buildings, of course. Designers are creating new ways for users of prosthetic devices to feel more comfortable in their own skin—some of which have third thumbs, spikes, or “superhero skins.”

Achim Menges is an architect creating what he calls “self-shaping” structures with wood, which can twist and curve with changes in humidity. His approach is a low-energy way to make complex curved architectures, Menges told John Wiegand.

From around the web

Scientists are meant to destroy research samples of the poliovirus, as part of efforts to eradicate the disease it causes. But lab leaks of the virus may be more common than we’d like to think. (Science)

Neurofeedback allows people to watch their own brain activity in real time, and learn to control it. It could be a useful way to combat the impacts of stress. (Trends in Neurosciences)

Microbes, some of which cause disease in people, can travel over a thousand miles on wind, researchers have shown. Some appear to be able to survive their journey. (The Guardian)

Is the X chromosome involved in Alzheimer’s disease? A study of over a million people suggests so. (JAMA Neurology)

A growing number of men are paying thousands of dollars a year for testosterone therapies that are meant to improve their physical performance. But some are left with enlarged breasts, shrunken testicles, blood clots, and infertility. (The Wall Street Journal)

Tech that measures our brainwaves is 100 years old. How will we be using it 100 years from now?

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

This week, we’re acknowledging a special birthday. It’s 100 years since EEG (electroencephalography) was first used to measure electrical activity in a person’s brain. The finding was revolutionary. It helped people understand that epilepsy was a neurological disorder as opposed to a personality trait, for one thing (yes, really).

The fundamentals of EEG have not changed much over the last century—scientists and doctors still put electrodes on people’s heads to try to work out what’s going on inside their brains. But we’ve been able to do a lot more with the information that’s collected.

We’ve been able to use EEG to learn more about how we think, remember, and solve problems. EEG has been used to diagnose brain and hearing disorders, explore how conscious a person might be, and even allow people to control devices like computers, wheelchairs, and drones.

But an anniversary is a good time to think about the future. You might have noticed that my colleagues and I are currently celebrating 125 years of MIT Technology Review by pondering the technologies the next 125 years might bring. What will EEG allow us to do 100 years from now?

First, a quick overview of what EEG is and how it works. EEG involves placing electrodes on the top of someone’s head, collecting electrical signals from brainwaves, and feeding these to a computer for analysis. Today’s devices often resemble swimming caps. They’re very cheap compared with other types of brain imaging technologies, such as fMRI scanners, and they’re pretty small and portable.

The first person to use EEG in people was Hans Berger, a German psychiatrist who was fascinated by the idea of telepathy. Berger developed EEG as a tool to measure “psychic energy,” and he carried out his early research—much of it on his teenage son—in secret, says Faisal Mushtaq, a cognitive neuroscientist at the University of Leeds in the UK. Berger was, and remains, a controversial figure owing to his unclear links with Nazi regime, Mushtaq tells me.

But EEG went on to take the neuroscience world by storm. It has become a staple of neuroscience labs, where it can be used on people of all ages, even newborns. Neuroscientists use EEG to explore how babies learn and think, and even what makes them laugh. In my own reporting, I’ve covered the use of EEG to understand the phenomenon of lucid dreaming, to reveal how our memories are filed away during sleep, and to allow people to turn on the TV by thought alone.   

EEG can also serve as a portal into the minds of people who are otherwise unable to communicate. It has been used to find signs of consciousness in people with unresponsive wakefulness syndrome (previously called a “vegetative state”). The technology has also allowed people paralyzed with amyotrophic lateral sclerosis (ALS) to communicate by thought and tell their family members they are happy.

So where do we go from here? Mushtaq, along with Pedro Valdes-Sosa at the University of Electronic Science and Technology of China in Chengdu and their colleagues, put the question to 500 people who work with EEG, including neuroscientists, clinical neurophysiologists, and brain surgeons. Specifically, with the help of ChatGPT, the team generated a list of predictions, which ranged from the very likely to the somewhat fanciful. Each of the 500 survey responders was asked to estimate when, if at all, each prediction might be likely to pan out.  

Some of the soonest breakthroughs will be in sleep analysis, according to the responders. EEG is already used to diagnose and monitor sleep disorders—but this is set to become routine practice in the next decade. Consumer EEG is also likely to take off in the near future, potentially giving many of us the opportunity to learn more about our own brain activity, and how it corresponds with our wellbeing. “Perhaps it’s integrated into a sort of baseball cap that you wear as you walk around, and it’s connected to your smartphone,” says Mushtaq. EEG caps like these have already been trialed on employees in China and used to monitor fatigue in truck drivers and mining workers, for example.

For the time being, EEG communication is limited to the lab or hospital, where studies focus on the technology’s potential to help people who are paralyzed, or who have disorders of consciousness. But that is likely to change in the coming years, once more clinical trials have been completed. Survey respondents think that EEG could become a primary tool of communication for individuals like these in the next 20 years or so.

At the other end of the scale is what Mushtaq calls the “more fanciful” application—the idea of using EEG to read people’s thoughts, memories, and even dreams.

Mushtaq thinks this is a “relatively crazy” prediction—one that’s a long, long way from coming to pass considering we don’t yet have a clear picture of how and where our memories are formed. But it’s not completely science fiction, and some respondents predict the technology could be with us in around 60 years.

Artificial intelligence will probably help neuroscientists squeeze more information from EEG recordings by identifying hidden patterns in brain activity. And it is already being used to turn a person’s thoughts into written words, albeit with limited accuracy. “We’re on the precipice of this AI revolution,” says Mushtaq.

These kinds of advances will raise questions over our right to mental privacy and how we can protect our thoughts. I talked this over with Nita Farahany, a futurist and legal ethicist at Duke University in Durham, North Carolina, last year. She told me that while brain data itself is not thought, it can be used to make inferences about what a person is thinking or feeling. “The only person who has access to your brain data right now is you, and it is only analyzed in the internal software of your mind,” she said. “But once you put a device on your head … you’re immediately sharing that data with whoever the device manufacturer is, and whoever is offering the platform.”

Valdes-Sosa is optimistic about the future of EEG. Its low cost, portability, and ease of use make the technology a prime candidate for use in poor countries with limited resources, he says; he has been using it in his research since 1969. (You can see what his set up looked like in 1970 in the image below!) EEG should be used to monitor and improve brain health around the world, he says: “It’s difficult … but I think it could happen in the future.” 

photo from the 1970s of two medical professionals facing an eeg machine

PEDRO VALDES-SOSA

Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

You can read the full interview with Nita Farahany, in which she describes some decidedly creepy uses of brain data, here.

Ross Compton’s heart data was used against him when he was accused of burning down his home in Ohio in 2016. Brain data could be used in a similar way. One person has already had to hand over recordings from a brain implant to law enforcement officials after being accused of assaulting a police officer. (It turned out that person was actually having a seizure at the time.) I looked at some of the other ways your brain data could be used against you in a previous edition of The Checkup.

Teeny-tiny versions of EEG caps have been used to measure electrical activity in brain organoids (clumps of neurons that are meant to represent a full brain), as my colleague Rhiannon Williams reported a couple of years ago.

EEG has also been used to create a “brain-to-brain network that allows three people to collaborate on a game of Tetris by thought alone.

Some neuroscientists are using EEG to search for signs of consciousness in people who seem completely unresponsive. One team found such signs in a 21-year-old woman who had experienced a traumatic brain injury. “Every clinical diagnostic test, experimental and established, showed no signs of consciousness,” her neurophysiologist told MIT Technology Review. After a test that involved EEG found signs of consciousness, the neurophysiologist told rehabilitation staff to “search everywhere and find her!” They did, about a month later. With physical and drug therapy, she learned to move her fingers to answer simple questions.

From around the web

Food waste is a problem. This Japanese company is fermenting it to create sustainable animal feed. In case you were wondering, the food processing plant smells like a smoothie, and the feed itself tastes like sour yogurt. (BBC Future)

The pharmaceutical company Gilead Sciences is accused of “patent hopping”—having dragged its feet to bring a safer HIV treatment to market while thousands of people took a harmful one. The company should be held accountable, argues a cofounder of PrEP4All, an advocacy organization promoting a national HIV prevention plan. (STAT)

Anti-suicide nets under San Francisco’s Golden Gate Bridge are already saving lives, perhaps by acting as a deterrent. (The San Francisco Standard)

Genetic screening of newborn babies could help identify treatable diseases early in life. Should every baby be screened as part of a national program? (Nature Medicine)

Is “race science”—which, it’s worth pointing out, is nothing but pseudoscience—on the rise, again? The far right’s references to race and IQ make it seem that way. (The Atlantic)

As part of our upcoming magazine issue celebrating 125 years of MIT Technology Review and looking ahead to the next 125, my colleague Antonio Regalado explores how the gene-editing tool CRISPR might influence the future of human evolution. (MIT Technology Review)

Aging hits us in our 40s and 60s. But well-being doesn’t have to fall off a cliff.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

This week I came across research that suggests aging hits us in waves. You might feel like you’re on a slow, gradual decline, but, at the molecular level, you’re likely to be hit by two waves of changes, according to the scientists behind the work. The first one comes in your 40s. Eek.

For the study, Michael Snyder at Stanford University and his colleagues collected a vast amount of biological data from 108 volunteers aged 25 to 75, all of whom were living in California. Their approach was to gather as much information as they could and look for age-related patterns afterward.

This approach can lead to some startling revelations, including the one about the impacts of age on 40-year-olds (who, I was horrified to learn this week, are generally considered “middle-aged”). It can help us answer some big questions about aging, and even potentially help us find drugs to counter some of the most unpleasant aspects of the process.

But it’s not as simple as it sounds. And midlife needn’t involve falling off a cliff in terms of your well-being. Let’s explore why.

First, the study, which was published in the journal Nature Aging on August 14. Snyder and his colleagues collected a real trove of data on their volunteers, including on gene expression, proteins, metabolites, and various other chemical markers. The team also swabbed volunteers’ skin, stool, mouths, and noses to get an idea of the microbial communities that might be living there.

Each volunteer gave up these samples every few months for a median period of 1.7 years, and the team ended up with a total of 5,405 samples, which included over 135,000 biological features. “The idea is to get a very complete picture of people’s health,” says Snyder.

When he and his colleagues analyzed the data, they found that around 7% of the molecules and microbes measured changes gradually over time, in a linear way. On the other hand, 81% of them changed at specific life stages. There seem to be two that are particularly important: one at around the age of 44, and another around the age of 60.

Some of the dramatic changes at age 60 seem to be linked to kidney and heart function, and diseases like atherosclerosis, which narrows the arteries. That makes sense, given that our risks of developing cardiovascular diseases increase dramatically as we age—around 40% of 40- to 59-year-olds have such disorders, and this figure rises to 75% for 60- to 79-year-olds.

But the changes that occur around the age of 40 came as a surprise to Snyder. He says that, on reflection, they make intuitive sense. Many of us start to feel a bit creakier once we hit 40, and it can take longer to recover from injuries, for example.

Other changes suggest that our ability to metabolize lipids and alcohol shifts when we reach our 40s, though it’s hard to say why, for a few reasons. 

First, it’s not clear if a change in alcohol metabolism, for example, means that we are less able to break down alcohol, or if people are just consuming less of it when they’re older.

This gets us to a central question about aging: Is it an inbuilt program that sets us on a course of deterioration, or is it merely a consequence of living?

We don’t have an answer to that one, yet. It’s probably a combination of both. Our bodies are exposed to various environmental stressors over time. But also, as our cells age, they are less able to divide, and clear out the molecular garbage they accumulate over time.

It’s also hard to tell what’s happening in this study, because the research team didn’t measure more physiological markers of aging, such as muscle strength or frailty, says Colin Selman, a biogerontologist at the University of Glasgow in Scotland.

There’s another, perhaps less scientific, question that comes to mind. How worried should we be about these kinds of molecular changes? I’m approaching 40—should I panic? I asked Sara Hägg, who studies the molecular epidemiology of aging at the Karolinska Institute in Stockholm, Sweden. “No,” was her immediate answer.

While Snyder’s team collected a vast amount of data, it was from a relatively small number of people over a relatively short period of time. None of them were tracked for the two or three decades you’d need to see the two waves of molecular changes occur in a person.

“This is an observational study, and they compare different people,” Hägg told me. “There is absolutely no evidence that this is going to happen to you.” After all, there’s a lot that can happen in a person’s life over 20 or 30 years. They might take up a sport. They might quit smoking or stop eating meat.  

However, the findings do support the idea that aging is not a linear process.

“People have always suggested that you’re on this decline in your life from [around the age of] 40, depressingly,” says Selman. “But it’s not quite as simple as that.”

Snyder hopes that studies like his will help reveal potential new targets for therapies that help counteract some of the harmful molecular shifts associated with aging. “People’s healthspan is 11 to 15 years shorter than their lifespan,” he says. “Ideally you’d want to live for as long as possible [in good health], and then die.”

We don’t have any such drugs yet. For now, it all comes down to the age-old advice about eating well, sleeping well, getting enough exercise, and avoiding the big no-nos like smoking and alcohol.

I happened to speak to Selman at the end of what had been a particularly difficult day, and I confessed that I was looking forward to enjoying an evening glass of wine. That’s despite the fact that research suggests that there is “no safe level” of alcohol consumption.

“A little bit of alcohol is actually quite nice,” Selman agreed. He told me about an experience he’d had once at a conference on aging. Some of the attendees were members of a society that practiced caloric restriction—the idea being that cutting your calories can boost your lifespan (we don’t yet know if this works for people). “There was a big banquet… and these people all had little scales, and were weighing their salads on the scales,” he told me. “To me, that seems like a rather miserable way to live your life.”

I’m all for finding balance between healthy lifestyle choices and those that bring me joy. And it’s worth remembering that no amount of deprivation is going to radically extend our lifespans. As Selman puts it: “We can do certain things, but ultimately, when your time’s up, your time’s up.”


Now read the rest of the Checkup

Read more from MIT Technology Review’s archive

We don’t yet have a drug that targets aging. But that hasn’t stopped a bunch of longevity clinics from cropping up, offering a range of purported healthspan-extending services for the mega-rich. Now, they’re on a quest to legitimize longevity medicine.

Speaking of the uber wealthy, I also tagged along to an event for longevity enthusiasts ready to pump millions of dollars into the search for an anti-aging therapy. It was a fascinating, albeit slightly strange, experience.

There are plenty of potential rejuvenation strategies being explored right now. But the one that has received some of the most attention—and the most investment—is cellular reprogramming. My colleague Antonio Regalado looked at the promise of the field in this feature.

Scientists are working on new ways to measure how old a person is. Not just the number of birthdays they’ve had, but how aged or close to death they are. I took one of these biological aging tests. And I wasn’t all that pleased with the result.

Is there a limit to human life? Is old age a disease? Find out in the Mortality issue of MIT Technology Review’s magazine. 

You can of course read all of these stories and many more on our new app, which can be downloaded here (for Android users) or here (for Apple users).

From around the web

Mpox, the disease that has been surging in the Democratic Republic of the Congo and nearby countries, now constitutes a public health emergency of international concern, according to the World Health Organization. 

“The detection and rapid spread of a new clade [subgroup] of mpox in Eastern DRC, its detection in neighboring countries that had not previously reported mpox, and the potential for further spread within Africa and beyond is very worrying,” WHO director general Tedros Adhanom Ghebreyesus said in a briefing shared on X. “It’s clear that a coordinated international response is essential to stop these outbreaks and save lives.” (WHO)

Prosthetic limbs are often branded with company logos. For users of the technology, it can feel like a tattoo you didn’t ask for. (The Atlantic)

A testing facility in India submitted fraudulent data for more than 400 drugs to the FDA. But these drugs have not been withdrawn from the US market. That needs to be remedied, says the founder and president of a nonprofit focused on researching drug side effects. (STAT)

Antibiotics can impact our gut microbiomes. But the antibiotics given to people who undergo c-sections don’t have much of an impact on the baby’s microbiome. The way the baby is fed seems to be much more influential. (Cell Host & Microbe)

When unexpected infectious diseases show up in people, it’s not just physicians that are crucial. Veterinarian “disease detectives” can play a vital role in tracking how infections pass from animals to people, and the other way around. (New Yorker)

Watch a video showing what happens in our brains when we think

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

What does a thought look like? We can think about thoughts resulting from shared signals between some of the billions of neurons in our brains. Various chemicals are involved, but it really comes down to electrical activity. We can measure that activity and watch it back.

Earlier this week, I caught up with Ben Rapoport, the cofounder and chief science officer of Precision Neuroscience, a company doing just that. It is developing brain-computer interfaces that Rapoport hopes will one day help paralyzed people control computers and, as he puts it, “have a desk job.”

Rapoport and his colleagues have developed thin, flexible electrode arrays that can be slipped under the skull through a tiny incision. Once inside, they can sit on a person’s brain, collecting signals from neurons buzzing away beneath. So far, 17 people have had these electrodes placed onto their brains. And Rapoport has been able to capture how their brains form thoughts. He even has videos. (Keep reading to see one for yourself, below.)

Brain electrodes have been around for a while and are often used to treat disorders such as Parkinson’s disease and some severe cases of epilepsy. Those devices tend to involve sticking electrodes deep inside the brain to access regions involved in those disorders.

Brain-machine interfaces are newer. In the last couple of decades, neuroscientists and engineers have made significant progress in developing technologies that allow them to listen in on brain activity and use brain data to allow people to control computers and prosthetic limbs by thought alone.

The technology isn’t commonplace yet, and early versions could only be used in a lab setting. Scientists like Rapoport are working on new devices that are more effective, less invasive, and more practical. He and his colleagues have developed a miniature device that fits 1,024 tiny electrodes onto a sliver of ribbon-like film that’s just 20 microns thick—around a third of the width of a human eyelash.

The vast majority of these electrodes are designed to pick up brain activity. The device itself is designed to be powered by a rechargeable battery implanted under the skin in the chest, like a pacemaker. And from there, data could be transmitted wirelessly to a computer outside the body.

Unlike other needle-like electrodes that penetrate brain tissue, Rapoport says his electrode array “doesn’t damage the brain at all.” Instead of being inserted into brain tissue, the electrode arrays are arranged on a thin, flexible film, fed through a slit in the skull, and placed on the surface of the brain.

From there, they can record what the brain is doing when the person thinks. In one case, Rapoport’s team inserted their electrode array into the skull of a man who was undergoing brain surgery to treat a disease. He was kept awake during his operation so that surgeons could make sure they weren’t damaging any vital regions of his brain. And all the while, the electrodes were picking up the electrical signals from his neurons.

This is what the activity looked like:

“This is basically the brain thinking,” says Rapoport. “You’re seeing the physical manifestation of thought.”

In this video, which I’ve converted to a GIF, you can see the pattern of electrical activity in the man’s brain as he recites numbers. Each dot represents the voltage sensed by an electrode on the array on the man’s brain, over a region involved in speech. The reds and oranges represent higher voltages, while the blues and purples represent lower ones. The video has been slowed down 20-fold, because “thoughts happen faster than the eye can see,” says Rapoport.

This approach allows neuroscientists to visualize what happens in the brain when we speak—and when we plan to speak. “We can decode his intention to say a word even before he says it,” says Rapoport. That’s important—scientists hope technologies will interpret these kinds of planning signals to help some individuals communicate.

For the time being, Rapoport and his colleagues are only testing their electrodes in volunteers who are already scheduled to have brain surgery. The electrodes are implanted, tested, and removed during a planned operation. The company announced in May that the team had broken a record for the greatest number of electrodes placed on a human brain at any one time—a whopping 4,096.

Rapoport hopes the US Food and Drug Administration will approve his device in the coming months. “That will unlock … what we hope will be a new standard of care,” he says.


Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

Precision Neuroscience is one of a handful of companies leading the search for a new brain-computer interface. Cassandra Willyard covered the key players in a recent edition of the Checkup.

Brain implants can do more than treat disease or aid communication. They can change a person’s sense of self. This was the case for Rita Leggett, who was devastated when her implant was removed against her will. I explored whether experiences like these should be considered a breach of human rights in a piece published last year.

Ian Burkhart, who was paralyzed as a result of a diving accident, received a brain implant when he was 24 years old. Burkhart learned to use the implant to control a robotic arm and even play Guitar Hero. But funding issues and an infection meant the implant had to be removed. “When I first had my spinal cord injury, everyone said: ‘You’re never going to be able to move anything from your shoulders down again,’” Burkhart told me last year. “I was able to restore that function, and then lose it again. That was really tough.”

A couple of years ago, a brain implant allowed a locked-in man to communicate in full sentences by thought alone—a world first, the researchers claimed. He used it to ask for soup and beer, and to tell his carers “I love my cool son.”

Electrodes that stimulate the brain could be used to improve a person’s memory. The “memory prosthesis,” which has been designed to mimic the way our brains create memories, appears to be most effective in people who have poor memories to begin with.

From around the web

Do you share DNA with Ludwig van Beethoven, or perhaps a Viking? Tests can reveal genetic links, but they are not always clear, and the connections are not always meaningful or informative. (Nature)

This week marks 79 years since the United States dropped atomic bombs on Hiroshima and Nagasaki. Survivors share their stories of what it’s like to live with the trauma, stigma, and survivor’s guilt caused by the bombs—and why weapons like these must never be used again. (New York Times)

At least 19 Olympic athletes have tested positive for covid-19 in the past two weeks. The rules allow them to compete regardless. (Scientific American)

Honey contains a treasure trove of biological information, including details about the plants that supplied the pollen and the animals and insects in the environment. It can even tell you something about the bees’ “micro-bee-ota.” (New Scientist)

A personalized AI tool might help some reach end-of-life decisions—but it won’t suit everyone

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

This week, I’ve been working on a piece about an AI-based tool that could help guide end-of-life care. We’re talking about the kinds of life-and-death decisions that come up for very unwell people: whether to perform chest compressions, for example, or start grueling therapies, or switch off life support.

Often, the patient isn’t able to make these decisions—instead, the task falls to a surrogate, usually a family member, who is asked to try to imagine what the patient might choose if able. It can be an extremely difficult and distressing experience.  

A group of ethicists have an idea for an AI tool that they believe could help make things easier. The tool would be trained on information about the person, drawn from things like emails, social media activity, and browsing history. And it could predict, from those factors, what the patient might choose. The team describe the tool, which has not yet been built, as a “digital psychological twin.”

There are lots of questions that need to be answered before we introduce anything like this into hospitals or care settings. We don’t know how accurate it would be, or how we can ensure it won’t be misused. But perhaps the biggest question is: Would anyone want to use it?

To answer this question, we first need to address who the tool is being designed for. The researchers behind the personalized patient preference predictor, or P4, had surrogates in mind—they want to make things easier for the people who make weighty decisions about the lives of their loved ones. But the tool is essentially being designed for patients. It will be based on patients’ data and aims to emulate these people and their wishes.

This is important. In the US, patient autonomy is king. Anyone who is making decisions on behalf of another person is asked to use “substituted judgment”—essentially, to make the choices that the patient would make if able. Clinical care is all about focusing on the wishes of the patient.

If that’s your priority, a tool like the P4 makes a lot of sense. Research suggests that even close family members aren’t great at guessing what type of care their loved ones might choose. If an AI tool is more accurate, it might be preferable to the opinions of a surrogate.

But while this line of thinking suits American sensibilities, it might not apply the same way in all cultures. In some cases, families might want to consider the impact of an individual’s end-of-life care on family members, or the family unit as a whole, rather than just the patient.

“I think sometimes accuracy is less important than surrogates,” Bryanna Moore, an ethicist at the University of Rochester in New York, told me. “They’re the ones who have to live with the decision.”

Moore has worked as a clinical ethicist in hospitals in both Australia and the US, and she says she has noticed a difference between the two countries. “In Australia there’s more of a focus on what would benefit the surrogates and the family,” she says. And that’s a distinction between two English-speaking countries that are somewhat culturally similar. We might see greater differences in other places.

Moore says her position is controversial. When I asked Georg Starke at the Swiss Federal Institute of Technology Lausanne for his opinion, he told me that, generally speaking, “the only thing that should matter is the will of the patient.” He worries that caregivers might opt to withdraw life support if the patient becomes too much of a “burden” on them. “That’s certainly something that I would find appalling,” he told me.

The way we weigh a patient’s own wishes and those of their family members might depend on the situation, says Vasiliki Rahimzadeh, a bioethicist at Baylor College of Medicine in Houston, Texas. Perhaps the opinions of surrogates might matter more when the case is more medically complex, or if medical interventions are likely to be futile.

Rahimzadeh has herself acted as a surrogate for two close members of her immediate family. She hadn’t had detailed discussions about end-of-life care with either of them before their crises struck, she told me.

Would a tool like the P4 have helped her through it? Rahimzadeh has her doubts. An AI trained on social media or internet search history couldn’t possibly have captured all the memories, experiences, and intimate relationships she had with her family members, which she felt put her in good stead to make decisions about their medical care.

“There are these lived experiences that are not well captured in these data footprints, but which have incredible and profound bearing on one’s actions and motivations and behaviors in the moment of making a decision like that,” she told me.


Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

You can read the full article about the P4, and its many potential benefits and flaws, here.

This isn’t the first time anyone has proposed using AI to make life-or-death decisions. Will Douglas Heaven wrote about a different kind of end-of-life AI—a technology that would allow users to end their own lives in a nitrogen-gas-filled pod, should they wish.

AI is infiltrating health care in lots of other ways. We shouldn’t let it make all the decisions—AI paternalism could put patient autonomy at risk, as we explored in a previous edition of The Checkup.

Technology that lets us speak to our dead relatives is already here, as my colleague Charlotte Jee found when she chatted with the digital replicas of her own parents.

What is death, anyway? Recent research suggests that “the line between life and death isn’t as clear as we once thought,” as Rachel Nuwer reported last year.

From around the web

When is someone deemed “too male” or “too female” to compete in the Olympics? A new podcast called Tested dives into the long, fascinating, and infuriating history of testing and excluding athletes on the basis of their gender and sex. (Sequencer)

There’s a dirty secret among Olympic swimmers: Everyone pees in the pool. “I’ve probably peed in every single pool I’ve swam in,” said Lilly King, a three-time Olympian for Team USA. “That’s just how it goes.” (Wall Street Journal)

When saxophonist Joey Berkley developed a movement disorder that made his hands twist into pretzel shapes, he volunteered for an experimental treatment that involved inserting an electrode deep into his brain. That was three years ago. Now he’s releasing a new suite about his experience, including a frenetic piece inspired by the surgery itself. (NPR)

After a case of mononucleosis, Jason Werbeloff started to see the people around him in an entirely new way—literally. He’s one of a small number of people for whom people’s faces morph into monstrous shapes, with bulging sides and stretching teeth, because of a rare condition called prosopometamorphopsia. (The New Yorker)  

How young are you feeling today? Your answer might depend on how active you’ve been, and how sunny it is. (Innovation in Aging)