Three frequently asked questions about EVs, answered

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

For someone who does not own or drive a car, I sure do have a lot of thoughts about them.

I spend an inordinate amount of time thinking about transportation in general, since it’s one of the biggest areas we need to clean up to address climate change: it accounts for something like a quarter of global emissions. And the vehicles that we use to shuttle around to work, school, and the grocery store in many parts of the world are a huge piece of the problem.

Last week, MIT Technology Review hosted an event where my colleagues and I dug into a conversation about the future of batteries and the materials that go into them. We got so many great questions, and we answered quite a few of them (subscribers should check out the recording of the full event here).

But there were still a lot of questions, particularly about EVs, that we didn’t get to, so let’s take a look at a few. (I’ve edited these for length and clarity, but they came from subscribers, so thank you to everyone who submitted!)

Why is there not a bigger push for plug-in hybrids during the transition to full EVs? Could those play a role?

Hybrids are sometimes relegated to the fringes of the EV discussion, but I think they’re absolutely worth talking about. 

Before we get into this, let’s get a couple of terms straight. All hybrid vehicles use both an internal-combustion engine that burns gasoline and a battery, but there are two key types to know about. Plug-in hybrids can be charged up using an EV charger and run for short distances on electricity. Conventional hybrids have a small battery to help recapture energy that would otherwise be wasted, which boosts gas mileage, but they always run on gasoline.

Any technology that helps reduce emissions immediately can help address climate change, and even a conventional hybrid will cut emissions by something like 20%. 

Personally, I think plug-in hybrids in particular are a great option for people who can’t commit to an EV just yet. These vehicles often have a range of around 50 miles on electricity, so if you’re commuting short distances, nearly all your driving can be zero-emissions. 

Plug-ins aren’t the perfect solution, though. For one thing, the vehicles may have higher rates of problems than both EVs and gas-powered vehicles, and they need a bit more maintenance. And some studies have shown that plug-in hybrids don’t tend to get the full emissions benefits advertised, because people use the electric mode less than expected.

Ultimately, we need to stop burning fossil fuels, so we’ll need to get used to vehicles that run without gasoline at all. But in the meantime, dipping a toe into the world of electric vehicles could be a good option for many drivers. 

Will current charging technology be able to support EVs? How practical is it to bring chargers to remote areas of the country?

These questions hit on one of the biggest potential barriers to EV adoption: charging availability. 

In many parts of the world, there’s a massive need to build more chargers to support the EVs already on the road, not to mention all the new ones being built and sold each year. Some agencies have recommended that there should be one public charger for every 10 EVs on the road, though factors like density and rates of at-home charging mean different communities will have different needs. 

The US had about 24 EVs per charger as of the end of 2022, while the EU is at about 13, and China is among the leading nations with around eight. Improving that ratio is crucial to getting more drivers comfortable with EVs. 

But building out the charging network is a big project, and one that looks different for different communities. In dense cities, many people live in apartments as opposed to single-family homes with garages, so even more public chargers will be needed to make up for the lack of at-home charging. For rural communities, or those that are less wealthy, getting any chargers built at all can be a challenge. 

These so-called charging deserts often suffer from a sort of chicken-and-egg problem: there’s a lack of demand for chargers because people aren’t driving EVs, and people aren’t driving EVs because there are no chargers.

Public funding will be key to filling in gaps left by private companies installing charging networks. In the US, some money is tied to making sure that disadvantaged communities will benefit. 

The bottom line is that it’s possible to make chargers available and equitable, but it’s definitely going to take a while, and it’s going to be expensive. 

What about hydrogen—could that be an alternative to batteries?

I’ve been digging into this question, so stay tuned for a story coming very soon. But I’ll give you a sneak peek: the short answer is that I think there are many reasons to be skeptical of claims that hydrogen will swoop in to save the day for vehicles. 

A small number of vehicles on the road today do use hydrogen as a fuel. The Toyota Mirai is one of the most popular fuel-cell models on the market, though only a few thousand were sold last year.

The big draw is that fueling up such a car looks a lot like fueling up a gas-powered vehicle today, taking just a few minutes at a pump. Even the fastest chargers can take around half an hour to juice up an EV, so hydrogen refueling is generally faster and more convenient.

But for a range of reasons, hydrogen vehicles are more expensive both to buy and to drive, and they’re likely to stay that way. There are better uses for hydrogen, too, in heavy industry and fertilizer and even long-range shipping. So EVs are probably going to be our best option for a long while. 

I hope I’ve piqued your interest—look out for a longer story on this topic soon. In the meantime, check out some of our other transportation coverage. 

Related reading

We put electric vehicles on our 2023 list of breakthrough technologies—see why here.

Hybrids are going to be around for a while, and that might be a good thing, as I wrote in a 2022 story.

Huge EVs are far from perfect, but they can be part of the story on addressing climate change.

Aerial view of electric car parking in charging station with solar panels.

GETTY

Another thing

The EV revolution is happening faster in China than anywhere else in the world. So it’s no wonder that the country is also a center for the world of virtual power plants, which pull together energy resources like EV batteries. Read more about why China needs VPPs in my colleague Zeyi Yang’s latest story.

Keeping up with climate  

Plastic is really difficult to recycle. A new report shows that some companies knew just how extensive the challenges are and obscured the truth for decades. (The Guardian)

→ Think that your plastic is being recycled? Think again. (MIT Technology Review)

The EU is finalizing rules around pulling carbon out of the atmosphere. The certification will favor techniques that work over long time scales and can be measured effectively. (The Verge)

EVs can run into trouble in extreme heat and cold. New materials, especially advancements in a part of the battery called the electrolyte, could help EVs last longer and stand up to tough conditions. (Scientific American)

A growing group of companies wants to enlist the earth to help store energy. Sage Geosystems just raised $17 million for geothermal energy storage. (Canary Media)

→ Fervo Energy demonstrated that its wells can be used like a giant underground battery. (MIT Technology Review)

Restringing power lines could be key in supercharging clean energy. The process can be quicker and cheaper than building new transmission lines, as long as red tape doesn’t get in the way. (Heatmap News)

Farmers are getting better at growing more crops faster on less land. The problem is, the benefits are focused on plants going into cars and cows, not people. (Wired)

Three things to love about batteries

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

I wouldn’t exactly say I have favorites when it comes to climate technologies. Anything that could help us get closer to tackling climate change is worth writing about, both to share the potential upsides and to carefully examine for pitfalls. But I have a special spot in my heart and my reporting notebook for batteries.

After all, what’s not to love? They play a crucial role in climate action, there are a million different kinds that can meet basically any need, and they’re at least a little bit magical. 

In honor of everyone’s favorite Hallmark-ified holiday, I thought I’d share a love letter to batteries. In any case, this should give you some sense of why I keep coming back to this subject. (Most recently, I dove into the topic of an alternative battery chemistry, lithium-sulfur—give that a read if you haven’t!)

So, how do I love batteries? Let me count the ways. 

They’re practical 

Imagine a world that’s on its way to reaching net-zero greenhouse gas emissions by 2050. That would put us on track to limit global warming to less than 2 °C, or 3.6 °F. To get there, the two biggest sectors to clean up are electricity and transportation: how we power the world and get around. And the common denominator is—you guessed it—batteries. 

Some low-emissions power sources, like wind and solar, aren’t consistently available, so they need a little backup. That’s where grid storage comes in—we’ll need to build about 100 times more energy storage by 2050 on the grid to be on track for our net-zero scenario. 

This won’t all be batteries—storing energy with pumped hydro, compressed air, and other methods could be key. But batteries, especially if cheaper alternatives can scale, will be a major piece of the puzzle.

Electrifying transport is a similar story. We need to move from gas guzzlers to zero-emissions vehicles. And batteries are going to help us do it. 

In our net-zero scenario, the world needs about 14 terawatt hours’ worth of batteries for EVs every year by 2050, according to the International Energy Agency. That’s something like 90 times greater than production in 2020. 

They’re versatile

One of my favorite things about battery technology is its adaptability. Researchers are finding and developing new chemistries all the time, and it’s fascinating to follow. 

Lithium-ion batteries tend to be the default for the industries I typically write about (think transportation and energy storage). That’s mostly because these batteries were developed for personal devices that became widespread beginning in the 1990s, so they’ve had a head start on scaling and the cost cuts that come along with it. 

Even in existing battery technologies, there’s lots of nuance and innovation. Lithium-ion batteries follow a similar blueprint, but there’s a whole world of flavors. Your phone and laptop probably house pouch cells with higher levels of cobalt, whereas your EV likely runs off cylindrical ones that are high in nickel. And a growing fraction of lithium-ion cells don’t include either of those metals—companies are looking at these options for stationary storage or lower- cost vehicles. 

But don’t stop there. Next-generation batteries could give us a different chemistry for every occasion. Need a robust, low-cost battery? Try sodium-ion. Even cheaper, for stationary storage? Zinc flow batteries or iron-air might be the chemistry for you. Something for a long-range, high performance EV? Check out solid state, or maybe something of the lithium-sulfur variety. 

I’m often asked which battery chemistry is going to “win.” Not all batteries are going to make it to widespread adoption, and not all battery companies are going to succeed. But I think the answer is that we’ll hopefully see not a single dominant type of battery, but an ever-growing menu of options. 

They’re at least a little bit magic

Last but not least, I think that one of the main reasons that I’m obsessed with batteries is that I find them a little bit mystifying. Tiny ions shuttling around in a metal container can store energy for us to use, whenever and wherever we want. 

I’ll never get sick of it, and I hope you won’t either. Here’s to spending more time with the ones we love in the year ahead. 

Related reading

Read more about lithium-sulfur batteries, which could unlock cheaper EVs with longer range, in my latest story. 

For another alternative, check out this story from last year on the sodium-ion batteries that could be closer to hitting the roads.

Form Energy and its iron-air batteries made our 2023 list of 15 Climate Tech Companies to Watch. Read all about them here.

I’m not the first MIT Technology Review reporter to dive in on batteries. Read this 2018 story from my colleague James Temple on why lithium-ion batteries won’t be able to clean up the grid on their own. 

Another thing

If you, like me, can’t get enough batteries, I’ve got a great event coming up this week for you! Join me, senior editor James Temple, and editor-at-large David Rotman for the latest in our Roundtables series, where we’ll be diving into a rousing conversation about batteries and their materials. 

This event is open to subscribers, so subscribe if you haven’t yet and come ask all the questions you have about batteries, minerals, and mining! See you there!

a line of heat pumps stretch into the distance with a yellow arrow trending up in front of the closest one

STEPHANIE ARNETT/MITTR | ENVATO

More from us

Sales might be down, but heat pumps are still hot. The devices, which can heat and cool spaces using electricity, are gaining ground on fossil fuels in the US. Check out the data in this story for more on why it matters, and what this says about decarbonization prospects for the country and beyond. 

Also, I’d like to introduce you to a new colleague, James O’Donnell! He’s joining the AI team, and he’s coming out swinging with a story about how Google is using a new satellite to detect methane leaks. Give it a read, and stay tuned for more great stories from him to come. 

Keeping up with climate  

Charging EVs might seem like it’s all about being fast, but slow chargers could be the key to getting more renters to adopt the technology. (Grist)

Chinese automaker BYD has seen massive growth in its EV sales, beating out Tesla in the last quarter of 2023 to become the world’s largest EV maker. Here’s how that happened. (New York Times)

→ BYD is moving so fast that the company is getting into shipping to move more vehicles. (MIT Technology Review)

Consumer demand for EVs is slowing a bit. Some companies are looking to smaller vehicles to help jumpstart interest. (IEEE Spectrum)

Dirt is a major carbon store, holding three times as much as the entire atmosphere. The problem for people looking to leverage dirt for carbon removal is that nobody knows exactly how much carbon can be stored in dirt. (Grist)

Last year was an awful one for the offshore wind industry, but things might be looking up in the year ahead. (Heatmap)

→ Here’s what’s coming next for offshore wind. (MIT Technology Review)

This carbon removal startup is powered by sunlight and seawater. Banyu Carbon’s reversible photoacid could help suck up greenhouse gases from the ocean, though experts have questions about the scalability and ecological effects. (Bloomberg)

Advanced solar panels still need to pass the test of time

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

It must be tough to be a solar panel. They’re consistently exposed to sun, heat, and humidity—and the panels installed today are expected to last 30 years or more.

But how can we tell that new solar technologies will stand the test of time? I’m fascinated by the challenge of predicting how new materials will hold up in decades of tough conditions. That’s been especially tricky for one emerging technology in particular: perovskites. They’re a class of materials that developers are increasingly interested in incorporating into solar panels because of their high efficiency and low cost. 

The problem is, perovskites are notorious for degrading when exposed to high temperatures, moisture, and bright light … all the things they’ll need to withstand to make it in the real world. And it’s not as if we can sit around for decades, testing out different cells in the field for the expected lifetime of a solar panel—climate change is an urgent problem. The good news: researchers have made progress in both stretching out the lifetime of perovskite materials and working out how to predict which materials will be winners in the long run. 

There’s almost constant news about perovskite solar materials breaking records. The latest such news comes from Oxford PV—in January, the company announced that one of its panels reached a 25% conversion efficiency, meaning a quarter of the solar energy beaming onto the panel was converted to electricity. Most high-end commercial panels have around a 20% efficiency, with some models topping 23%. 

The improvement is somewhat incremental, but it’s significant, and it’s all because of teamwork. Oxford PV and other companies are working to bring tandem solar technology to the market. These panels are basically sandwiches that combine layers of silicon (the material that dominates today’s solar market) and perovskites. Since the two materials soak up different wavelengths of light, they can be stacked together, adding up to a more efficient solar material. 

We’re seeing advances in tandem technology, which is why we named super-efficient tandem solar cells one of our 2024 Breakthrough Technologies. But perovskites’ nasty tendency to degrade is a major barrier standing in the way. 

Early perovskite solar cells went bad so quickly that researchers had to race across the laboratory to measure their efficiency. In the time it took to get from the area where solar cells were made to the side of the room where the testing equipment was, the materials basically lost their ability to soak up sunlight. 

The lifetime of perovskite materials isn’t nearly this fleeting now, but it’s not clear that the problem has been entirely solved. 

There’s been some real-world testing of new perovskite solar materials, with mixed results. Oxford PV hasn’t published detailed data, though as CTO Chris Case told Nature last year, the company’s outdoor tests show that the best cells lose only about 1% of their efficiency in their first year of operation, a rate that slows down afterwards. 

Other testing in more intense conditions has found less positive results, with one academic study finding that perovskite cells in hot and humid Saudi Arabia lost 20% of their efficiency after one year of operation. 

Those results are for one year of testing. How can we tell what will happen in 30 years? 

Since we don’t have years to test every new material that scientists dream up, researchers often put them through especially punishing conditions in the lab, bumping up the temperature and shining bright lights onto panels to see how quickly they’ll degrade. 

This sort of testing is standard for silicon solar panels, which make up over 90% of the commercial solar market today. But researchers are still working out just how well the correlations with known tests will transfer to new materials like perovskites. 

One of the issues has been that light, moisture, and heat all contribute to the quick degradation of perovskites. But it hasn’t been clear exactly which factor, or combination of them, would be best to apply in the lab to measure how a solar panel would fare in the real world. 

One study, published last year in Nature, suggested that a combination of high temperature and illumination would be the key to accelerated tests that reliably predict real-world performance. The researchers found that high-temperature tests lasting just a few hundred hours (a couple of weeks) translated well to nearly six months of performance in outdoor testing. 

Companies say they’re bringing new solar materials to the market as soon as this year.  Soon we’ll start to really see just how well these tests predict new technologies’ ability to withstand the tough job a commercial solar panel needs to do. I know I’ll be watching. 

Related reading

Read more about why super-efficient tandem solar cells made our list of 10 Breakthrough Technologies in 2024 here.

Here’s a look inside the race to get these next-generation solar technologies into the world.

Perovskites have been hailed as the hot new thing in solar for years. What’s been the holdup? In short: stability, stability, stability. 

Photo illustration concept of virtual power plant, showing two power plant stacks with a glitch effect.

SARAH ROGERS/MITTR | GETTY

Explained

Welcome to the wonderful world of virtual power plants (VPPs). While they’re not physical facilities, VPPs could have actual benefits for emissions by stitching together different parts of the grid to help meet electricity demand. 

What exactly is a VPP? How does it work? What does this all mean for climate action? Get the answers to all these questions and more in my colleague June Kim’s latest story.

Two more things 

Scattering small particles in the upper levels of the atmosphere could help reflect sunlight, slowing down planetary warming. While this idea, called solar geoengineering, sounds farfetched, it’s possible that small efforts could get started within a decade, as David Keith and Wake Smith write in a new op-ed. 

Read more about how geoengineering could start, and what these experts are saying we need to do about it, here

The US is pausing exports of liquefied natural gas. The move was met with a wide range of reactions and plenty of questions about what it will mean for emissions. 

As Arvind Ravikumar writes in a new op-ed, people are asking all the wrong questions about LNG. Whether this is a good idea depends on what the fuel would be replacing. Read his full take here. 

Keeping up with climate  

In an age of stronger hurricanes, some scientists say our current rating system can’t keep up. Adding a Category 6 could help us designate super-powerful storms. (Inside Climate News)

→ Here’s what we know about hurricanes and climate change. (MIT Technology Review

A fringe idea to put massive sunshades in space to cool down the planet is gaining momentum. Or we could, you know, stop burning fossil fuels? (New York Times)

Trains powered by hydrogen are starting to hit the rails. Here’s why experts say that might not be the best use for the fuel. (Canary Media)

According to the sponges, we’ve already sailed past climate goals. Scientists examining the skeletons of creatures called sclerosponges concluded that human-caused climate change has probably raised temperatures by 1.7 °C (3.1 °F) since the late 19th century. (New York Times)

A century-old law you’ve never heard of is slowing down offshore wind in the US. By requiring the use of US-built ships within the country’s waters, the Jones Act is behind some of the speed bumps facing the offshore wind industry. (Hakai Magazine)

→ Here’s what’s next for offshore wind, including when we can expect the first US-built ship to hit the waters. (MIT Technology Review)

Sorting recycling is a tough job, but AI might be able to help. New sorting systems could rescue more plastic from the landfill, though rolling out new technology to sorting facilities will be a challenge. (Washington Post)

Advanced solar panels still need to pass the test of time

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

It must be tough to be a solar panel. They’re consistently exposed to sun, heat, and humidity—and the panels installed today are expected to last 30 years or more.

But how can we tell that new solar technologies will stand the test of time? I’m fascinated by the challenge of predicting how new materials will hold up in decades of tough conditions. That’s been especially tricky for one emerging technology in particular: perovskites. They’re a class of materials that developers are increasingly interested in incorporating into solar panels because of their high efficiency and low cost. 

The problem is, perovskites are notorious for degrading when exposed to high temperatures, moisture, and bright light … all the things they’ll need to withstand to make it in the real world. And it’s not as if we can sit around for decades, testing out different cells in the field for the expected lifetime of a solar panel—climate change is an urgent problem. The good news: researchers have made progress in both stretching out the lifetime of perovskite materials and working out how to predict which materials will be winners in the long run. 

There’s almost constant news about perovskite solar materials breaking records. The latest such news comes from Oxford PV—in January, the company announced that one of its panels reached a 25% conversion efficiency, meaning a quarter of the solar energy beaming onto the panel was converted to electricity. Most high-end commercial panels have around a 20% efficiency, with some models topping 23%. 

The improvement is somewhat incremental, but it’s significant, and it’s all because of teamwork. Oxford PV and other companies are working to bring tandem solar technology to the market. These panels are basically sandwiches that combine layers of silicon (the material that dominates today’s solar market) and perovskites. Since the two materials soak up different wavelengths of light, they can be stacked together, adding up to a more efficient solar material. 

We’re seeing advances in tandem technology, which is why we named super-efficient tandem solar cells one of our 2024 Breakthrough Technologies. But perovskites’ nasty tendency to degrade is a major barrier standing in the way. 

Early perovskite solar cells went bad so quickly that researchers had to race across the laboratory to measure their efficiency. In the time it took to get from the area where solar cells were made to the side of the room where the testing equipment was, the materials basically lost their ability to soak up sunlight. 

The lifetime of perovskite materials isn’t nearly this fleeting now, but it’s not clear that the problem has been entirely solved. 

There’s been some real-world testing of new perovskite solar materials, with mixed results. Oxford PV hasn’t published detailed data, though as CTO Chris Case told Nature last year, the company’s outdoor tests show that the best cells lose only about 1% of their efficiency in their first year of operation, a rate that slows down afterwards. 

Other testing in more intense conditions has found less positive results, with one academic study finding that perovskite cells in hot and humid Saudi Arabia lost 20% of their efficiency after one year of operation. 

Those results are for one year of testing. How can we tell what will happen in 30 years? 

Since we don’t have years to test every new material that scientists dream up, researchers often put them through especially punishing conditions in the lab, bumping up the temperature and shining bright lights onto panels to see how quickly they’ll degrade. 

This sort of testing is standard for silicon solar panels, which make up over 90% of the commercial solar market today. But researchers are still working out just how well the correlations with known tests will transfer to new materials like perovskites. 

One of the issues has been that light, moisture, and heat all contribute to the quick degradation of perovskites. But it hasn’t been clear exactly which factor, or combination of them, would be best to apply in the lab to measure how a solar panel would fare in the real world. 

One study, published last year in Nature, suggested that a combination of high temperature and illumination would be the key to accelerated tests that reliably predict real-world performance. The researchers found that high-temperature tests lasting just a few hundred hours (a couple of weeks) translated well to nearly six months of performance in outdoor testing. 

Companies say they’re bringing new solar materials to the market as soon as this year.  Soon we’ll start to really see just how well these tests predict new technologies’ ability to withstand the tough job a commercial solar panel needs to do. I know I’ll be watching. 

Related reading

Read more about why super-efficient tandem solar cells made our list of 10 Breakthrough Technologies in 2024 here.

Here’s a look inside the race to get these next-generation solar technologies into the world.

Perovskites have been hailed as the hot new thing in solar for years. What’s been the holdup? In short: stability, stability, stability. 

Photo illustration concept of virtual power plant, showing two power plant stacks with a glitch effect.

SARAH ROGERS/MITTR | GETTY

Explained

Welcome to the wonderful world of virtual power plants (VPPs). While they’re not physical facilities, VPPs could have actual benefits for emissions by stitching together different parts of the grid to help meet electricity demand. 

What exactly is a VPP? How does it work? What does this all mean for climate action? Get the answers to all these questions and more in my colleague June Kim’s latest story.

Two more things 

Scattering small particles in the upper levels of the atmosphere could help reflect sunlight, slowing down planetary warming. While this idea, called solar geoengineering, sounds farfetched, it’s possible that small efforts could get started within a decade, as David Keith and Wake Smith write in a new op-ed. 

Read more about how geoengineering could start, and what these experts are saying we need to do about it, here

The US is pausing exports of liquefied natural gas. The move was met with a wide range of reactions and plenty of questions about what it will mean for emissions. 

As Arvind Ravikumar writes in a new op-ed, people are asking all the wrong questions about LNG. Whether this is a good idea depends on what the fuel would be replacing. Read his full take here. 

Keeping up with climate  

In an age of stronger hurricanes, some scientists say our current rating system can’t keep up. Adding a Category 6 could help us designate super-powerful storms. (Inside Climate News)

→ Here’s what we know about hurricanes and climate change. (MIT Technology Review

A fringe idea to put massive sunshades in space to cool down the planet is gaining momentum. Or we could, you know, stop burning fossil fuels? (New York Times)

Trains powered by hydrogen are starting to hit the rails. Here’s why experts say that might not be the best use for the fuel. (Canary Media)

According to the sponges, we’ve already sailed past climate goals. Scientists examining the skeletons of creatures called sclerosponges concluded that human-caused climate change has probably raised temperatures by 1.7 °C (3.1 °F) since the late 19th century. (New York Times)

A century-old law you’ve never heard of is slowing down offshore wind in the US. By requiring the use of US-built ships within the country’s waters, the Jones Act is behind some of the speed bumps facing the offshore wind industry. (Hakai Magazine)

→ Here’s what’s next for offshore wind, including when we can expect the first US-built ship to hit the waters. (MIT Technology Review)

Sorting recycling is a tough job, but AI might be able to help. New sorting systems could rescue more plastic from the landfill, though rolling out new technology to sorting facilities will be a challenge. (Washington Post)

Why recycling alone can’t power climate tech

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

The potential to use old, discarded products to make something new sounds a little bit like magic. I absolutely understand the draw, and in some cases, recycling is going to be a crucial tool for climate technology. I’ve written about recycling for basically any climate technology you can think of, including solar panels, wind turbines, and batteries. (I’ve also covered efforts to recycle plastic waste.)

For my most recent story, I was researching the materials used for the magnets that power EVs and wind turbines. (Read the result here!) And once again, I was struck by a stark reality: there are massive challenges ahead in material demand for climate technologies, and unfortunately, recycling alone won’t be enough to address them. Let’s take a look at why recycling isn’t always the answer, and what else might help. 

Mind the gap

We’re building a whole lot more climate technologies than we used to, which means there aren’t enough old, discarded technologies sitting around, waiting to be mined for materials. Obviously the growth in clean-energy technologies is a great thing for climate action. But it presents a problem for recycling. 

Take solar panels, for instance. They tend to last at least 25, maybe 30 years before they start to lose the ability to efficiently harness energy from the sun and transform it into electricity. So the panels available for recycling today are those that were installed over two decades ago (a relatively small fraction are ones that have been broken or need to be taken down early). 

In 2000, there was a little over one gigawatt of solar power installed globally. (Yes, 2000 was nearly 25 years ago—sorry!) So today’s recycling companies are competing with each other for that relatively small amount of material. If they can hang in there, there will eventually be plenty of solar panels to go around. Over 300 gigawatts of solar power were added in 2023.  

This gap is a common challenge in recycling for other technologies, too. In fact, one of the problems facing the growing number of battery recycling companies is a looming shortage of materials to recycle.

It’s important to start building infrastructure now, so we’re ready for the inevitable wave of solar panels and batteries that will eventually be ready for recycling. In the meantime, recyclers can get creative in where they’re sourcing materials. Battery recyclers today will rely on a lot of manufacturing scrap. Looking to other products can help as well—rare earth metals for EV motors and wind turbines could be partially sourced from old iPhones and laptops.

Closing the loop

Even if we weren’t seeing explosive growth for new technologies, there would be another problem: no recycling process is perfect. 

The issues start at the stage of collecting old materials (think of the iPods and flip phones in your junk drawer, gathering dust), but even once material makes it to a recycling center, some will wind up in the waste because it breaks down in the process or just can’t be economically recovered. 

Exactly how much material can be recovered depends on the material, the recycling process, and the economics at play. Some metals, like the silver in solar cells, might be able to reach 99% recovery or higher. Others can pose harder challenges, including the lithium in batteries—one recycler, Redwood Materials, told me last year its process can recover around 80% of the lithium from used batteries and manufacturing scrap. The rest will be lost.

I don’t mean to be a Debbie Downer. Even with imperfect recovery, recycling could help meet demand for materials in many energy technologies in the future. Recycling rare earth metals could cut mining for metals like neodymium in half, or more, by 2050.

But a robust supply of recycled materials for many climate technologies is still decades away. In the meantime, many companies are working to build options that use more widely available, cheaper alternatives. Check out my story on one startup, Niron Magnetics, which is working to build permanent magnets without rare earth metals, to see how new materials can help accelerate climate action and close the gap that recycling leaves. 

Related reading

See how old batteries could help power tomorrow’s EVs in my feature story on Redwood Materials.

For more on where battery recycling might be going, check out this accompanying interview with former Tesla exec and Redwood founder JB Straubel. 

Some companies are working out ways to recycle the valuable materials in solar panels.

Scientists are still trying to determine how we can best recycle wind turbine blades.

Thousands of cars are shown on a car carrier on a seaport, with a BYD freight boat in the background.

COSTFOTO/NURPHOTO VIA AP

Two more things

The world’s largest EV maker is getting into the shipping business. BYD is amassing a fleet of ships to export its vehicles from China to the rest of the world. Read more about why the automaker is getting creative and what comes next in this fascinating story from my colleague Zeyi Yang

Also, be sure to read the second part of James Temple’s blockbuster series on critical minerals. This one is a fascinating analysis that digs into how one Minnesota mine could unlock billions of dollars for EVs and batteries in the US. If you missed part one detailing what’s going on with the mine and the local community, that’s here, and you can check out my interview with James about his reporting in last week’s newsletter here.

Keeping up with climate  

The world’s largest cruise ship departed on its maiden voyage last week. The whole thing is a bit of a climate fiasco. Taking a cruise can be about twice as emissions intensive as flying and staying in a hotel. (Bloomberg)

A new refinery in Georgia will churn out millions of tons of jet fuel made from plants instead of petroleum. The new facility marks a milestone for alternative jet fuels. (Canary Media)

→ While alternatives are often called “sustainable aviation fuels” or SAFs, some varieties are anything but sustainable. Here’s what you need to know about all these newfangled jet fuels. (MIT Technology Review)

China nearly quadrupled its new energy storage capacity last year. It’s a massive jump for the growing industry, which is key to balancing the growing fraction of renewables on the grid. (Bloomberg)

Huge charging depots for electric trucks are coming to California. Big batteries in big vehicles require big chargers, and new funding from the US government could be crucial in building them. (Canary Media)

→ The three biggest truck makers are calling for better charging infrastructure for heavy-duty vehicles (New York Times)

EV charging can get a bit tricky for those of us who don’t live in single-family homes with a garage to charge in. Here are some solutions. (Washington Post)

The US is the world’s largest exporter of liquefied natural gas, but new exports are on pause. The Department of Energy says it’s trying to work out how to regulate them, and what the climate impact of cutting gas exports might be. (Grist)

The contentious path to a cleaner future

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

The world is building solar panels, wind turbines, electric vehicles, and other crucial climate technologies faster than ever. As the pace picks up, though, a challenge is looming: we need a whole lot of materials to build it all. 

From cement and steel to nickel and lithium, the ingredient list for the clean energy transition is a long one. And in some cases, getting our hands on all those materials won’t be simple, and the trade-offs are starting to become abundantly clear. 

My colleague James Temple, senior editor for energy here at MIT Technology Review, has spent over a year digging into the building tensions around mining for critical minerals. In a new story published this week, James highlights one community in rural Minnesota and the conflicts over a mining project planned for the nearby area. 

If you haven’t already, I highly recommend you check out that article. In the meantime, I got to sit down with James to ask him a few questions about the process of reporting and writing this feature and chat about critical minerals and the energy transition. Here’s some of what we talked about. 

So, what’s the big deal with critical minerals?

To address climate change, “we just need to build an enormous amount of stuff,” James says. And building all of it means a whole lot of demand for materials. 

We might need nearly 20 times more nickel in 2040 than the annual supply in 2020, according to the International Energy Agency. That multiple is 25 times for graphite, and for lithium it’s over 40 times the current figure. 

Even if people agree in the abstract that we need to extract and process the materials needed to build the stuff to address climate change, figuring out where it all should come from is easier said than done. “We came to realize that mining proposals were creating community tensions basically anywhere they appeared in the US,” James says. 

There’s pushback to all sorts of different climate tech projects—we’ve seen very vocal opposition to proposed wind farms, for example. But there seems to be an additional layer to the concerns around mining, James says. Among other reasons, it’s a legacy industry with a particularly checkered past in terms of environmental impact. 

Even as communities raise concerns over new mining projects, “you also saw the companies proposing them stressing the potential benefits to cleantech and climate goals,” James says. This combination of clear potential climate benefits with community concerns was worth exploring, he tells me. 

What does a proposed nickel mine near a small town in Minnesota tell us about conflict over critical minerals?  

The town of Tamarack, Minnesota, has a population of around 70. 

Despite its small size, Tamarack could soon be key to a crucial landmark for climate technology, because Talon Metals wants to build a huge mine outside the town that could dig up as much as 725,000 metric tons of raw ore each year. The primary target is nickel, a metal that’s crucial to building high-performance EV batteries. 

Talon has been very explicit in claiming that this mine would have benefits for the planet, going as far as applying to trademark the term “Green Nickel.” That’s one of the reasons this particular site piqued James’s interest, he says. 

At the same time, local concerns are growing. Drilling could release 2.6 million gallons of water into the mine every day, which Talon plans to pump out and treat before it’s released into nearby wetlands. This part of the plan has caused some of the greatest unease, since local fresh water is crucial to the community’s economy and identity. 

The central tension was abundantly clear on a nearly weeklong trip to Tamarack and the surrounding communities, James tells me. He went to Rice Lake National Wildlife Refuge and learned about native wild rice that grows there and its importance to Indigenous groups. He went to see samples of the ore that Talon dug up and spoke to a geologist about the resources in the region. He also attended community meetings that got a little heated, and even had to contend with some local bees. 

“We’re talking about a story of two different, very precious resources that have created a really difficult-to-address conflict,” he says. “It’s a tension that’s ultimately going to be very hard to resolve.”

There are rarely easy answers when it comes to the massive task of addressing climate change. If you’re interested in getting a better understanding of this complicated web of trade-offs, take the time to read James’s story. You’ll get all the details about why this particular deposit is such a big deal, and hear more about where things are likely to go from here.

And the story doesn’t stop there. James also has another big project out this week, in which he worked to understand how this one mine could unlock billions of dollars in government subsidies. Dig into that here.  

Related reading

Yes, we have enough materials to power the world with clean energy. Mining and processing it all might prove tricky, though.

Here’s how China hopes to secure its supply chain for critical minerals. 

Some companies are looking deep in the ocean for new sources of nickel and other metals crucial to the energy transition. Deep-sea rocks that look like potatoes could hold the key.

Keeping up with climate  

Some truck drivers are falling in love with EVs. Electric trucks are still limited in range, and they make up a small fraction of the trucks on the road, but drivers are starting to see the upside, even as critics say the move to electric is going too fast. (Washington Post)

Gas prices are down in the US, but charging up an EV is still way cheaper. Here’s how cheap gas has to get in every state to compete with EV charging. (Yale Climate Connections)

Old cell phones might provide a much-needed source of rare earth metals. These metals are crucial for motors, including the ones in electric vehicles and wind turbines, and recycling could meet as much as 40% of US demand by 2050. (New York Times)

→ Old personal devices can be a source for other metals, like lithium and cobalt, as I wrote in this story on battery recycling from last year. (MIT Technology Review)

Nobody knows when the next nuclear plant will come online in the US. The former front-runner was a NuScale modular reactor array, but the future of that project is uncertain now. (Canary Media)

Local bans can eliminate nearly 300 single-use plastic bags per person per year, according to a new report. Bottom line: the policies work. (Grist)

→ Think that your plastic is being recycled? Think again. (MIT Technology Review)

Europe will need 34,000 miles (54,000 kilometers) of additional transmission lines to handle the growth in offshore wind power. It could be Europe’s third-biggest energy source by 2050, if infrastructure can keep up. (Bloomberg)

The next generation of nuclear reactors is getting more advanced. Here’s how.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

I’ve got nuclear power on the brain this week. 

The workings of nuclear power plants have always fascinated me. They’re massive, technically complicated, and feel a little bit magic (splitting the atom—what a concept). But I’ve reached new levels of obsession recently, because I’ve spent the past week or so digging into advanced nuclear technology. 

Advanced nuclear is a mushy category that basically includes anything different from the commercial reactors operating now, since those basically all follow the same general formula. And there’s a whole world of possibilities out there. 

I was mostly focused on the version that’s being developed by Kairos Power for a story (which was published today, check it out if you haven’t!). But I went down some rabbit holes on other potential options for future nuclear plants too. So for the newsletter this week, let’s take a peek at the menu of options for advanced nuclear technology today. 

The basics

Before we get into the advanced stuff, let’s recap the basics.

Nuclear power plants generate electricity via fission reactions, where atoms split apart, releasing energy as heat and radiation. Neutrons released during these splits collide with other atoms and split them, creating a chain reaction.

In nuclear power plants today, there are basically two absolutely essential pieces. First, the fuel, which is what feeds the reactions. (Pretty obvious why this one is important.) Second, it’s vital that the chain reactions happen in a controlled manner, or you can get into nuclear meltdown territory. So the other essential piece of a nuclear plant is the cooling system, which keeps the whole thing from getting too hot and causing problems. (There’s also the moderator and a million other pieces, but let’s stick with two so you’re not reading this newsletter all day.)

In the vast majority of reactors on the grid today, these two components follow the same general formula: the fuel is enriched uranium that’s packed into ceramic pellets, loaded into metal pipes, and arranged into the reactor’s core. And the cooling system pumps pressurized water around the reactor to keep the temperature controlled.  

But for a whole host of reasons, companies are starting to work on making changes to this tried-and-true formula. There are roughly 70 companies in the US working on designs for advanced nuclear reactors, with six or seven far enough along to be working with regulators, says Jessica Lovering, cofounder and co-executive director at the Good Energy Collective, a policy research organization that advocates for the use of nuclear energy.

Many of these so-called advanced technologies were invented and even demonstrated over 50 years ago, before the industry converged on the standard water-cooled plant designs. But now there’s renewed interest in getting alternative nuclear reactors up and running. New designs could help improve safety, efficiency, and even cost. 

Coolant

Alternative coolants can improve on safety over water-based designs, since they don’t always need to be kept at high pressures. Many can also reach higher temperatures, which can allow reactors to run more efficiently. 

Molten salt is one leading contender for alternative coolants, used in designs from Kairos Power, Terrestrial Energy, and Moltex Energy. These designs can use less fuel and produce waste that’s easier to manage. 

Other companies are looking to liquid metals, including sodium and lead. There are a few sodium-cooled reactors operating today, mainly in Russia, and the country is also at the forefront in developing lead-cooled reactors. Metal-cooled reactors share many of the potential safety benefits of molten-salt designs. Helium and other gases can also be used to reach higher temperatures than water-cooled systems. X-energy is designing a high-temperature gas-cooled reactor using helium. 

Fuel

Most reactors that use an alternative coolant also use an alternative fuel.  

TRISO, or tri-structural isotropic particle fuel, is one of the most popular options. TRISO particles contain uranium, enclosed in ceramic and carbon-based layers. This keeps the fuel contained, keeping all the products of fission reactions inside and allowing the fuel to resist corrosion and melting. Kairos and X-energy both plan to use TRISO fuel in their reactors. 

Other reactors use HALEU: high-assay low-enriched uranium. Most nuclear fuel used in commercial reactors contains between 3% and 5% uranium-235. HALEU, on the other hand, contains between 5% and 20% uranium-235, allowing reactors to get more power in a smaller space. 

Size

I know I said I’d keep this to two things, but let’s include a bonus category. In addition to changing up the specifics of things like fuel and coolant, many companies are working to build reactors of different (mostly smaller) sizes.

Today, most reactors coming on the grid are massive, in the range of 1,000 or more megawatts—enough to power hundreds of thousands of homes. Building those huge projects takes a long time, and each one requires a bespoke process. Small modular reactors (SMRs) could be easier to build, since the procedure is the same for each one, allowing them to be manufactured in something resembling a huge assembly line. 

NuScale has been one of the leaders in this area—its reactor design uses commercial fuel and water coolant, but the whole thing is scaled down. Things haven’t been going so well for the company in recent months, though: its first project is pretty much dead in the water, and it laid off nearly 30% of its employees in early January. Other companies are still carrying the SMR torch, including many that are also going after alternative fuels and coolants. 

If you’re hungry for more advanced nuclear news, take a look at my story on Kairos Power. You can also check out some of our recent stories from the vault. 

Related reading

Germany shut down the last of its nuclear reactors last year. Here’s a look at the power struggle over nuclear power in the country.

MIT runs a small test reactor on campus, and I got to take a look inside. See how this old reactor could spark new technology.

We were promised smaller nuclear reactors, but so far that promise hasn’t really materialized. What gives?

We named NuScale one of our Climate Tech Companies to Watch in 2023. We’re definitely … watching, given the recent bumps in the road. 

6 full-size perovskite tandem cells in a metal assembly carriage

SWIFT SOLAR

Another thing

Super-efficient solar cells are on our list of the 10 Breakthrough Technologies of 2024. (If you haven’t seen that list, you can find it here!) By sandwiching other materials with traditional silicon, tandem perovskite solar cells could help cut solar costs and generate more electricity. 

But what will it actually take to get next-generation solar technology to the market? Here’s a look at a few of the companies working to make it happen.

Keeping up with climate  

Hertz was billing itself as a leader in renting out electric vehicles (remember that Tom Brady commercial?). Now the company is selling off a third of its EV fleet. (Tech Crunch)

A mountain of clothes accumulated in the desert in Chile. Then it caught fire. This is a fascinating deep dive into the problem of textile waste. (Grist)

New uranium mines will be the first to begin operations in the US in eight years. The mines could help bring more low-carbon nuclear power to the grid, but they’re also drawing sharp criticism. (Inside Climate News)

Researchers at Microsoft and a US national lab used AI to find a new candidate material for batteries. It could eventually be used in batteries to reduce the amount of lithium needed to build them. (The Verge)

→ I talked about this and other science news of the week on Science Friday. Give it a listen! (Science Friday)

Animals are always evolving. A few lucky ones might even be able to do it fast enough to keep up with climate change. (Hakai Magazine)

All that new renewable energy coming onto the grid is helping make a dent in US emissions. Buildout of clean energy cut greenhouse-gas emissions by nearly 2% in 2023. (Canary Media)

The Biden administration will fine oil and gas companies for excess methane emissions. Penalties for emitting this super-powerful greenhouse gas are part of the landmark climate bill passed in 2023. (New York Times)

Texas has had a host of upgrades to its electric grid in the years since a powerful storm devastated the state in 2021. Now experts are watching to see how the grid holds up against cold weather this week. (Washington Post)

Three climate technologies breaking through in 2024

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Awards season is upon us, and I can’t get enough. Red-carpet fashion, host drama, heartwarming speeches—I love it all.

I caught the Golden Globes last weekend, and the Grammys and Oscars aren’t far off. But the best awards, in my humble opinion, are the 10 Breakthrough Technologies, MIT Technology Review’s list of the tech that’s changing our world. 

This year’s list dropped on Monday, and I’m delighted to share that not one, not two, but three climate tech items are featured. So for the newsletter this week, let’s take a look at a few of these award-winning technologies you need to know about. (And to honor awards season, I’ll also be assigning them to bonus—and completely unofficial—categories.)

Super-efficient solar cells

Winner: Best Supporting Actor

Solar panels are among the most important, and perhaps the most recognizable, tools to address climate change. But one next-generation solar technology could help solar power get even more efficient, and cheaper: perovskite tandem solar cells. 

Most solar cells use silicon to soak up sunlight and transform it into electricity. But other materials can do this job too, including perovskites, a class of crystalline materials. And because perovskites and silicon absorb different wavelengths of light, the two materials can be stacked like a sandwich to make one super-efficient cell. 

Because of their outstanding support for traditional silicon solar materials, super-efficient perovskite tandem cells are my winner for this year’s Best Supporting Actor award. 

There are definitely barriers to commercializing this technology: perovskites are tricky to manufacture and have historically degraded quickly outside in the elements. But some companies say they’re closer than ever to using the materials to transform commercial solar. Read more about the technology here

Enhanced geothermal systems

Winner: Best New Artist

Sucking heat out from the earth is one of the oldest tricks in the book—there’s evidence that humans were using hot springs for heat more than 10,000 years ago. 

We’ve since leveled up, using geothermal energy to produce electricity. But a specific set of factors is needed to harness the energy radiating out of the planet’s core: heat close to the surface, permeable rock, and underground fluid. 

This narrows the potential sites for usable geothermal energy significantly, so a growing number of projects are working to widen access with so-called enhanced geothermal systems. 

An enhanced geothermal system is essentially a human-created geothermal energy source. This often involves drilling down into rock and pumping fluid into it to open up fractures. We’ve seen some recent progress in this field from a handful of companies, including Fervo Energy, which started up a massive pilot facility in 2023 (and made our list of 15 Climate Tech Companies to Watch). 

Because of its spirit of reinvention and innovation, enhanced geothermal systems are my pick for this year’s Best New Artist Award. 

Some of the biggest projects coming are still a few years from coming online, and it could be tough to scale construction on these plants in some places. But enhanced geothermal is definitely a field to keep an eye on. Read more in my colleague June Kim’s write-up here

Heat pumps

Winner: Lifetime Achievement

Last, but certainly not least, we have the venerable heat pump. These devices, which can cool and heat using electricity, are a personal favorite climate technology of mine. 

Heat pumps are super efficient, sometimes almost seeming to defy the laws of physics. They don’t really break any laws, physical or otherwise, as I outlined in a deep dive into how the technology works last year.

While they’re not exactly new, heat pumps are definitely breaking through in a new way. The technology outsold gas furnaces for the first time in the US last year, and sales have been climbing around the world. Globally, heat pumps have the potential to cut emissions by 500 million metric tons in 2030—as much as pulling all the cars in Europe today off the roads. 

For their long-standing and ongoing contributions to decarbonization, heat pumps are my choice for this year’s Lifetime Achievement Award. 

It’s going to be tough to get heat pumps into all the places they need to go to meet climate goals. For more on all things heat pumps, check out my write-up here. 

Congratulations to all our winners! Be sure to check out the rest of the list. It includes everything from wearable headsets to innovative new CRISPR treatments. 

And if you’d like to weigh in on one more award, you can vote for our reader-chosen 11th breakthrough technology here. The candidates are some of the other items we considered for the list. I don’t want to unfairly influence you, but you know my heart always goes with batteries, so feel free to vote accordingly …  

Related reading

Technology is always changing. Don’t miss our list of the technologies breaking through in 2024.

Perovskites were supposed to change the solar world. What’s the holdup?

This startup showed that its underground wells can be used as a massive battery.

Everything you need to know about the wild world of heat pumps.

Another thing

an Orsted wind turbine off the coast of Block Island

AP PHOTO/JULIA NIKHINSON

It’s been a turbulent time for offshore wind power. Projects are getting delayed and canceled left and right, it seems. 

In 2024, some big moments could determine whether these troubles are more of a bump in the road or a sign of more serious issues. For everything you should watch out for in offshore wind, check out my latest story here.

Keeping up with climate  

It’s officially official—2023 was the hottest year on record, according to the EU’s climate service. Check out the details and some stunning graphics on the record-breaking year. (BBC)

A national lab in California made waves in late 2022 when it achieved a huge milestone for fusion research. You may not know that the facility actually had a massive fusion reactor in the 1980s that never got switched on. (MIT Technology Review)

→ Here’s what’s coming next for fusion research, according to the lab’s current director. (MIT Technology Review)

India is rushing to meet growing demand for electricity, and the country is turning to coal to do it. The government plans to roughly double coal production by 2030. (Bloomberg)

One person’s wastewater is another one’s … heat? New systems can harness the heat in wastewater to heat whole neighborhoods. (BBC)

Norway will open up parts of the Norwegian Sea for seabed mining exploration. The country joins nations including Japan, New Zealand, and Namibia that are considering allowing this new industry to operate in their waters. (New York Times)

→ Seabed mining could be a new source of materials for batteries. But environmentalists are worried about the potential harm. (MIT Technology Review)

Lack of charging infrastructure is a huge barrier to EV adoption. Here are three ways to encourage new chargers in charging deserts. (Canary Media)

Rising temperatures means beavers are moving north—and they’re causing trouble. Specifically, the rodents are creating a feedback loop that’s thawing the ground and disrupting ecosystems. (The Guardian)

Chinese automaker BYD is set to take the world by storm. The company sold more plug-in hybrids and EVs than Tesla did in 2023, and is set to continue its rapid growth this year. (Bloomberg)→ BYD was one of our climate tech companies to watch in 2023. (MIT Technology Review)

2023 is breaking all sorts of climate records 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

This has been quite the year for climate news, with weather disasters, technological breakthroughs, and policy changes making headlines around the world. There’s an abundance of bad news, but there are also some glimmers of hope, if you know where to look.

It’s a lot to make sense of, so for this last newsletter of 2023, let’s take a look back at the year, and let’s do it in data. A “climate wrapped,” if you will. 

A new record on emissions (again)

Technically, we can’t draw definitive conclusions about 2023 just yet. But it’s pretty evident that we’re on track for yet another record year when it comes to greenhouse-gas emissions from fossil fuels.

Carbon dioxide emissions from fossil fuels are expected to hit 36.8 billion metric tons in 2023, according to the Global Carbon Budget report, which was released earlier this month. That’s just over 1% higher than last year’s levels.

Hitting another record high for emissions isn’t the best news. Ideally, this line would be going in the other direction, and quickly. 

The story isn’t the same everywhere, though. The US and Europe, for instance, are actually seeing slight decreases in carbon pollution (though these places are among the highest historical emitters). China and India are seeing emissions growth of around 4% and 8%, respectively. 

But that growth could be slowing down soon, and some analysts say that within the next few years we could be nearing peak emissions (the moment when they turn around and start going down). I’ll believe it when I see it. 

It’s getting hot in here

Not only are we seeing record-high emissions, but 2023 is almost certainly going to be the hottest year on record, too. The year through November averaged just under 1.5 °C (or about 2.6 °F) hotter than preindustrial levels.

The warming is noticeable even compared with the last few decades. November was 0.85 °C warmer than the average November was in the 1990s. 

Wherever you look, from the air to the ocean, the planet is heating up, and these rising temperatures and other changing weather patterns have cascading effects, as we saw firsthand in 2023. 

Sea ice hit new low levels. Historic wildfires in Canada brought oppressive smoke sweeping down the east coast of the US. Thousands died in flooding in Libya, and a years-long drought in the Horn of Africa has left millions facing water and food shortages. Name any type of climate disaster you can think of, and one of those probably broke records, somewhere in the world, in 2023. 

Looking back, I think this year I saw a trend that’s been building for the past couple of years: a growing number of people are being directly and dramatically affected by climate change. It’s pushing awareness that climate change isn’t some theoretical future possibility, but something happening in the present tense.

Money money money

It’s not possible to take a look back at this year without talking about bad news. But there are some positives too, I promise! 

For one thing, this year also saw record investment in clean energy, with global total spending of $1.7 trillion. (Yes trillion, with a “t.”) 

Investment in clean energy has been outpacing investment in fossil fuels for a while now, but the gap is starting to widen, with growing amounts of spending on technologies like solar and wind power and energy storage. In fact, solar power alone attracted more investment than fossil fuels for the first time.

The current state of the climate is pretty grim, and it’s important to take note of that and be realistic about where we are and what still needs to happen. But these bright spots of climate news are around, if you know where to look. 

That’s why the MIT Technology Review climate team put together some of the good news we saw in the climate world this year. You can find out more about what’s giving us hope in our new story here. 

Related reading

While we’re looking back, let’s reminisce about some of our top climate and energy stories of 2023. 

Keeping up with climate  

Fewer EVs will qualify for tax credits soon in the US, as new restrictions kick in on January 1. Tesla’s Model 3 and Ford’s Mustang Mach-E will be among those ruled out, according to the automakers. (New York Times)

New details about a tax credit in last year’s climate bill reveal a surprising winner: thermal energy storage. Qualifying for the credits could help these alternative energy storage methods break into the market. (Canary Media)

→ Here’s why bricks are a hot new energy storage technology. (MIT Technology Review)

Lab-grown-meat companies like Upside Foods have raked in billions of dollars in funding promising healthy, climate-friendly meat without the animals. But so far, there’s not much to show for it, and lots of challenges with scaling ahead. (Bloomberg

There’s a huge backlog of clean energy projects waiting to connect to the grid in the US. This delay could put 2030 clean-energy targets out of reach for many states. (Canary Media)

After an emissions scandal, automaker Volkswagen agreed to spend $2 billion funding public EV charging stations. Now, those chargers are unreliable—yes, even more so than other public charging networks. (Washington Post)

By the end of the decade, many batteries will need to have a passport—a digital record of their source materials and history. (Quartz)

Carbon removal has gone from a wild idea to a hot topic. Some scientists think that’s a problem, as companies and governments are using this unproven technology to continue with business as usual rather than making hard cuts to emissions. (E&E News)

→ Here’s why some experts say the world is thinking about carbon removal all wrong. (MIT Technology Review)

Despite overwhelming evidence that climate change is real, some people still fall for conspiracy theories. There’s a whole host of reasons why. (Grist)

→ If you’re looking to broach the subject, here are my tips for talking about climate technology over the holidays. (MIT Technology Review)

The two words that pushed international climate talks into overtime

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

The annual UN climate negotiations at COP28 in Dubai have officially come to a close. Delegates scrambled to get a deal together in the early morning hours, and the meetings ended a day past their scheduled conclusion (as these things tend to). 

If you’ve tuned out news from the summit, I don’t really blame you. The quibbles over wording—“urges” vs. “notes” vs. “emphasizes”—can all start to sound like noise. But these talks are the biggest climate event of the year, and there are some details that are worth paying attention to. 

We’ve seen agreements on methane and renewables, and big progress on an international finance deal. And, of course, there was the high-profile fight about fossil fuels. As negotiators wrap up and start their treks home, let’s take a beat to sort through what happened at COP28 and why all these political fights matter for climate action.

What’s the point of these meetings anyway? 

The UN Conference of the Parties (COP) meetings are an annual chance for negotiators from nearly 200 nations to set goals and make plans to address climate change. 

You might be familiar with the outcome of one of these meetings: eight years ago COP21 gave us the Paris Agreement, the international treaty that set a goal to limit global warming to 1.5 °C (2.7 °F) over preindustrial levels.

This year’s meeting comes at a crucial time for the Paris Agreement. Part of that treaty requires the world to put together a progress report on climate change, called the global stocktake. It’s supposed to happen every five years, and the first one was scheduled to finish up at this year’s COP. 

What were the big agreements from the meetings? 

1. On the first day of the talks, there was a big announcement about a loss and damage fund. This is money that richer nations put into a pool to help pay for damages caused by climate change in more vulnerable nations. 

You may remember that the creation of this fund was a major topic at last year’s COP27 in Egypt. The urgency was spurred by a collection of climate disasters, including particularly devastating floods in Pakistan in August 2022. 

Now there’s some money going into the account: at least $700 million pledged by wealthy nations.

There are some caveats, of course. The agreement is still short on details, missing anything like financial targets or rules about how nations will put money in. In fact, there’s currently no requirement for wealthy nations to contribute at all, and the pledged money is a fraction of what many scientists say is really needed to pay for the damage caused by climate change. (Some estimates put that number at $100 billion annually.)

2. Over 100 countries pledged to triple renewable energy capacity and double energy efficiency by 2030. In addition, the US and 20 other countries signed a pledge to triple global nuclear capacity by 2050. 

3. Finally, 50 oil and gas companies pledged to virtually eliminate methane leaks from their operations by 2030. Methane is a powerful greenhouse gas, and plugging up accidental leaks from oil and gas production is seen as an easy way to cut climate pollution. 

The companies that signed this pledge, which included ExxonMobil and Saudi Aramco, represent 40% of global production. 

Some analysts have pointed out that the pledge will have a pretty limited effect. Most human-caused methane emissions come from agriculture, after all. And accidental methane emissions aren’t the biggest problem fossil-fuel companies cause, by a long shot. The majority of emissions from fossil-fuel companies isn’t from their operations but from their products.

What was holding things up? 

In two words: fossil fuels. 

I wrote in the newsletter a couple of weeks ago about how fossil fuels were going to loom large over these talks, not least because they’re being hosted in the UAE, a nation whose wealth relies heavily on them. The leader of the talks (and head of the UAE’s national oil company) has lived up to that prediction, questioning the scientific reasoning behind the calls to eliminate fossil fuels

As delegates worked to put the final agreement together, a sticking point in the debate was how fossil fuels would be represented. Earlier versions of the draft text called for phasing them out. But many nations, including the UAE, objected to this sort of language. And these meetings run by consensus: everybody has to sign off on the final agreement. 

So in the final version, the language was watered down. The pivotal paragraph now calls on parties to take a series of actions, including “transitioning away from fossil fuels in energy systems, in a just, orderly and equitable manner, accelerating action in this critical decade, so as to achieve net zero by 2050 in keeping with the science.”  

In a way, this bit is a win, since it’s the first COP agreement that even mentions fossil fuels by name. (The bar is truly on the floor.) 

Ultimately, the exact wording of a COP agreement probably won’t be the thing to spur anybody into real action. Rather, the state of the world’s attitude toward climate change is reflected in this agreement: there’s a growing acknowledgement that something needs to change in our relationship with fossil fuels. But there’s not a wide enough consensus yet on the speed of that change, or what that relationship should look like as we pursue ambitious climate goals. 

Maybe next year. 

Another thing

The carbon removal industry is starting to take off, but some experts are warning that it’s headed in the wrong direction. 

There’s a growing signal that the world may have to remove billions of tons of carbon dioxide from the atmosphere to limit global warming. But in a new essay, two former US Department of Energy staffers argue that the emergence of a for-profit sector could actually spell danger for the technology’s ability to help meaningfully address climate change. 

Get all the details in the latest story from my colleague James Temple.

Keeping up with climate  

Silicon powder could be the key to longer EV range and faster charging. Battery giant Panasonic will use silicon material from US-based startup Sila to build new EV batteries. (Wired)

→ Sila’s material debuted in a much smaller product in 2021. (MIT Technology Review)

Not the potatoes! Heavy rains have been bad news for European potato harvesting, sending prices soaring. Thanks, climate change. (Bloomberg)

Repairing EV batteries can be dangerous and difficult. But some mechanics want to do it anyway to save customers money and keep older EVs on the roads. (Grist)

This startup wants to sprinkle rock dust over farmland for carbon removal. (Wired)

Public (non-Tesla) EV chargers in the US can be unreliable, to put it lightly. Here’s how $7.5 billion in federal funding aims to change that. (Canary Media

Two- and three-wheelers are going electric in nations across Asia and Africa. And these small vehicles are having a big impact, making up the majority of reduction in oil demand as transportation goes electric. (New York Times)

→ Gogoro is building a massive network of battery-swappable electric scooters. (MIT Technology Review)

Animal agriculture is a big contributor to climate change, but convincing meat eaters to cut back isn’t easy. If you want to get more people to eat plant-based foods, don’t call them “plant-based.” Much less “vegan.” (Washington Post)

There was one permitted offshore wind farm in progress in the US Great Lakes. Now, the project is on hold. (Inside Climate News)