Everything comes back to climate tech. Here’s what to watch for next.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

We get to celebrate a very special birthday today—The Spark just turned two! 

Over the past couple of years, I’ve been bringing you all the news you need to know in climate tech and digging into some of the most fascinating and thorny topics from energy and transportation to agriculture and policy. 

In light of this milestone, I’ve been looking back at some of the most popular editions of this newsletter, as well as some of my personal favorites—and it’s all got me thinking about where climate tech will go next. So let’s look back together, and I’ll also share what I’m going to be watching out for as we go forward.

It’s prime time for batteries

It will probably be a surprise to absolutely nobody that the past two years have been filled with battery news. (In case you’re new and need a quick intro to my feelings on the topic, you can read the love letter to batteries I wrote this year for Valentine’s Day.) 

We’ve covered how abundant materials could help unlock cheaper, better batteries, and how new designs could help boost charging speeds. I’ve dug into the data to share how quickly batteries are taking over the world, and how much faster we’ll need to go to hit our climate goals.

The next few years are going to be make-or-break for a lot of the alternative batteries we’ve covered here, from sodium-ion to iron-air and even solid-state. We could see companies either fold or make it to the next stage of commercialization. I’m watching to see which technologies will win—there are many different options that could break out and succeed. 

A nuclear renaissance 

One topic I’ve been covering closely, especially in the past year, is nuclear energy. We need zero-emissions options that are able to generate electricity 24-7. Nuclear fits that bill. 

Over the past two years, we’ve seen some major ups and downs in the industry. Two new reactors have come online in the US, though they were years late and billions over budget. Germany completed its move away from nuclear energy, opting instead to go all in on intermittent renewables like solar and wind (and keep its coal plants open). 

Looking ahead, though, there are signs that we could see a nuclear energy resurgence. I’ve written about interest in keeping older reactors online for longer and opening up plants that have previously shut down. And companies are aiming to deploy new advanced reactor designs, too. 

I’m watching to see how creative the industry can get with squeezing everything it can out of existing assets. But I’m especially interested to see whether new technologies keep making progress on getting regulatory approval, and whether the new designs can actually get built. 

Material world forever

I’ll never stop talking about materials—from what we need to build all the technologies that are crucial for addressing climate change to how we can more smartly use the waste after those products reach the end of their lifetime. 

Recently, I wrote a feature story (and, of course, a related newsletter bringing you behind the scenes of my reporting) about how one rare earth metal gives us a look at some of the challenges we’ll face with sourcing and recycling materials over the next century and beyond. 

It’s fitting that the very first edition of The Spark was about my trip inside a battery recycling factory. Over the past two years, the world of climate tech has become much more tuned in to topics like mining, recycling, and critical minerals. I’m interested to see how companies continue finding new, creative ways to get what they need to build everything they’re trying to deploy. 

Milestones … and deadlines

Overall, the last couple of years have been some of the most exciting and crucial in the race to address climate change, and it’s only going to ramp up from here. 

Next year marks 10 years since the Paris Agreement, a landmark climate treaty that’s guided most of the world’s ambitions to limit warming to less than 2 °C (3.7 °F) above preindustrial levels. In the US, 2027 will mark five years since the Inflation Reduction Act was passed, ushering in a new era of climate spending for the world’s largest economy. 

The last two years have been a whirlwind of new ideas, research, and technologies, all aimed at limiting the most damaging effects of our changing climate. I’m looking forward to following all the progress of the years to come with you as well. 


Now read the rest of The Spark

Another thing

If you’re reading this, I’m willing to bet that you probably eat food. So you should join us for the latest edition of our subscriber-only Roundtables virtual event series, where I’ll be speaking with my colleague James Temple about creating climate-friendly food. 

Joining us are experts from Pivot Bio and Rumin8, two of our 2024 Climate Tech Companies to Watch. It’s going to be a fascinating discussion—subscribers, register to join us here

And one more 

The growing energy demands of artificial intelligence represent a challenge for the grid. But the technology also offers an opportunity for energy tech, according to the authors of a new op-ed out this week. Check it out for more on why they say that AI and clean energy need each other

Keeping up with climate  

Hurricane Milton reached wind speeds of over 160 miles per hour, making it a Category 5 storm. It’s hitting the gulf coast of Florida in the coming days. See its projected path and the rainfall forecast. (Washington Post
→ Tampa Bay has seen destructive hurricanes, but there hasn’t been a direct hit in decades. The metro area is home to over 3 million people. (Axios)

Other regions are still reeling from Hurricane Helene, which dumped rainfall in western North Carolina in particular. The storm upends ideas of what a climate haven is. (Scientific American)
→ Two studies suggest that climate change significantly boosted rainfall from the storm. (NBC News)

If you have an EV, it’s best to keep it out of flood zones during hurricanes when possible. Batteries submerged in salt water can catch fire, though experts say it’s relatively rare. (New York Times)

The risk of winter blackouts in Great Britain is at the lowest in years, even though the country has shut down its last coal plant. The grid is expected to have plenty of energy, in part because of investment in renewables. (The Guardian)

Voters in Kazakhstan have approved a plan to build the country’s first nuclear power plant. The country has a complicated relationship with nuclear technology, since it was a testing ground for Soviet nuclear weapons. (Power

Revoy wants to bring battery swapping to heavy-duty trucks. The company’s batteries can reduce the amount of diesel fuel a conventional truck needs to drive a route. (Heatmap)
→ I wrote earlier this year about another company building batteries into trailers in an effort to clean up distance trucking. (MIT Technology Review)

These 15 companies are innovating in climate tech

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

It’s finally here! We’ve just unveiled our 2024 list of 15 Climate Tech Companies to Watch. This annual project is one the climate team at MIT Technology Review pours a lot of time and thought into, and I’m thrilled to finally share it with you. 

Our goal is to spotlight businesses we believe could help make a dent in climate change. This year’s list includes companies from a wide range of industries, headquartered on five continents. If you haven’t checked it out yet, I highly recommend giving it a look. Each company has a profile in which we’ve outlined why it made the list, what sort of impact the business might have, and what challenges it’s likely to face. 

In the meantime, I wanted to share a few reflections on this year’s list as a whole. Because this slate of companies exemplifies a few key themes that I see a lot in my reporting on climate technology. 

1. Addressing climate change requires building a lot of stuff, on a massive scale, and fast. 

A handful of the companies we included on this list stand out because of the sheer scale at which they’re building and deploying technology. And we need scale, because addressing climate change requires going from tens of billions of metric tons of carbon dioxide emissions every year to net zero.

BYD, for example, featured on our 2023 list, and it was a clear choice for our team to feature the company again. 

For a while, the title of the world’s largest electric vehicle (EV) producer has depended on how you define an EV. If you include plug-in hybrids, BYD takes the crown. If you take the purist point of view and only count fully battery-powered vehicles, Tesla wins.

But now, BYD is knocking on Tesla’s door for even that purist title, outselling the company in the last quarter of 2023. The company’s dominant speed and scale at getting EVs onto the roads makes it one I’m keeping my eyes on. 

Other companies are still growing but making significant progress. LanzaJet just opened a factory in Georgia that can produce nine million gallons of alternative jet fuel each year. That’s only a tiny fraction of the billions of gallons of fuel used every year, but it’s a major step forward for alternative fuels. And First Solar, a US solar manufacturer, just opened a $1.1 billion factory in Alabama, and plans to open another in Louisiana in 2025. 

2. With climate impacts embedded in longstanding systems, we need creative new ways to tackle old problems. 

There are parts of the race to address climate change that most people are probably familiar with. Fossil fuels and their associated emissions are clearly visible in power plants, for example, or in gas-powered vehicles. 

But hidden climate challenges exist within familiar objects. Producing items from shampoo bottles to sidewalks can emit huge amounts of planet-warming pollution. We featured a few companies tackling these less visible problems. 

Sublime Systems is on the list again this year. The company is making progress scaling up its electrochemical process to make cement with significantly lower emissions than the conventional method. We also highlight a company working in the chemical industry: Solugen runs a factory in Houston, and is about to open another in Minnesota, making chemicals with biological starting ingredients rather than fossil fuels.  

3. Climate change is a vast problem that touches virtually every industry, so there’s a lot of work to do. 

As we discussed potential companies for this list over the last few months, I was struck by how tricky it was going to be to represent all the industries we wanted to. I could have personally picked 15 companies just working on batteries, for example.

We wanted some energy companies on the list, of course, as well as some in transportation. But then there’s also agriculture, chemicals, fuels, and what about climate adaptation? I think our final list shows just how massive an umbrella term “climate tech” has become. 

For example, there’s Rumin8, an Australian company making supplements for cows that can cut down on how much methane they belch out. And then we have Pano AI, which is installing camera stations that pair up with AI to better detect wildfires, which are worsening as the planet heats up. 

The world has a lot of work to do to make the progress needed on climate change. I’ll be watching to see what difference these companies are able to make this year, and beyond.


Now read the rest of The Spark

Related reading

Check out the full list of 15 Climate Tech Companies to Watch to get an in-depth look at all the companies we featured. 

We’re hosting a virtual event on producing climate-friendly food, coming up on Thursday, October 10 at noon eastern time. My colleague James Temple and I will be speaking with folks from Rumin8 and Pivot Bio, the two food companies on this year’s list. This event is exclusive to subscribers, so do subscribe if you haven’t already, then register here!

The Ratcliffe-on-Soar power station.

GETTY IMAGES

Another thing

The UK just shut down its final coal-fired power plant. It’s a major milestone for the country, which has historically relied heavily on the notoriously polluting fossil fuel. 

I dug into the data to see how the nation replaced coal on its grid, and how the rest of the world is faring on the journey to phase out coal. Check out the full story here.

And one more

James Temple wrote a smart essay that pushes back against the idea that AI is going to be our climate savior. There are certainly promising applications of AI across climate, but the technology is also power-hungry. And it would be a mistake to expect AI to deliver us from all of our problems. You should definitely give it a read

Keeping up with climate  

See the latest photos of the destruction caused by Hurricane Helene. The storm struck Florida as a Category 4 storm, but the highest death toll has been in mountainous western North Carolina, where devastating floods hit. (Washington Post)

→ Even people who have lived with hurricanes for years are facing tougher decisions, as Jeff VanderMeer discusses in a guest essay. (New York Times)

The immediate devastation from the hurricane is clear, but the long-term effects could ripple across the grid. Key equipment is down in western North Carolina, and there’s a critical shortage of repair supplies. (Latitude Media)

A major policy question in the US right now: where should low-emissions hydrogen go? (Canary Media)

→ Earlier this year, I explained why hydrogen could be used for nearly everything—but probably shouldn’t. (MIT Technology Review)

An oil executive spoke at an NYC climate event put on by the New York Times. Then, protestors shut down the talk. (Inside Climate News)

Charm Industrial is working with the US Forest Service on a carbon removal pilot project. The idea? Convert trees and other material from forest-thinning projects into bio-oil, then inject it deep underground. (Heatmap News

→ We covered Charm Industrial’s technology, based on corn stalks, in this 2022 story. (MIT Technology Review)

Rich countries pledged hundreds of millions of dollars to help pay for loss and damage from disasters fueled by climate change. It was a tiny fraction of what experts say is needed, and new funding has slowed to a trickle. (Grist)

Why Microsoft made a deal to help restart Three Mile Island

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Nuclear power is coming back to Three Mile Island.

That nuclear power plant is typically associated with a very specific event. One of its reactors, Unit 2, suffered a partial meltdown in 1979 in what remains the most significant nuclear accident in US history. It has been shuttered ever since.

But the site, in Pennsylvania, is also home to another reactor—Unit 1, which consistently and safely generated electricity for decades until it was shut down in 2019. The site’s owner announced last week that it has plans to reopen the plant and signed a deal with Microsoft. The company will purchase the plant’s entire electric generating capacity over the next 20 years.  

This news is fascinating for so many reasons. Obviously this site holds a certain significance in the history of nuclear power in the US. There’s a possibility this would be one of the first reactors in the country to reopen after shutting down. And Microsoft will be buying all the electricity from the reactor. Let’s dig into what this says about the future of the nuclear industry and Big Tech’s power demand.  

Unit 2 at Three Mile Island operated for just a few months before the accident, in March 1979. At the time, Unit 1 was down for refueling. That reactor started back up, to some controversy, in the mid-1980s and produced enough electricity for hundreds of thousands of homes in the area for more than 30 years.

Eventually, though, the plant faced economic struggles. Even though it was operating at  relatively high efficiency and with low costs, it was driven out of business by record low prices for natural gas and the introduction of relatively cheap, subsidized renewable energy to the grid, says Patrick White, research director of the Nuclear Innovation Alliance, a nonprofit think tank. 

That situation has shifted in just the past few years, White says. There’s more money available now for nuclear, including new technology-agnostic tax credits in the Inflation Reduction Act. And there’s also rising concern about the increased energy demand on the power grid, in part from tech giants looking to power data centers like those needed to run AI.

In announcing its deal with Microsoft, Constellation Energy, the owner of Three Mile Island Unit 1, also shared that the plant is getting a rebrand—the site will be renamed the Crane Clean Energy Center. (Not sure if that one’s going to stick.)  

The confluence of the particular location of this reactor and the fact that the electricity will go to power data centers (and other infrastructure) makes this whole announcement instantly attention-grabbing. As one headline put it, “Microsoft AI Needs So Much Power It’s Tapping Site of US Nuclear Meltdown.”

For some people in climate circles, this deal makes a lot of sense. Nuclear power remains one of the most expensive forms of electricity today. But experts say it could play a crucial role on the grid, since the plants typically put out a consistent amount of electricity—it’s often referred to as “firm power,” in contrast with renewables like wind and solar that are intermittently available.

Without guaranteed money there’s a chance this reactor would simply have been decommissioned as planned. Reopening plants that shuttered recently could provide an opportunity to get the benefits of nuclear power without having to build an entirely new project. 

In March, the Palisades Nuclear Plant in Michigan got a loan guarantee from the US Department of Energy’s Loan Programs Office to the tune of over $1.5 billion to help restart. Palisades shut down in 2022, and the site’s owner says it hopes to get it back online by late 2025. It will be the first shuttered reactor in the US to come back online, if everything goes as planned. (For more details, check out my story from earlier this year.)

Three Mile Island may not be far behind—Constellation says the reactor could be running again by 2028. (Interestingly, the facility will need to separately undergo a relicensing process in just a few years, as it’s currently only licensed to run through 2034. A standard 20-year extension could have it running until 2054.)

If Three Mile Island comes back online, Microsoft will be the one benefiting, as its long-term power purchase agreement would secure it enough energy to power roughly 800,000 homes every year. Except in this case, it’ll be used to help run the company’s data center infrastructure in the region.

This isn’t the first recent sign Big Tech is jumping in on nuclear power: Earlier this year, Amazon purchased a data center site right next to the Susquehanna nuclear power plant, also in Pennsylvania.

While Amazon will use only part of the output of the Susquehanna plant, Microsoft will buy all the power that Three Mile Island produces. That raises the question of who’s paying for what in this whole arrangement. Ratepayers won’t be expected to shoulder any of the costs to restart the facility, Constellation CEO Joe Dominguez told the Washington Post. The company also won’t seek any special subsidies from the state, he added.

However, Dominguez also told the Post that federal money is key in allowing this project to go forward. Specifically, there are tax credits in the Inflation Reduction Act set aside for existing nuclear plants. 

The company declined to give the Post a value for the potential tax credits and didn’t respond to my request for comment, but I busted out a calculator and did my own math. Assuming an 835-megawatt plant running at 96.3% capacity (the figure Constellation gave for the plant’s final year of operation) and a $15-per-megawatt-hour tax credit, that could add up to about $100 million each year, assuming requirements for wages and price are met.

It’ll be interesting to see how much further this trend of restarting plants might go. The Duane Arnold nuclear plant in Iowa is one potential candidate—it shuttered in 2020 after 45 years, and the site’s owner has made public comments about the potential of reopening. 

Restarting any or all of these three sites could be the latest sign of an approaching nuclear resurgence. Big tech companies need lots of energy, and bringing old nuclear plants onto the grid—or, better yet, keeping aging ones open—seems to me like a great way to meet demand.

But given the relative rarity of opportunities to snag power from recently closed or closing plants, I think the biggest question for the industry is whether this wave of interest will translate into building new reactors as well.  


Now read the rest of The Spark

Related reading

Read my story from earlier this year for all the details on what it takes to reopen a shuttered nuclear power plant and what we might see at Palisades. 

In the latest in our virtual events series, my colleagues James Temple, Melissa Heikkilä, and David Rotman are having a discussion about AI’s climate impacts. Subscribers can join them for the discussion live at 12:30 p.m. Eastern today, September 25, or check out the recording later. 

AI is an energy hog, but the effects of the technology on emissions are a bit complicated, as I covered in this newsletter.  

Three more things

It’s been a busy week for the climate team here at MIT Technology Review, so let’s do a rapid-fire round: 

  1. Countries including Germany, Sweden, and New Zealand are ending EV subsidies. I wrote about why some experts are worried that the move is coming too soon for some of them
  2. A proposal to connect two of the US’s largest grids could be crucial to cleaning up our electricity system. The project just got a major boost in the form of hundreds of billions of dollars, and it could represent a long-awaited success for energy entrepreneur Michael Skelly, as my colleague James Temple covered in a new story.  
  3. Finally, there’s just one week until we drop our 2024 list of 15 Climate Tech Companies to Watch. Check out this preview story about the list, and keep your eyes peeled next week for the reveal. 

Keeping up with climate  

The US Department of Energy just announced $3 billion in funding to boost the battery and EV supply chain. (E&E News)

→ A single Minnesota mine could unlock billions of tax credits in the US. (MIT Technology Review)

Cheap solar panels are making that energy source abundantly available in Pakistan. But the boom also threatens making power pulled from the grid unaffordable. (Financial Times)

Individual action alone won’t solve the climate crisis, but there are some things people can do. Check out this package on how to decarbonize your life through choices about everything from food to transportation. (Heatmap News)

A group of major steel buyers wants a million tons of low-emissions steel in North America by 2028. These kinds of commitments from customers could help clean up heavy industry. (Canary Media)

This startup wants to use ground-up rocks and the ocean to soak up carbon dioxide. The result could transform the oceans. (New York Times)

North America’s largest food companies are struggling to cut emissions. The biggest culprit is their supply chains—the ingredients they use and the transportation needed to move them around. (Inside Climate News)
California is suing ExxonMobil, claiming the company misled consumers by perpetuating the myth that recycling could solve the plastic waste crisis. Only a small fraction of plastic waste is ever recycled. (The Verge)

How AI can help spot wildfires

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

In February 2024, a broken utility pole brought down power lines near the small town of Stinnett, Texas. In the following weeks, the fire reportedly sparked by that equipment grew to burn over 1 million acres, the biggest wildfire in the state’s history.

Anything from stray fireworks to lightning strikes can start a wildfire. While it’s natural for many ecosystems to see some level of fire activity, the hotter, drier conditions brought on by climate change are fueling longer fire seasons with larger fires that burn more land.

This means that the need to spot wildfires earlier is becoming ever more crucial, and some groups are turning to technology to help. My colleague James Temple just wrote about a new effort from Google to fund an AI-powered wildfire-spotting satellite constellation. Read his full story for the details, and in the meantime, let’s dig into how this project fits into the world of fire-detection tech and some of the challenges that lie ahead.

The earliest moments in the progression of a fire can be crucial. Today, many fires are reported to authorities by bystanders who happen to spot them and call emergency services. Technologies could help officials by detecting fires earlier, well before they grow into monster blazes.

One such effort is called FireSat. It’s a project from the Earth Fire Alliance, a collaboration between Google’s nonprofit and research arms, the Environmental Defense Fund, Muon Space (a satellite company), and others. This planned system of 52 satellites should be able to spot fires as small as five by five meters (about 16 feet by 16 feet), and images will refresh every 20 minutes.

These wouldn’t be the first satellites to help with wildfire detection, but many existing efforts can either deliver high-resolution images or refresh often—not both, as the new project is aiming to do.

A startup based in Germany, called OroraTech, is also working to launch new satellites that specialize in wildfire detection. The small satellites (around the size of a shoebox) will orbit close to Earth and use sensors that detect heat. The company’s long-term goal is to launch 100 of the satellites into space and deliver images every 30 minutes.

Other companies are staying on Earth, deploying camera stations that can help officials identify, confirm, and monitor fires. Pano AI is using high-tech camera stations to try to spot fires earlier. The company mounts cameras on high vantage points, like the tops of mountains, and spins them around to get a full 360-degree view of the surrounding area. It says the tech can spot wildfire activity within a 15-mile radius. The cameras pair up with algorithms to automatically send an alert to human analysts when a potential fire is detected.

Having more tools to help detect wildfires is great. But whenever I hear about such efforts, I’m struck by a couple of major challenges for this field. 

First, prevention of any sort can often be undervalued, since a problem that never happens feels much less urgent than one that needs to be solved.

Pano AI, which has a few camera stations deployed, points to examples in which its technology detected fires earlier than bystander reports. In one case in Oregon, the company’s system issued a warning 14 minutes before the first emergency call came in, according to a report given to TechCrunch.

Intuitively, it makes sense that catching a blaze early is a good thing. And modeling can show what might have happened if a fire hadn’t been caught early. But it’s really difficult to determine the impact of something that didn’t happen. These systems will need to be deployed for a long time, and researchers will need to undertake large-scale, systematic studies, before we’ll be able to say for sure how effective they are at preventing damaging fires. 

The prospect of cost is also a tricky piece of this for me to wrap my head around. It’s in the public interest to prevent wildfires that will end up producing greenhouse-gas emissions, not to mention endangering human lives. But who’s going to pay for that?

Each of PanoAI’s stations costs something like $50,000 per year. The company’s customers include utilities, which have a vested interest in making sure their equipment doesn’t start fires and watching out for blazes that could damage its infrastructure.

The electric utility Xcel, whose equipment allegedly sparked that fire in Texas earlier this year, is facing lawsuits over its role. And utilities can face huge costs after fires. Last year’s deadly blazes in Hawaii caused billions of dollars in damages, and Hawaiian Electric recently agreed to pay roughly $2 billion for its role in those fires. 

The proposed satellite system from the Earth Fire Alliance will cost more than $400 million all told. The group has secured about two-thirds of what it needs for the first phase of the program, which includes the first four launches, but it’ll need to raise a lot more money to make its AI-powered wildfire-detecting satellite constellation a reality.


Now read the rest of The Spark

Related reading

Read more about how an AI-powered satellite constellation can help spot wildfires faster here

Other companies are aiming to use balloons that will surf on wind currents to track fires. Urban Sky is deploying balloons in Colorado this year

Satellite images can also be used to tally up the damage and emissions caused by fires. Earlier this year I wrote about last year’s Canadian wildfires, which produced more emissions than the fossil fuels in most countries in 2023. 

Another thing

We’re just two weeks away from EmTech MIT, our signature event on emerging technologies. I’ll be on stage speaking with tech leaders on topics like net-zero buildings and emissions from Big Tech. We’ll also be revealing our 2024 list of Climate Tech Companies to Watch. 

For a preview of the event, check out this conversation I had with MIT Technology Review executive editor Amy Nordrum and editor in chief Mat Honan. You can register to join us on September 30 and October 1 at the MIT campus or online—hope to see you there!

Keeping up with climate  

The US Postal Service is finally getting its long-awaited electric vehicles. They’re funny-looking, and the drivers seem to love them already. (Associated Press)

→ Check out this timeline I made in December 2022 of the multi-year saga it took for the agency to go all in on EVs. (MIT Technology Review)

Microsoft is billing itself as a leader in AI for climate innovation. At the same time, the tech giant is selling its technology to oil and gas companies. Check out this fascinating investigation from my former colleague Karen Hao. (The Atlantic)

Imagine solar panels that aren’t affected by a cloudy day … because they’re in space. Space-based solar power sounds like a dream, but advances in solar tech and falling launch costs have proponents arguing that it’s a dream closer than ever to becoming reality. Many are still skeptical. (Cipher)

Norway is the first country with more EVs on the road than gas-powered cars. Diesel vehicles are still the most common, though. (Washington Post

The emissions cost of delivering Amazon packages keeps ticking up. A new report from Stand.earth estimates that delivery emissions have increased by 75% since just 2019. (Wired)

BYD has been dominant in China’s EV market. The company is working to expand, but to compete in the UK and Europe, it will need to win over wary drivers. (Bloomberg)

Some companies want to make air-conditioning systems in big buildings smarter to help cut emissions. Grid-interactive efficient buildings can cut energy costs and demand at peak hours. (Canary Media)

Meet 2024’s climate innovators under 35

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

One way to know where a field is going? Take a look at what the sharpest new innovators are working on.

Good news for all of us: MIT Technology Review’s list of 35 Innovators Under 35 just dropped. And a decent number of the people who made the list are working in fields that touch climate and energy in one way or another.

Looking through, I noticed a few trends that might provide some hints about the future of climate tech. Let’s dig into this year’s list and consider what these innovators’ work might mean for efforts to combat climate change.

Power to the people

Perhaps unsurprisingly, quite a few innovators on this list are working on energy—and many of them have an interest in making energy consistently available where and when it’s needed. Wind and solar are getting cheap, but we need solutions for when the sun isn’t shining and the wind isn’t blowing.

Tim Latimer cofounded Fervo Energy, a geothermal company hoping to provide consistently available, carbon-free energy using Earth’s heat. You may be familiar with his work, since Fervo was on our list of 15 Climate Tech Companies to Watch in 2023.

Another energy-focused innovator on the list is Andrew Ponec of Antora Energy, a company working to build thermal energy storage systems. Basically, the company’s technology heats up blocks when cheap renewables are available, and then stores that heat and delivers it to industrial processes that need constant power. (You, the readers, named thermal energy storage the readers’ choice on this year’s 10 Breakthrough Technologies list.)

Rock stars

While new ways of generating electricity and storing energy can help cut our emissions in the future, other people are focused on how to clean up the greenhouse gases already in the atmosphere. At this point, removing carbon dioxide from the atmosphere is basically required for any scenario where we limit warming to 1.5 °C over preindustrial levels. A few of the new class of innovators are turning to rocks for help soaking up and locking away atmospheric carbon. 

Noah McQueen cofounded Heirloom Carbon Technologies, a carbon removal company. The technology works by tweaking the way minerals soak up carbon dioxide from the air (before releasing it under controlled conditions, so they can do it all again). The company has plans for facilities that could remove hundreds of thousands of tons of carbon dioxide each year. 

Another major area of research focuses on how we might store captured carbon dioxide. Claire Nelson is the cofounder of Cella Mineral Storage, a company working on storage methods to better trap carbon dioxide underground once it’s been mopped up.  

Material world

Finally, some of the most interesting work on our new list of innovators is in materials. Some people are finding new ones that could help us address our toughest problems, and others are trying to reinvent old ones to clean up their climate impacts.

Julia Carpenter found a way to make a foam-like material from metal. Its high surface area makes it a stellar heat sink, meaning it can help cool things down efficiently. It could be a huge help in data centers, where 40% of energy demand goes to cooling.

And I spoke with Cody Finke, cofounder and CEO of Brimstone, a company working on cleaner ways of making cement. Cement alone is responsible for nearly 7% of global greenhouse-gas emissions, and about half of those come from chemical reactions necessary to make it. Finke and Brimstone are working to wipe out the need for these reactions by using different starting materials to make this crucial infrastructural glue.

Addressing climate change is a sprawling challenge, but the researchers and founders on this list are tackling a few of the biggest issues I think about every day. 

Ensuring that we can power our grid, and all the industrial processes that we rely on for the stuff in our daily lives, is one of the most substantial remaining challenges. Removing carbon dioxide from the atmosphere in an efficient, cheap process could help limit future warming and buy us time to clean up the toughest sectors. And finding new materials, and new methods of producing old ones, could be a major key to unlocking new climate solutions. 

To read more about the folks I mentioned here and other innovators working in climate change and beyond, check out the full list.


Now read the rest of The Spark

Related reading

Fervo Energy (cofounded by 2024 innovator Tim Latimer) showed last year that its wells can be used like a giant underground battery.

A growing number of companies—including Antora Energy, whose CEO Andrew Ponec is a 2024 innovator—are working to bring thermal energy storage systems to heavy industry.

Cement is one of our toughest challenges, as Brimstone CEO and 2024 innovator Cody Finke will tell you. I wrote about Brimstone and other efforts to reinvent cement earlier this year.

A plant with yellow flowers

Another thing

We need a whole lot of metals to address climate change, from the copper in transmission lines to the nickel in lithium-ion batteries that power electric vehicles. Some researchers think plants might be able to help. 

Roughly 750 species of plants are so-called hyperaccumulators, meaning they naturally soak up and tolerate relatively high concentrations of metal. A new program is funding research into how we might use this trait to help source nickel, and potentially other metals, in the future. Read the full story here.

Keeping up with climate  

A hurricane that recently formed in the Gulf of Mexico is headed for Louisiana, ending an eerily quiet few weeks of the season. (Scientific American)

→ After forecasters predicted a particularly active season, the lull in hurricane activity was surprising. (New Scientist)

Rising sea levels are one of the symptoms of a changing climate, but nailing down exactly what “sea level” means is more complicated than you might think. We’ve gotten better at measuring sea level over the past few centuries, though. (New Yorker)

The US Department of Energy’s Loan Programs Office has nearly $400 million in lending authority. This year’s election could shift the focus of that office drastically, making it a bellwether of how the results could affect energy priorities. (Bloomberg)

What if fusion power ends up working, but it’s too expensive to play a significant role on the grid? Some modelers think the technology will remain expensive and could come too late to make a dent in emissions. (Heatmap)

Electric-vehicle sales are up overall, but some major automakers are backing away from goals on zero-emissions vehicles. Even though sales are increasing, uptake is slower than many thought it would be, contributing to the nervous energy in the industry. (Canary Media)

It’s a tough time to be in the business of next-generation batteries. The woes of three startups reveal that difficult times are here, likely for a while. (The Information)

A brief guide to the greenhouse gases driving climate change

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

For the last week or so, I’ve been obsessed with a gas that I’d never given much thought to before. Sulfur hexafluoride (SF6) is used in high-voltage equipment on the grid. It’s also, somewhat inconveniently, a monster greenhouse gas. 

Greenhouse gases are those that trap heat in the atmosphere. SF6 and other fluorinated gases can be thousands of times more powerful at warming the planet than carbon dioxide, and yet, because they tend to escape in relatively small amounts, we hardly ever talk about them. Taken alone, their effects might be minor compared with those of carbon dioxide, but together, these gases add significantly to the challenge of addressing climate change. 

For more on the specifics of sulfur hexafluoride, check out my story from earlier this week. And in the meantime, here’s a quick cheat sheet on the most important greenhouse gases you need to know about. 

Carbon dioxide: The leading actor

I couldn’t in good conscience put together a list of greenhouse gases and not at least mention the big one. Human activities released 37.4 billion tons of carbon dioxide into the atmosphere in 2023. It’s the most abundant greenhouse gas we emit, and the most significant one driving climate change. 

It’s difficult to nail down exactly how long CO2 stays in the atmosphere, since the gas participates in a global carbon cycle—some will immediately be soaked up by oceans, forests, or other ecosystems, while the rest lingers in the atmosphere for centuries. 

Carbon dioxide comes from nearly every corner of our economy—the largest source is power plants, followed by transportation and then industrial activities. 

Methane: The flash in the pan

Methane is also a powerful contributor to climate change, making up about 30% of the warming we’ve experienced to date, even though carbon dioxide is roughly 200 times more abundant in the atmosphere. 

What’s most different about methane is that the gas is very short-lived, having a lifetime of somewhere around a decade in the atmosphere before it breaks down. But in that time, methane can cause about 86 times more warming than an equivalent amount of carbon dioxide. (Quick side note: Comparisons of greenhouse gases are usually made over a specific period of time, since gases all have different lifetimes and there’s no one number that can represent the complexity of atmospheric chemistry and physics.)

Methane’s largest sources are the fossil-fuel industry, agriculture, and waste. Cutting down leaks from the process of extracting oil and gas is one of the most straightforward and currently available ways to slim down methane emissions. There’s a growing movement to track methane more accurately—with satellites, among other techniques—and hold accountable the oil and gas companies that are releasing the most. 

Nitrous oxide: No laughing matter

You may have come across nitrous oxide at the dentist, where it might be called “laughing gas.” But its effects on climate change are serious, as the gas makes up about 6% of warming to date

Nitrous oxide emissions come almost entirely from agriculture. Applying certain nitrogen-based fertilizers can release the gas as bacteria break those chemicals down. Emissions can also come from burning certain agricultural wastes. 

Nitrous oxide emissions grew roughly 40% from 1980 to 2020. The gas lasts in the atmosphere for roughly a century, and over that time it can trap over 200 times more heat than carbon dioxide does in the same period. 

Cutting down on these emissions will largely require careful adjustment of soil management practices in agriculture. Decreasing use of synthetic fertilizers, applying the fertilizer we do use more efficiently, and choosing products that eliminate as many emissions as possible will be the main levers we can pull.

Fluorinated gases: The quiet giants

Last but certainly not least, fluorinated gases are some of the most powerful greenhouse gases that we emit. A variety of them fall under this umbrella, including hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and SF6. They last for centuries (or even millennia) in the atmosphere and have some eye-popping effects, with each having at least 10,000 times more global warming potential than carbon dioxide. 

HFCs are refrigerants, used in air conditioners, refrigerators, and similar appliances. One major area of research in heat pumps seeks alternative refrigerants that don’t have the same potential to warm the planet. The chemicals are also used in aerosol cans (think hair spray), as well as in fire retardants and solvents. 

SF6 is used in high-voltage power equipment, and it’s the single worst greenhouse gas that’s been covered by the International Panel on Climate change, clocking in at 23,500 times more powerful than carbon dioxide over the course of a century. Scientists are trying to find alternatives, but it’s turning out to be a difficult switch—as you’ll see if you read my latest story.

The good news is that we know change is possible when it comes to fluorinated gases. We’ve already moved away from one category, chlorofluorocarbons (CFCs). These were generally used in the same industries that use HFCs today, but they had the nasty habit of tearing a hole in the ozone layer. The 1987 Montreal Protocol successfully spurred a phaseout of CFCs, and we would be on track for significantly more warming without the change.


Now read the rest of The Spark

Related reading

Some scientists want to speed up or encourage chemical reactions that remove methane from the atmosphere, including researchers and companies who aim to spray iron particles above the ocean

Methane can come from food waste, and some companies want to capture that gas and use it for energy instead of allowing it to escape into the atmosphere.

Carbon dioxide emissions from aviation are only one source of the industry’s climate impact. Planes also emit clouds of water vapor and particulate matter called contrails, and they’re a huge cause of the warming from air travel. Rerouting planes could help.

Another thing

We’re inching closer to climate tipping points, thresholds where ecosystems and planetary processes can create feedback loops or rapid shifts. A UK research agency just launched a $106 million effort to develop early warning systems that could alert us if we get dangerously close to these tipping points. 

The agency will focus on two main areas: the melting of the Greenland Ice Sheet and the weakening of the North Atlantic Subpolar Gyre. Read more about the program’s goals in my colleague James Temple’s latest story.

Keeping up with climate  

Volkswagen has thrown over $20 billion at EV, battery, and software startups over the past six years. Experts aren’t sure this shotgun approach is helping the automaker compete on electric cars. (The Information)

We’re finally starting to understand how clouds affect climate change. Clouds reflect light back into space, but they also trap heat in the atmosphere. Researchers are starting to puzzle out how this will add up in our future climate. (New Scientist)

Vehicles in the US just keep getting bigger, and the trend is deadly. Larger vehicles are safer for their occupants but more dangerous for everyone around them. (The Economist)

→ Big cars can also be a problem for climate change, since they require bigger batteries and more power to get around. (MIT Technology Review)

The plant-based-meat industry has had trouble converting consumers in the US, and sales are on the decline. Now advocates are appealing to Congress for help. (Vox)

Last Energy wants to build small nuclear reactors, and the startup just secured $40 million in funding. The company is claiming that it can meet aggressive timelines and says it’ll bring its first reactor online as early as 2026 in Europe. (Canary Media)

There could be 43 million tons of wind turbine blades in landfills by 2050. Researchers say they’ve found alternative materials for the blades that could make them recyclable. (New York Times)

→ Other research aims to recycle the fiberglass in current blades using chemical methods. (MIT Technology Review)

The last coal-fired power plant in the UK is set to shut down at the end of the month. The facility just accepted its final fuel delivery. (BBC

Canada’s 2023 wildfires produced more emissions than fossil fuels in most countries

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Last year’s Canadian wildfires smashed records, burning about seven times more land in Canada’s forests than the annual average over the previous four decades. Eight firefighters were killed and 180,000 people displaced. 

Now a new study reveals how these blazes can create a vicious cycle, contributing to climate change even as climate-fueled conditions make for worse wildfire seasons.  Emissions from 2023’s Canadian wildfires reached 647 million metric tons of carbon, according to the study published today in Nature. If the fires were a country, they’d rank as the fourth-highest emitter, following only China, the US, and India. The sky-high emissions from the fires reveals how human activities are pushing natural ecosystems to a place that’s making things tougher for our climate efforts.

“The fact that this was happening over large parts of Canada and went on all summer was really a crazy thing to see,” says Brendan Byrne, a scientist at the NASA Jet Propulsion Laboratory and the lead author of the study.

Digging back into the climate record makes it clear how last year’s conditions contributed to an unusually brutal fire season, Byrne says; 2023 was especially warm and especially dry, both of which allow fires to spread more quickly and burn more intensely.

A few regions were especially notable in the blazes, like parts of Quebec, a typically wet area in the east of Canada that saw half the normal precipitation. These fires were the ones generating smoke that floated down the east coast of the US. But overall, what was so significant about the 2023 fire season was just how widespread the fire-promoting conditions were, Byrne says.

While climate change doesn’t directly spark any one fire, researchers have traced hot, dry conditions that worsen fires to the effects of human-caused climate change. The extreme fire conditions in eastern Canada were over twice as likely because of climate change, according to a 2023 analysis by World Weather Attribution.

And in turn, the fires are releasing massive amounts of greenhouse gases into the atmosphere. By combining satellite images of the burned areas with measurements of some of the gases emitted, Byrne and his team were able to tally up the total carbon released into the atmosphere with more accuracy than estimates that rely on the images alone, he says.

In total, the fires contributed at least four times more carbon to the atmosphere than all fossil-fuel emissions in Canada last year.

Fires are part of natural, healthy ecosystems, and burns on their own don’t necessarily represent a disaster for climate change. After a typical fire season, a forest begins to regrow, capturing carbon dioxide from the atmosphere as it does so. This continues a cycle in which carbon moves around the planet.

The problem comes if and when that cycle gets thrown off—for instance, if fires are too intense and too widespread for too many years. And there’s reason to be nervous about future fire seasons. While 2023’s conditions were unusual compared with the historical record, climate modeling reveals they could be normal by the 2050s.

“I think it’s very likely that we’re going to see more fires in Canada,” Byrne tells me. “But we don’t really understand how that’s going to impact carbon budgets.”

What Byrne means by a carbon budget is the quantity of greenhouse gases we can emit into the atmosphere before we shoot past our climate goals. We have something like seven years left of current emissions levels before we’re more likely than not to pass 1.5 °C of warming over preindustrial levels, according to the 2023 Global Carbon Budget Report

It was already clear that we need to stop emissions from power plants, vehicles, and a huge range of other clearly human activities to address climate change. Last year’s wildfires should increase the urgency of that action, because pushing natural ecosystems beyond what they can handle will only add to the challenge going forward. 


Now read the rest of The Spark

Related reading

This company wants to use balloons to better understand the conditions on the ground before wildfires start in Colorado, as Sarah Scoles covered in a story earlier this summer

Canada isn’t the only country to see unusual fires in recent years. My colleague James Temple covered Australia’s intense 2019-2020 wildfire season

Another thing

Want to try out solar geoengineering? A new AI tool allows you to do just that—sort of. 

Andrew Ng has released an online program that simulates what might happen under different emissions scenarios if technologies that can block out some sunlight are used in an effort to slow warming. Read the story here and give the simulator a try. 

Keeping up with climate  

Scientists want to genetically engineer cows’ microbiomes to cut down on methane emissions. The animals’ digestive systems rely on archaea that emit the powerful greenhouse gas. Tweaking them could be a major help in cutting climate pollution from agriculture. (Washington Post)

Some big tech companies are using tricky math that can obscure the true emissions from rising electricity use, in part due to AI. Buying renewable energy credits can make a company’s energy use look better on paper, but the practice has some problems. (Bloomberg)

→ How companies reach their emissions goals can be more important than how quickly they do so. (MIT Technology Review)

The midwestern US is dealing with hot weather and high humidity, in part because of something called corn sweat. Crops naturally release water into the air when it’s warm, causing higher humidity. (Scientific American)

Hydrogen can provide an alternative to fossil fuels, but it likely won’t have universally positive effects in every industry. Hydrogen will be most useful in sectors like chemical production and least so in buildings and light-duty vehicles, according to a new report. (Latitude Media)

→ Here’s why hydrogen vehicles are losing the race to power cleaner cars. (MIT Technology Review)

Batteries are far outpacing natural gas in new additions to the US grid. In the first half of 2023, 96% of such additions were from renewable sources, batteries, or nuclear power. (Wired)

Tesla agreed to open its Supercharger network to vehicles from other automakers last year, but the plan has been plagued by delays. Drivers should be able to access the network next year, but so far only two companies have gotten past the first step of updating the software needed. (New York Times)

Sage Geosystems, a company using geothermal technology to generate and store energy, announced it has an agreement to supply 150 megawatts of power to Meta. (Canary Media)

Coal powers about 63% of China’s electric grid today, and the country is the world’s largest consumer of the fuel. But progress with technologies like hydropower and nuclear suggests the country could shift to lower-emissions energy sources. (Heatmap)

Want to understand the future of technology? Take a look at this one obscure metal.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

On a sunny morning in late spring, I found myself carefully examining an array of somewhat unassuming-looking rocks at the American Museum of Natural History. 

I’ve gotten to see some cutting-edge technologies as a reporter, from high-tech water treatment plants to test nuclear reactors. Peering at samples of dusty reddish monazite and speckled bastnäsite, I saw the potential for innovation there, too. That’s because all the minerals spread out across the desk contain neodymium, a rare earth metal that’s used today in all sorts of devices, from speakers to wind turbines. And it’s likely going to become even more crucial in the future. 

By the time I came to the museum to see some neodymium for myself, I’d been thinking (or perhaps obsessing) about the metal for months—basically since I’d started reporting a story for our upcoming print issue that is finally out online. The story takes a look at what challenges we’ll face with materials for the next century, and neodymium is center stage. Let’s take a look at why I spent so long thinking about this obscure metal, and why I think it reveals so much about the future of technology. 

In the new issue of our print magazine, MIT Technology Review is celebrating its 125th anniversary. But rather than look back to our 1899 founding, the team decided to look forward to the next 125 years. 

I’ve been fascinated with topics like mining, recycling, and alternative technologies since I’ve been reporting on climate. So when I started thinking about the distant future, my mind immediately went to materials. What kind of stuff will we need? Will there be enough of it? How does tech advancement change the picture?

Zooming out to the 2100s and beyond changed the stakes and altered how I thought about some of the familiar topics I’ve been reporting on for years. 

For example, we have enough of the stuff we need to power our world with renewables. But in theory, there is some future point at which we could burn through our existing resources. What happens then? As it turns out, there’s more uncertainty about the amount of resources available than you might imagine. And we can learn a lot from previous efforts to project when the supply of fossil fuels will begin to run out, a concept known as peak oil. 

We can set up systems to reuse and recycle the metals that are most important for our future. These facilities could eventually help us mine less and make material supply steadier and even cheaper. But what happens when the technology these facilities are designed to recycle inevitably changes, possibly rendering old setups obsolete? Predicting what materials will be important, and adjusting efforts to make and reuse them, is complicated to say the least. 

To try to answer these massive questions, I took a careful look at one particular metal: neodymium. It’s a silvery-white rare earth metal, central to powerful magnets that are at the heart of many different technologies, both in the energy sector and beyond. 

Neodymium can stand in for many of the challenges and opportunities we face with materials in the coming century. We’re going to need a lot more of it in the near future, and we could run into some supply constraints as we race to mine enough to meet our needs. It’s possible to recycle the metal to cut down on the extraction needed in the future, and some companies are already trying to set up the infrastructure to do so. 

The world is well on its way to adapting to conditions that are a lot more neodymium-centric. But at the same time, efforts are already underway to build technologies that wouldn’t need neodymium at all. If companies are able to work out an alternative, it could totally flip all our problems, as well as efforts to solve them, upside down. 

Advances in technology can shift the materials we need, and our material demands can push technology to develop in turn. It’s a loop, one that we need to attempt to understand and untangle as we move forward. I hope you’ll read my attempt to start doing that in my feature story here


Now read the rest of The Spark

Related reading

For a more immediate look at the race to produce rare earth metals, check out this feature story by Mureji Fatunde from January. 

I started thinking more deeply about material demand when I was reporting stories about recycling, including this 2023 feature on the battery recycling company Redwood Materials. 

For one example of how companies are trying to develop new technologies that’ll change the materials we need in the future, check out this story about rare-earth-free magnets from earlier this year. 

Another thing

“If we rely on hope, we give up agency. And that may be seductive, but it’s also surrender.”

So writes Lydia Millet, author of over a dozen books, in a new essay about the emotions behind fighting for a future beyond climate change. It was just published online this week. It’s also featured in our upcoming print issue, and I’d highly recommend it. 

Keeping up with climate  

For a look inside what it’s really like to drive a hydrogen car, this reporter rented one and took it on a road trip, speaking to drivers along the way. (The Verge)

→ Here’s why electric vehicles are beating out hydrogen-powered ones in the race to clean up transportation. (MIT Technology Review)

As temperatures climb, we’ve got a hot steel problem on our hands. Heat can cause steel, as well as other materials like concrete, to expand or warp, which can cause problems from slowing down trains to reducing the amount of electricity that power lines can carry. (The Atlantic)

Oakland is the first city in the US running all-electric school buses. And the vehicles aren’t only ferrying kids around; they’re also able to use their batteries to help the grid when it’s needed. (Electrek)

Form Energy plans to build the largest battery installation in the world in Maine. The system, which will use the company’s novel iron-air chemistry, will be capable of storing 8,500 megawatt-hours’ worth of energy. (Canary Media)

→ We named Form one of our 15 Climate Tech companies to watch in 2023. (MIT Technology Review)

In one of the more interesting uses I’ve seen for electric vehicles, Brussels has replaced horse-drawn carriages with battery-powered ones. They look a little like old-timey cars, and operators say business hasn’t slowed down since the switch. (New York Times)

Homeowners are cashing in on billions of dollars in tax credits in the US. The money, which rewards use of technologies that help make homes more energy efficient and cut emissions, is disproportionately going to wealthier households. (E&E News)

Airlines are making big promises about using new jet fuels that can help cut emissions. Much of the industry aims to reach 10% alternative fuel use by the end of the decade. Actual rates hit 0.17% in 2023. (Bloomberg)

Solar farms can’t get enough sheep—they’re great landscaping partners. Soon, 6,000 sheep will be helping keep the grass in check between panels in what will be the largest solar grazing project in the US. (Canary Media)

The US government is still spending big on climate

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Friday marks two years since the US signed the landmark Inflation Reduction Act (IRA) into law. Now, I’m not usually one to track legislation birthdays. But this particular law is the exception, because it was a game changer for climate technology in the country, and beyond. 

Over the past two years we’ve seen an influx of investment from the federal government, private businesses hoping to get in on the action, and other countries trying to keep up. And now we’re seeing all this money starting to make a difference in the climate tech sector.  

Before we get to the present day, let’s do a quick refresher. In late July 2022, the US Congress reached a massive deal on a tax reform and spending package. The law changed some tax rules, implemented prescription drug pricing reform, and provided some funding for health care and the agency that collects taxes. 

And then there are the climate sections, to the tune of hundreds of billions of dollars of spending. There are tax credits for businesses that build and operate new factories to produce technologies like wind and solar. There are individual tax credits to help people buy electric vehicles, heat pumps, and solar panels. There’s funding to give loans to businesses working to bring their newer technologies into the world. 

Now to the fun part: Where is all that money going?

Some of the funding comes in the form of grants, designed to kick-start domestic manufacturing in areas like batteries for EVs and energy technologies. I wrote about several billion dollars going to companies making battery components and producing their ingredients in October 2022, for example

Tax credits are another huge chunk of the bill, and it’s starting to become clear just how significant they can be for businesses. First Solar, a company making thin-film solar panels in the US, revealed earlier this year that it was in the middle of a deal to receive about $700 million from tax credits

Then there are the provisions for individuals. As of late May, about three million households had claimed IRA tax credits for their homes in 2023. Together, they received about $8 billion for solar panels, batteries, heat pumps, and home efficiency technologies such as insulation. The credits are popular—that spending was roughly three times higher than projections had suggested. 

One area I’ve been following especially closely is funding from the Loan Programs Office of the US Department of Energy, which lends money to businesses to help them get their innovative projects built. There was a $2 billion commitment to Redwood Materials, a battery recycling company I dug into just before the announcement. You might also remember a $1.52 billion loan to reopen a nuclear power plant in Michigan and a $400 million loan to give zinc batteries a boost

It’s not just the federal government that’s pouring in money—businesses are following suit, announcing new factories or expanding old ones. Between the passage of the IRA in August 2022 and May 2024, companies have committed $110 billion for 159 projects from EVs and solar and wind to transmission projects, according to a tracker from Jack Conness, a policy analyst at Energy Innovation, an energy and climate policy firm. 

The effects have rippled out beyond the US. Europe finalized the Net-Zero Industry Act in early 2024, partly as an answer to the IRA. It’s not quite the same spending spree, but the bill does include a goal for Europe to supply 40% of its own climate tech by 2030 and it implements some rule changes regarding how new projects get approved to help that happen. 

The Inflation Reduction Act still has a lot of time left, and some programs have a 10-year window. One of the biggest, though often overlooked, changes over the last year is that we’ve gotten clarity on how some of the major programs are actually going to work. While the large contours were laid out in the law, some of the details about implementing them were left up to agencies to nail down. And while these specifics often seem small, they can affect which sorts of projects are eligible, changing how these credits might shape the industry. 

For example, in December 2023 we learned how restrictions in the EV tax credits will affect vehicles with components made in China. As a result, starting in 2024 some vehicle models became ineligible for the credits, including the Ford Mustang Mach-E. (The company hasn’t said exactly why the model lost eligibility, but some reporting has suggested it’s likely because the lithium iron phosphate batteries used in the vehicles come from the Chinese company CATL.) 

Some of those specifics get really complicated. The hydrogen tax credits could get tangled up in legal battles. The full rules on credits for sustainable aviation fuel raised concerns that fuels that don’t help much with emissions will still get funding. The credits for critical minerals apply only to processing, not to mining efforts, as my colleague James Temple detailed in his story about a Minnesota mine earlier this year

Looking ahead, the fate of the IRA’s programs may depend on the outcome of the presidential election in November. Vice President Kamala Harris, the Democratic nominee, cast the tie-breaking vote to pass the law, and she would likely keep the programs going. Meanwhile, Donald Trump, the Republican nominee, has been openly targeting many of its provisions, and he could do some damage to many of the tax credits included, even though it would require an act of Congress to actually repeal the law. (For more on what a second Trump presidency might mean for the climate law, check out this great deep dive from James Temple.) 

The action certainly isn’t slowing down in the world of climate technology. Looking ahead, one major piece of the puzzle we’ll be watching is a potential change to how new projects get approved. There’s a permitting reform package winding its way through the government now, so stay tuned for more on that, and on everything climate tech. 


Now read the rest of The Spark

Related reading

At our ClimateTech event last year, Leah Stokes, an environmental policy professor at UC Santa Barbara who was closely involved with developing the IRA, spoke with us about the law. For more on how it came to be and what changes we’ve seen so far, check out her segment here

Here’s what’s most at risk in the IRA as the US faces an election in November. 

One mine in Minnesota could unlock tens of billions of dollars in tax credits, as James Temple detailed in this story from January.

wide view of auto production at Mercedes-Benz factory

MERCEDES-BENZ AG

Another thing

Steel production is responsible for about 7% of global emissions. A growing array of technologies can produce the metal with less climate pollution, but there’s a big catch: They’re expensive. 

But in the grand scheme of things, even steel that costs 30% more than the standard stuff would only increase the cost of the average new car by about $100, or less than 1%. That gives the auto industry a unique opportunity to help drive the world toward greener steel. Get all the details in my latest story

Keeping up with climate  

The world’s biggest pumped hydropower project just came online in China. The $2.6 billion facility can store energy by pumping water uphill. (Bloomberg)

Scientists want to make a common chemical from wastewater. Researchers demonstrated a reactor that can produce ammonia from nitrates, a common pollutant found in municipal wastewater and agricultural runoff. (New Scientist)

→ Ammonia could be used as fuel for long-distance shipping. (MIT Technology Review)

The new movie Twisters shows a tornado ripping apart a wind turbine. Experts say we probably don’t need to worry too much about wind farms collapsing—those incidents tend to be rare, because turbines are built to withstand high wind speeds and are usually shut down and locked into a safe position in the case of extreme weather. (E&E News)

SunPower, once a dominant force in residential solar, is bankrupt. The company will sell off assets and gradually close up shop in the latest hit to a turbulent market. (Latitude Media)

More than 47,000 people in Europe died last year from heat-related causes. If it hadn’t been for adaptation measures like early warning systems and cooling technology, the toll could have been much higher. (New York Times)

Europe could be a bright spot for Beyond Meat and other companies selling plant-based products. The industry has seen sales and profits stagnate or drop recently, especially in the US, but Europe has lower levels of meat consumption, and supermarkets there have shown some support for animal-free alternatives. (Wired)

South Korea turns about 98% of its food waste into compost, animal feed, or energy. It’s one of the few countries with a comprehensive system for food waste, and it’s not an easy one to replicate. (Washington Post)

→ Here’s how companies want to use microbes to turn food scraps and agricultural waste into energy. (MIT Technology Review)

Just 12% of new low-emissions hydrogen projects have customers lined up. As a result, many proposed projects will probably never get built. (Bloomberg)

Your AC habits aren’t unique. Here’s why that’s a problem.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

When I get home in the evening on a sweltering summer day, the first thing I do is beeline to my window air-conditioning units and crank them up.

People across the city, county, and even the state are probably doing the same thing. And like me, they might also be firing up the TV and an air fryer to start on dinner. This simple routine may not register in your mind as anything special, but it sure does register on the electrical grid.

These early evening hours in the summer are usually the time with the highest electricity demand. And a huge chunk of that power is going into cooling systems that keep us safe and comfortable. This is such a significant challenge for utilities and grid operators that some companies are trying to bring new cooling technologies to the market that can store up energy during other times to use during peak hours, as I covered in my latest story

Let’s dig into why that daily maximum is a crucial data point to consider as we plan to keep the lights (and AC) on while cleaning up our energy system. 

In some places where air-conditioning is common, like parts of the US, space cooling can represent more than 70% of peak residential electrical demand on hot days, according to data from the International Energy Agency. It’s no wonder that utilities sometimes send out notices begging customers to turn down their AC during heat waves. 

All that demand can add up—just look at data from the California Independent System Operator (CAISO), which oversees operation of electricity generation and transmission in the state. Take, for example, Monday, August 5. The minimum amount of power demand, at around four in the morning, was roughly 25,000 megawatts. The peak, at about six in the evening, was 42,000 megawatts. There’s a lot behind that huge difference between early morning and the evening peak, but a huge chunk of it comes down to air conditioners. 

These summer evenings often represent the highest loads the grid sees all year long, since cooling systems like my window air conditioners are such energy hogs. Winter days usually see less variation, and typically there are small peaks in both the morning and evening that can be attributed to heating systems. (See more about how this varies around the US in this piece from the Energy Information Agency.)

From a climate perspective, this early evening peak in the summer is inconveniently timed, since it hits right around when solar power is ramping down for the day. It’s an example of one of the perennial challenges of some renewable electricity sources: they might be available, but they’re not always available at the right times.

Grid operators often don’t have the luxury of choosing how they meet demand—they take what they can get, even if that means turning on fossil-fuel power plants to keep the lights on. So-called peaker plants are usually the ones tapped to meet the highest demand, and they’re typically more expensive and also less efficient than other power plants.  

Batteries are starting to come to the rescue, as I covered in this newsletter a few months ago. On April 16, CAISO data showed that energy storage systems were the single biggest power source on the grid starting just after 7 p.m. local time. But batteries are far from being able to solve peak demand—with higher summer grid loads, natural-gas plants are cranked up much higher in August than they were in April, so fossil fuels are powering summer evening routines in California.

We still need a whole lot more energy storage on the grid, and other sources of low-emissions electricity like geothermal, hydropower, and nuclear to help in these high-demand hours. But there’s also a growing interest in cooling systems that can act as their own batteries. 

A growing number of technologies do just this—the goal is to charge up the systems using electricity during times when demand is low, or when renewables are readily available. Then they can provide cooling during these peak-demand hours without adding stress to the grid. Check out my full story for more on how they work, and how far along they are. 

As the planet warms and more people install AC, we might be pushing the limits of what the grid can handle.  Even if generation capacity isn’t stretched thin, extreme heat and high loads can threaten transmission equipment. 

While asking people to bump up their thermostat can be a short-term fix on the hottest days, having technologies that allow us to be more flexible in how and when we use energy could be key to staying safe and comfortable even as the summer nights keep getting hotter. 


Now read the rest of The Spark

Related reading

Air-conditioning is something of an antihero for climate action, since it helps us adapt to a warming world but also contributes to that warming with sky-high energy demand, as I wrote about in a newsletter last year

Batteries could be key to meeting peak electricity demand—and they’re starting to make a dent, as I covered earlier this year

Another thing

A growing number of companies in China want to power fleets of bikes not with batteries, but with hydrogen. But reception has been mixed, with riders reporting trouble with range. Read more in the latest story from my colleague Zeyi Yang.

Part of the reason for the growing interest in hydrogen is concern over the safety of lithium-ion batteries. New York is trying to make e-bikes safer by deploying battery-swapping stations in the city. For all you need to know about the program, check out my May story on the topic.

Keeping up with climate  

A major renewable-energy company unveiled a first-of-its-kind robot to help install solar panels. The company claims Maximo can install panels twice as fast as humans, at half the cost. (New York Times)

The European Union got more electricity from solar and wind than fossil fuels in the first half of 2024. Reforms in permitting and Russia’s invasion of Ukraine are two factors pushing the rise of renewables. (Canary Media)

Stepping into the shade can make the temperature feel dozens of degrees cooler. Cities need to look beyond trees for shade. (The Atlantic)

Check out these interactive charts detailing how each US state gets its electricity, and how it’s changed in the last two decades. Some surprises for me included South Carolina and Iowa. (New York Times)

Electric-vehicle sales in Germany are continuing their slide, dropping by 37%. The ongoing slump comes after the country ended incentives last year that supported EVs. (Bloomberg)

Wildfire smoke can have negative health effects. Protect yourself by staying indoors on days when air quality is poor, wearing a mask, and—especially—avoiding outdoor exercise. (Wired)

→ I spoke about a new study that will follow survivors of last year’s Maui fire to track their health outcomes, along with other science news of the week, on the latest episode of Science Friday. (Science Friday)

A new bill snaking its way through the US Congress could make it easier to build renewable-energy projects—and some fossil-fuel projects too. Here’s why a growing cadre of energy experts is on board with these permitting reforms despite concessions for oil and gas. (Heatmap)

Kamala Harris tapped Tim Walz as her pick for vice president. The Minnesota governor brings some climate experience to the ticket, including a law that requires utilities to reach 100% renewable energy by 2040. (Grist)