What to expect if you’re expecting a plug-in hybrid

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

If you’ve ever eaten at a fusion restaurant or seen an episode of Glee, you know a mashup can be a wonderful thing. 

Plug-in hybrid vehicles should be the mashup that the auto industry needs right now. They can run a short distance on a small battery in electric mode or take on longer drives with a secondary fuel, cutting emissions without asking people to commit to a fully electric vehicle.

But all that freedom can come with a bit of a complication: plug-in hybrids are what drivers make them. That can wind up being a bad thing because people tend to use electric mode less than expected, meaning emissions from the vehicles are higher than anticipated, as I covered in my latest story.

So are you a good match for a plug-in hybrid? Here’s what you should know about the vehicles.

Electric range is limited, and conditions matter

Plug-in hybrids have a very modest battery, and that’s reflected in their range. Models for sale today can generally get somewhere between 25 and 40 miles of electric driving (that’s 40 to 65 kilometers), with a few options getting up to around the 50-mile (80 km) mark.

But winter conditions can cut into that range. Even gas-powered vehicles see fuel economy drop in cold weather, but electric vehicles tend to take a harder hit. Battery-powered vehicles can see a 25% reduction in range in freezing temperatures, or even more depending on how hard the heaters need to work and what sort of driving you’re doing.

In the case of a plug-in hybrid with a small battery, these range cuts can be noticeable even for modest commutes. I spoke with one researcher for a story in 2022 who told me that he uses his plug-in hybrid in electric mode constantly for about nine months out of the year. Charging once overnight gets him to and from his job most of the time, but in the winter, his range shrinks enough to require gas for part of the trip.

It might not be a problem for you lucky folks in California or the south of Spain, but if you’re in a colder climate, you might want to take these range limitations into account. Parking in a warmer place like a garage can help, and you can even preheat your vehicle while it’s plugged in to extend your range.

Charging is a key consideration

Realistically, if you don’t have the ability to charge consistently at home, a plug-in hybrid may not be the best choice for you.

EV drivers who don’t live in single-family homes with attached garages can get creative with charging. Some New York City drivers I’ve spoken with rely entirely on public fast chargers, stopping for half an hour or so to juice up their vehicles as needed.

But plug-in hybrids generally aren’t equipped to handle fast charging speeds, so forget about plugging in at a Supercharger. The vehicles are probably best for people who have access to a charger at home, in a parking garage, or at work. Depending on battery capacity, charging a plug-in hybrid can take about eight hours on a level 1 charger, and two to three hours on a level 2 charger. 

Most drivers with plug-in hybrids wind up charging them less than what official estimates suggest. That means on average, drivers are producing more emissions than they might expect and probably spending more on fuel, too. For more on setting expectations around plug-in hybrids, read more in my latest story here.

We could see better plug-in models soon (in some places, at least)

For US drivers, state regulations could mean that plug-in offerings could expand soon.  

California recently adopted rules that require manufacturers to sell a higher proportion of low-emissions vehicles. Beginning in 2026, automakers will need clean vehicles to represent 35% of sales, ramping up to 100% in 2035. Several other states have hopped on board with the regulations, including New York, Massachusetts, and Washington.

Plug-in hybrids can qualify under the California rules, but only if they have at least 50 miles (80 km) of electric driving range. That means that we could be seeing more long-range plug-in options very soon, says Aaron Isenstadt, a senior researcher at the International Council on Clean Transportation.

Some other governments aren’t supporting plug-in hybrids, or are actively pushing drivers away from the vehicles and toward fully electric options. The European Union will end sales of gas-powered cars in 2035, including all types of hybrids.

Ultimately, plug-in hybrid vehicles can help reduce emissions from road transportation in the near term, especially for drivers who aren’t ready or willing to make the jump to fully electric cars just yet. But eventually, we’ll need to move on from compromises to fully zero-emissions options.  


Now read the rest of The Spark

Related reading

Real-world driving habits can get in the way of the theoretical benefits of plug-in hybrids. For more on why drivers might be the problem, give my latest story a read

Plug-in hybrids probably aren’t going away anytime soon, as I wrote in December 2022

Still have questions about hybrids and electric vehicles? I answered a few of them for a recent newsletter. Check it out here.

Another thing

China has emerged as a dominant force in climate technology, especially in the world of electric vehicles. If you want to dig into how that happened, and what it means for the future of addressing climate change, check out the latest in our Roundtables series here

For a sampling of what my colleagues got into in this conversation, check out this story from Zeyi Yang about how China came to lead the world in EVs, and this one about how EV giant BYD is getting into shipping

Keeping up with climate  

The US Department of Energy just awarded $6 billion to 33 projects aimed at decarbonizing industry, from cement and steel to paper and food. (Canary Media)

→ Among the winners: Sublime Systems and Brimstone, two startups working on alternative cement. Read more about climate’s hardest problem in my January feature story. (MIT Technology Review)

In the latest in concerning insurance news, State Farm announced it won’t be renewing policies for 72,000 property owners in California. As fire seasons get worse, insuring properties gets riskier. (Los Angeles Times)

Surprise! Big fossil-fuel companies aren’t aligned with goals to limit global warming. A think tank assessed the companies’ plans and found that despite splashy promises, none of the 25 largest oil and gas companies meet targets set by the Paris Agreement. (The Guardian)

An AI model can predict flooding five days in advance. This and other AI tools could help better forecast dangerous scenarios in remote places with fewer flood gauges. (Bloomberg)

Boeing’s 737 Max planes have been all over the news with incidents including a door flying off on a recent Alaska Airlines flight. Some experts say the problems can be traced back in part to the company’s corner-cutting on sustainability efforts. (Heated)

In Denver, e-bike vouchers get snapped up like Taylor Swift tickets. The city is aiming to lower the cost of the vehicles for residents in an effort to reduce the total number of car trips. It’s obviously a popular program, though some experts question whether the funding could be more effective elsewhere. (Grist)

A nuclear plant in New York was shut down in 2021—and predictably, emissions went up. It’s been a step back for clean energy in the state, as natural gas has stepped in to fill the gap. (The Guardian)

Germany used to be a solar superpower, but China has come to dominate the industry. Some domestic manufacturers aren’t giving up just yet, arguing that local production will be key to meeting ambitious clean-energy goals. (New York Times)

A company will pour 9,000 tons of sand into the sea in the name of carbon removal. Vesta’s pilot project just got a regulatory green light, and it’ll be a big step for efforts to boost the ocean’s ability to soak up carbon dioxide from the atmosphere. (Heatmap)

Why New York City is testing battery swapping for e-bikes

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Spend enough time in a city and you’ll get to know its unique soundscape. In New York City, it features the echoes of car stereos, the deep grumbles of garbage truck engines, and, increasingly, the high-pitched whirring of electric bikes.

E-bikes and scooters are becoming a staple across the city’s boroughs, and e-bikes in particular are especially popular among the tens of thousands of delivery workers who zip through the streets.

On a recent cloudy afternoon in Manhattan, I joined a few dozen of them at a sign-up event for a new city program that aims to connect delivery drivers with new charging technologies. Drivers who enroll in the pilot will have access to either fast chargers or battery swapping stations for six months.

It’s part of the city’s efforts to cut down on the risk of battery fires, some of which have been sparked by e-bike batteries charging inside apartment buildings, according to the fire department. For more on the program and how it might help address fires, check out my latest story. In the meantime, here’s what I heard from delivery drivers and the startups at the kickoff event.

On a windy late-February day, I wove my way through the lines of delivery workers who showed up to the event in Manhattan’s Cooper Square. Some of them straddled their bikes in line, while others propped up their bikes in clusters. Colorful bags sporting the logos of various delivery services sprouted from their cargo racks.

City officials worked at tables under tents, assigning riders to one of the three startups that are partnering with the city for the new program. One company, Swiftmile, is building fast-charging bike racks for drivers. The other two, Popwheels and Swobbee, are aiming to bring battery swapping to the city.

Battery swapping is a growing technology in some parts of the world, but it’s not common in the US, so I was especially intrigued by the two companies who had set up battery swap cabinets.

Swobbee runs a small network of swapping stations around the world, including at its base in Germany. It is retrofitting bikes to accommodate its battery, which attaches to the rear of the bike. Popwheels is taking a slightly different approach, providing batteries that are already compatible with the majority of e-bikes delivery drivers use today, with little modification required.

I watched a Popwheels employee demonstrate the company’s battery swapping station to several newly enrolled drivers. Each one would approach the Popwheels cabinet, which is roughly the size and shape of a bookcase and has 16 numbered metal doors on the front. After they made a few taps on their smartphone, a door would swing open. Inside, there was space to slide in a used battery and a cord to plug into it. Once the battery was in the cabinet and the door had been shut, another door would open, revealing a fully charged e-bike battery the rider could unplug and slide out. Presto!

The whole process took just a minute or two—much quicker than waiting for a battery to charge. It’s similar to picking up a package from an automated locker in an upscale apartment building.

The crowd seemed to grow during the two hours I spent at the event, and the line stretched and squeezed closer to the edge of the sidewalk. I made a comment about the turnout to Baruch Herzfeld, Popwheels’ CEO and co-founder. “This is nothing,” he said. “There’s demand for 100,000 batteries in New York tomorrow.”

Indeed, New York City has roughly 60,000 delivery workers, many of whom rely on e-bikes to get around. And commuters and tourists might be interested in small, electrified vehicles. Meeting anything close to that sort of demand will take a whole lot more battery cabinets, as one can service just up to 50 riders, according to Popwheels’ estimates.

After they’d signed up and seen the battery swap demo, drivers who were ready to take batteries with them wheeled their bikes over to a few more startup employees, who helped make a slight tweak to a rail under their seats for the company’s batteries to slide into. Some adjustments required a bit of elbow grease, but I watched as one rider slid his new, freshly charged battery into place. He hopped on his bike and darted off into the bike lane, integrating into the flow of traffic.


Now read the rest of The Spark

Related reading

For more on the city’s plans for battery swapping and how they might cut fire risk, give my latest story a read.

Gogoro, one of our 15 Climate Tech Companies to Watch in 2023, operates a huge network of battery swapping stations for electric scooters, largely in Asia.

Some companies think battery swapping is an option for larger electric vehicles, too. Here’s how one startup wants to use modular, swappable batteries to get more EVs on the road.

STEPHANIE ARNETT/MITTR | SCOPEX (BALLOON)

Another thing

Harvard researchers have given up on a long-running effort to conduct a solar geoengineering experiment. 

The idea behind the technique is a simple one: scatter particles in the upper atmosphere to scatter sunlight, counteracting global warming. But related research efforts have sparked controversy. Read more in my colleague James Temple’s latest story.

Keeping up with climate  

The Biden administration finalized strict new rules for vehicle tailpipe emissions. Under the regulations, EVs are expected to make up over half of new vehicle sales by 2030. (NPR)

The first utility-scale offshore wind farm in the US is officially up and running. It’s a bright spot that could signal a turning point for the industry. (Canary Media)

→ Here’s what’s next for offshore wind. (MIT Technology Review)

The UK has big plans for heat pumps, but installations aren’t moving nearly fast enough, according to a new report. Installations need to increase more than tenfold to keep pace with goals. (The Guardian)

States across the US are proposing legislation to ban lab-grown meat. It’s the latest escalation in an increasingly weird battle over a product that basically doesn’t exist yet. (Wired)

Low-cost EVs from Chinese automakers are pushing US-based companies to reconsider their electrification strategy. More affordable EV options? A girl can dream. (Bloomberg)

→ EV prices in the US are inching down, approaching parity with gas-powered vehicles. (Washington Post)

Goodbye greenwashing, hello “greenhushing”! Corporations are increasingly going radio silent on climate commitments. (Inside Climate News)

The Summer Olympics are fast approaching, and organizers in Paris are working to reduce the event’s climate impact. Think fewer new buildings, more bike lanes. (New York Times)

Early springs mean cherry blossoms are blooming earlier than ever. Warmer winters in the future could cause an even bigger problem. (Bloomberg)

Why methane emissions are still a mystery

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

If you follow papers in climate and energy for long enough, you’re bound to recognize some patterns. 

There are a few things I’ll basically always see when I’m sifting through the latest climate and energy research: one study finding that perovskite solar cells are getting even more efficient; another showing that climate change is damaging an ecosystem in some strange and unexpected way. And there’s always some new paper finding that we’re still underestimating methane emissions. 

That last one is what I’ve been thinking about this week, as I’ve been reporting on a new survey of methane leaks from oil and gas operations in the US. (Yes, there are more emissions than we thought there were—get the details in my story here.) But what I find even more interesting than the consistent underestimation of methane is why this gas is so tricky to track down. 

Methane is the second most abundant greenhouse gas in the atmosphere, and it’s responsible for around 30% of global warming so far. The good news is that methane breaks down quickly in the atmosphere. The bad news is that while it’s floating around, it’s a super-powerful greenhouse gas, way more potent than carbon dioxide. (Just how much more potent is a complicated question that depends on what time scale you’re talking about—read more in this Q&A.)

The problem is, it’s difficult to figure out where all this methane is coming from. We can measure the total concentration in the atmosphere, but there are methane emissions from human activities, there are natural methane sources, and there are ecosystems that soak up a portion of all those emissions (these are called methane sinks). 

Narrowing down specific sources can be a challenge, especially in the oil and gas industry, which is responsible for a huge range of methane leaks. Some are small and come from old equipment in remote areas. Other sources are larger, spewing huge amounts of the greenhouse gas into the atmosphere but only for short times. 

A lot of stories about tracking methane have been in the news recently, mostly because of a methane-hunting satellite launched earlier this month. It’s designed to track down methane using tools called spectrometers, which measure how light is reflected and absorbed. 

This is just one of a growing number of satellites that are keeping an eye on the planet for methane emissions. Some take a wide view, spotting which regions have high emissions. Other satellites are hunting for specific sources and can see within a few dozen meters where a leak is coming from. (If you want to read more about why there are so many methane satellites, I recommend this story from Emily Pontecorvo at Heatmap.)

But methane tracking isn’t just a space game. In a new study published in Nature, researchers used nearly a million measurements taken from airplanes flown over oil- and gas-producing regions to estimate total emissions. 

The results are pretty staggering: researchers found that, on average, roughly 3% of oil and gas production at the sites they examined winds up as methane emissions. That’s about three times the official government estimates used by the US Environmental Protection Agency. 

I spoke with one of the authors of the study, Evan Sherwin, who completed the research as a postdoc at Stanford. He compared the challenge of understanding methane leaks to the parable of the blind men and the elephant: there are many pieces of the puzzle (satellites, planes, ground-based detection), and getting the complete story requires fitting them all together. 

“I think we’re really starting to see an elephant,” Sherwin told me. 

That picture will continue to get clearer as MethaneSAT and other surveillance satellites come online and researchers get to sift through the data. And that understanding will be crucial as governments around the world race to keep promises about slashing methane emissions. 


Now read the rest of The Spark

Related reading

For more on how researchers are working to understand methane emissions, give my latest story a read

If you’ve missed the news on methane-hunting satellites, check out this story about MethaneSAT from last month

Pulling methane out of the atmosphere could be a major boost for climate action. Some startups hope that spraying iron particles above the ocean could help, as my colleague James Temple wrote in December

five planes flying out of white puffy clouds at different angles across a blue sky, leaving contrails behind

PHOTO ILLUSTRATION | GETTY IMAGES

Another thing

Making minor changes to airplane routes could put a significant dent in emissions, and a new study found that these changes could be cheap to implement. 

The key is contrails, thin clouds that planes produce when they fly. Minimizing contrails means less warming, and changing flight paths can reduce the amount of contrail formation. Read more about how in the latest from my colleague James Temple

Keeping up with climate  

New rules from the US Securities and Exchange Commission were watered down, cutting off the best chance we’ve had at forcing companies to reckon with the dangers of climate change, as Dara O’Rourke writes in a new opinion piece. (MIT Technology Review)

Yes, heat pumps slash emissions, even if they’re hooked up to a pretty dirty grid. Switching to a heat pump is better than heating with fossil fuels basically everywhere in the US. (Canary Media)

Rivian announced its new R2, a small SUV set to go on sale in 2026. The reveal signals a shift to focusing on mass-market vehicles for the brand. (Heatmap)

Toyota has focused on selling hybrid vehicles instead of fully electric ones, and it’s paying off financially. (New York Times)

→ Here’s why I wrote in December 2022 that EVs wouldn’t be fully replacing hybrids anytime soon. (MIT Technology Review)

Some scientists think we should all pay more attention to tiny aquatic plants called azolla. They can fix their own nitrogen and capture a lot of carbon, making them a good candidate for crops and even biofuels. (Wired)

New York is suing the world’s largest meat company. The company has said it’ll produce meat with no emissions by 2040, a claim that is false and misleading, according to the New York attorney general’s office. (Vox)

A massive fire in Texas has destroyed hundreds of homes. Climate change has fueled dry conditions, and power equipment sparked an intense fire that firefighters struggled to contain. (Grist)

→ Many of the homes destroyed in the blaze are uninsured, creating a tough path ahead for recovery. (Texas Tribune)

Emissions hit a record high in 2023. Blame hydropower.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Hydropower is a staple of clean energy—the modern version has been around for over a century, and it’s one of the world’s largest sources of renewable electricity.

But last year, weather conditions caused hydropower to fall short in a major way, with generation dropping by a record amount. In fact, the decrease was significant enough to have a measurable effect on global emissions. Total energy-related emissions rose by about 1.1% in 2023, and a shortfall of hydroelectric power accounts for 40% of that rise, according to a new report from the International Energy Agency.

Between year-to-year weather variability and climate change, there could be rocky times ahead for hydropower. Here’s what we can expect from the power source and what it might mean for climate goals. 

Drying up

Hydroelectric power plants use moving water to generate electricity. The majority of plants today use dams to hold back water, creating reservoirs. Operators can allow water to flow through the power plant as needed, creating an energy source that can be turned on and off on demand. 

This dispatchability is a godsend for the grid, especially because some renewables, like wind and solar, aren’t quite so easy to control. (If anyone figures out how to send more sunshine my way, please let me know—I could use more of it.) 

But while most hydroelectric plants do have some level of dispatchability, the power source is still reliant on the weather, since rain and snow are generally what fills up reservoirs. That’s been a problem for the past few years, when many regions around the world have faced major droughts. 

The world actually added about 20 gigawatts of hydropower capacity in 2023, but because of weather conditions, the amount of electricity generated from hydropower fell overall.

The shortfall was especially bad in China, with generation falling by 4.9% there. North America also faced droughts that contributed to hydro’s troubles, partly because El Niño brought warmer and drier conditions. Europe was one of the few places where conditions improved in 2023—mostly because 2022 was an even worse year for drought on the continent.

As hydroelectric plants fell short, fossil fuels like coal and natural gas stepped in to fill the gap, contributing to a rise in global emissions. In total, changes in hydropower output had more of an effect on global emissions than the post-pandemic aviation industry’s growth from 2022 to 2023. 

A trickle

Some of the changes in the weather that caused falling hydropower output last year can be chalked up to expected yearly variation. But in a changing climate, a question looms: Is hydropower in trouble?

The effects of climate change on rainfall patterns can be complicated and not entirely clear. But there are a few key mechanisms by which hydropower is likely to be affected, as one 2022 review paper outlined

  • Rising temperatures will mean more droughts, since warmer air sucks up more moisture, causing rivers, soil, and plants to dry out more quickly. 
  • Winters will generally be warmer, meaning less snowpack and ice, which often fills up reservoirs in the early spring in places like the western US. 
  • There’s going to be more variability in precipitation, with periods of more extreme rainfall that can cause flooding (meaning water isn’t stored neatly in reservoirs for later use in a power plant).

What all this will mean for electricity generation depends on the region of the world in question. One global study from 2021 found that around half of countries with hydropower capacity could expect to see a 20% reduction in generation once per decade. Another report focused on China found that in more extreme emissions scenarios, nearly a quarter of power plants in the country could see that level of reduced generation consistently. 

It’s not likely that hydropower will slow to a mere trickle, even during dry years. But the grid of the future will need to be prepared for variations in the weather. Having a wide range of electricity sources and tying them together with transmission infrastructure over wide geographic areas will help keep the grid robust and ready for our changing climate. 

Related reading

Droughts across the western US have been cutting into hydropower for years. Here’s how changing weather could affect climate goals in California.

While adaptation can help people avoid the worst impacts of climate change, there’s a limit to how much adapting can really help, as I found when I traveled to El Paso, Texas, famously called the “drought-proof city.”

Drought is creating new challenges for herders, who have to handle a litany of threats to their animals and way of life. Access to data could be key in helping them navigate a changing world.

road closed blockade

STEPHANIE ARNETT/MITTR | ENVATO

Another thing

Chinese EVs have entered center stage in the ongoing tensions between the US and China. The vehicles could help address climate change, but the Biden administration is wary of allowing them into the market. There are two major motivations: security and the economy. Read more in my colleague Zeyi Yang’s latest newsletter here

Keeping up with climate  

A new satellite that launched this week will be keeping an eye on methane emissions. Tracking leaks of the powerful greenhouse gas could be key in addressing climate change. (New York Times)

→ This isn’t our first attempt at tracking greenhouse gases from space—but here’s how MethaneSAT is different from other methane-detecting satellites. (Heatmap)

Smarter charging of EVs could be essential to the grid of the future, and California is working on a new program to test it out. (Canary Media)

The magnets that power wind turbines nearly always wind up in a landfill. A new program aims to change that by supporting new methods of recycling. (Grist)

→ One company wants to do without the rare earth metals that are used in today’s powerful magnets. (MIT Technology Review)

Data centers burn through water to keep machinery cool. As more of the facilities pop up, in part to support AI tools like ChatGPT, they could stretch water supplies thin in some places. (The Atlantic)

No US state has been more enthusiastic about heat pumps than Maine. While it might seem an unlikely match—the appliances can lose some of their efficiency in the cold—the state is a success story for the technology. (New York Times)

New rules from the US Securities and Exchange Commission would require companies to report their emissions and expected climate risks. The final version is watered down from an earlier proposal, which would have included a wider variety of emissions. (Associated Press)

Why concerns over the sustainability of carbon removal are growing

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

There’s a looming problem in the carbon removal space.

By one count, nearly 800 companies around the world are exploring a wide variety of methods for drawing planet-warming greenhouse gas out of the atmosphere and storing it away or putting it to use, a gigantic leap from the five startups I could have named in 2019. Globally, venture investors poured more than $4 billion into this sector between 2020 and the end of last year, according to data provided by PitchBook. 

The trouble is, carbon dioxide removal (CDR) is a very expensive product that, strictly speaking, no one needs right now. It’s not a widget; it’s waste management for invisible garbage, a public good that nobody is eager to pay for.

“CDR is a pure cost, and we’re trying to force it to be something that’s profitable—and the only way you can do that is with public money or through voluntary markets,” says Emily Grubert, an associate professor at Notre Dame, who previously served as deputy assistant secretary in the US Energy Department’s Office of Carbon Management.

Both of those are playing a part to certain degrees. So far, the main markets for carbon removal come from government procurement, which is limited; government subsidies, which don’t cover the cost; and voluntary purchases by corporations and individuals, which are restricted to those willing to pay the true cost of high-quality, reliable removal. You can also use the CO2 as a feedstock in other products, but then you’re generally starting with a high-cost version of a cheap commodity.

Given these market challenges, some investors are scratching their heads as they witness the huge sums flowing into the space.

In a report last summer, the venture capital firm DCVC said that all of the approaches it evaluated faced “multiple feasibility constraints.” It noted that carbon-sucking direct-air-capture factories are particularly expensive, charging customers hundreds of dollars per ton.

“That will still likely be the case in five, seven, even 10 years—which is why we at DCVC are somewhat surprised to see hundreds of millions of dollars in capital flowing into early-stage direct air capture companies,” the authors wrote.

Rachel Slaybaugh, a DCVC partner, said of direct-air capture in the report: “I’m not saying we won’t need it. And I’m not saying there won’t eventually be good businesses here. I’m saying right now the markets are very nascent, and I don’t see how you can possibly make a venture return.” 

In background conversations, several industry insiders I’ve spoken with acknowledge that the number of carbon removal companies is simply unsustainable, and that a sizable share will flame out at some point.

The sector has taken off, in part, because a growing body of studies has found that a huge amount of carbon removal will be needed to keep rising temperatures in check. By some estimates, nations may have to remove 10 billion tons of carbon dioxide a year by midcentury to keep the planet from blowing past 2 °C of warming, or to pull it back into safer terrain.

On top of that, companies are looking for ways to meet their net-zero commitments. For now, some businesses are willing to pay the really high current costs for carbon removal, in part to help the sector scale up. These include Microsoft and companies participating in the $1 billion Frontier program

At the moment, I’m told, corporate demand is outstripping the availability of reliable forms of carbon removal. There are only a handful of direct-air-capture plants, which take years to construct, and companies are still testing out or scaling up other approaches, like burying biochar and pumping bio-oil deep underground.

Costs are sure to come down, but it’s always going to be relatively expensive to do this well, and there are only so many corporate customers that will be willing to pay the true cost, observers say. So as carbon removal capacity catches up with that corporate demand, the fate of the industry will increasingly depend on how much more help governments are willing to provide—and on how thoughtfully they craft any accompanying rules.

Countries may support the emerging industry through carbon trading markets, direct purchases, mandates on polluters, fuel standards, or other measures. 

It seems safe to assume that nations will continue to dangle more carrots or wield bigger sticks to help the sector along. Notably, the European Commission is developing a framework for certifying carbon dioxide removal, which could allow countries to eventually use various approaches to work toward the EU goal of climate neutrality by 2050. But it’s far from clear that such government support will grow as much and as quickly as investors hope or as entrepreneurs need.

Indeed, some observers argue it’s a “fantasy” that nations will ever fund high-quality carbon removal—on the scale of billions of tons a year—just because climate scientists said they should (see: our decades of inaction on climate change). To put it in perspective, the DCVC report notes that removing 100 billion tons at $100 a ton would add up to $10 trillion—“more than a tenth of global GDP.”

Growing financial pressures in the sector could play out in a variety of worrisome ways. 

“One possibility is there’s a bubble and it pops and a lot of investors lose their shirts,” says Danny Cullenward, a climate economist and research fellow with the Institute for Responsible Carbon Removal at American University. 

If so, that could shut down the development of otherwise promising carbon removal methods before we’ve learned how well and affordably they work (or not). 

The other danger is that when an especially frothy sector fizzles, it can turn public or political sentiment against the space and kill the appetite for further investment. This, after all, is precisely what played out after the cleantech 1.0 bubble burst. Conservatives assailed government lending to green startups, and VCs, feeling burned, backed away for the better part of a decade.

But Cullenward fears another possibility even more. As funding runs dry, startups eager to bring in revenue and expand the market may resort to selling cheaper, but less reliable, forms of carbon removal—and lobbying for looser standards to allow them.

He sees a scenario where the sector replicates the sort of widespread credibility problems that have occurred with voluntary carbon offsets, building up big marketplaces that move a lot of money around but don’t achieve all that much for the atmosphere.


Now read the rest of The Spark

Related reading

In December, I highlighted an essay by Grubert and another former DOE staffer, in which they warned that sucking down greenhouse gas to cancel out corporate emissions could come at the expense of more pressing public needs.

In an earlier piece, I explored how the energy, attention, and money flowing into carbon removal could feed unrealistic expectations about how much we can rely on it—and thus how much we can carry on emitting.

My colleague and former editor David Rotman recently dug into the hard lessons of the cleantech 1.0 boom and bust—and the high stakes of the current investment wave.

Keeping up with climate 

In a story out today, Tech Review’s Casey Crownhart explains why hydrogen vehicles may be lurching toward a dead end, as vehicle sales stagnate and fueling stations shut down. (MIT Technology Review)

A Trump victory would be bad news for climate change. In particular, I took a hard look at what it might mean for Joe Biden’s landmark law, the Inflation Reduction Act. (Short answer: nothing good.) (MIT Technology Review)

The Inflation Reduction Act includes a little-known methane fee, which kicks into effect for excess emissions in 2024. Grist reports that the US’s largest oil and gas companies could be on the hook for more than $1 billion, based on recent emissions patterns—marking another reason why, as I reported, Trump would likely try to rescind the provision. (Grist)

The US Securities and Exchange Commission could release long-awaited climate rules as soon as next week, requiring companies to disclose their corporate emissions and exposure to climate risks. Heatmap explores why the SEC is doing this and what it may mean for businesses, climate progress, and the cottage industry forming to conduct emissions accounting.  (Heatmap)

Three frequently asked questions about EVs, answered

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

For someone who does not own or drive a car, I sure do have a lot of thoughts about them.

I spend an inordinate amount of time thinking about transportation in general, since it’s one of the biggest areas we need to clean up to address climate change: it accounts for something like a quarter of global emissions. And the vehicles that we use to shuttle around to work, school, and the grocery store in many parts of the world are a huge piece of the problem.

Last week, MIT Technology Review hosted an event where my colleagues and I dug into a conversation about the future of batteries and the materials that go into them. We got so many great questions, and we answered quite a few of them (subscribers should check out the recording of the full event here).

But there were still a lot of questions, particularly about EVs, that we didn’t get to, so let’s take a look at a few. (I’ve edited these for length and clarity, but they came from subscribers, so thank you to everyone who submitted!)

Why is there not a bigger push for plug-in hybrids during the transition to full EVs? Could those play a role?

Hybrids are sometimes relegated to the fringes of the EV discussion, but I think they’re absolutely worth talking about. 

Before we get into this, let’s get a couple of terms straight. All hybrid vehicles use both an internal-combustion engine that burns gasoline and a battery, but there are two key types to know about. Plug-in hybrids can be charged up using an EV charger and run for short distances on electricity. Conventional hybrids have a small battery to help recapture energy that would otherwise be wasted, which boosts gas mileage, but they always run on gasoline.

Any technology that helps reduce emissions immediately can help address climate change, and even a conventional hybrid will cut emissions by something like 20%. 

Personally, I think plug-in hybrids in particular are a great option for people who can’t commit to an EV just yet. These vehicles often have a range of around 50 miles on electricity, so if you’re commuting short distances, nearly all your driving can be zero-emissions. 

Plug-ins aren’t the perfect solution, though. For one thing, the vehicles may have higher rates of problems than both EVs and gas-powered vehicles, and they need a bit more maintenance. And some studies have shown that plug-in hybrids don’t tend to get the full emissions benefits advertised, because people use the electric mode less than expected.

Ultimately, we need to stop burning fossil fuels, so we’ll need to get used to vehicles that run without gasoline at all. But in the meantime, dipping a toe into the world of electric vehicles could be a good option for many drivers. 

Will current charging technology be able to support EVs? How practical is it to bring chargers to remote areas of the country?

These questions hit on one of the biggest potential barriers to EV adoption: charging availability. 

In many parts of the world, there’s a massive need to build more chargers to support the EVs already on the road, not to mention all the new ones being built and sold each year. Some agencies have recommended that there should be one public charger for every 10 EVs on the road, though factors like density and rates of at-home charging mean different communities will have different needs. 

The US had about 24 EVs per charger as of the end of 2022, while the EU is at about 13, and China is among the leading nations with around eight. Improving that ratio is crucial to getting more drivers comfortable with EVs. 

But building out the charging network is a big project, and one that looks different for different communities. In dense cities, many people live in apartments as opposed to single-family homes with garages, so even more public chargers will be needed to make up for the lack of at-home charging. For rural communities, or those that are less wealthy, getting any chargers built at all can be a challenge. 

These so-called charging deserts often suffer from a sort of chicken-and-egg problem: there’s a lack of demand for chargers because people aren’t driving EVs, and people aren’t driving EVs because there are no chargers.

Public funding will be key to filling in gaps left by private companies installing charging networks. In the US, some money is tied to making sure that disadvantaged communities will benefit. 

The bottom line is that it’s possible to make chargers available and equitable, but it’s definitely going to take a while, and it’s going to be expensive. 

What about hydrogen—could that be an alternative to batteries?

I’ve been digging into this question, so stay tuned for a story coming very soon. But I’ll give you a sneak peek: the short answer is that I think there are many reasons to be skeptical of claims that hydrogen will swoop in to save the day for vehicles. 

A small number of vehicles on the road today do use hydrogen as a fuel. The Toyota Mirai is one of the most popular fuel-cell models on the market, though only a few thousand were sold last year.

The big draw is that fueling up such a car looks a lot like fueling up a gas-powered vehicle today, taking just a few minutes at a pump. Even the fastest chargers can take around half an hour to juice up an EV, so hydrogen refueling is generally faster and more convenient.

But for a range of reasons, hydrogen vehicles are more expensive both to buy and to drive, and they’re likely to stay that way. There are better uses for hydrogen, too, in heavy industry and fertilizer and even long-range shipping. So EVs are probably going to be our best option for a long while. 

I hope I’ve piqued your interest—look out for a longer story on this topic soon. In the meantime, check out some of our other transportation coverage. 

Related reading

We put electric vehicles on our 2023 list of breakthrough technologies—see why here.

Hybrids are going to be around for a while, and that might be a good thing, as I wrote in a 2022 story.

Huge EVs are far from perfect, but they can be part of the story on addressing climate change.

Aerial view of electric car parking in charging station with solar panels.

GETTY

Another thing

The EV revolution is happening faster in China than anywhere else in the world. So it’s no wonder that the country is also a center for the world of virtual power plants, which pull together energy resources like EV batteries. Read more about why China needs VPPs in my colleague Zeyi Yang’s latest story.

Keeping up with climate  

Plastic is really difficult to recycle. A new report shows that some companies knew just how extensive the challenges are and obscured the truth for decades. (The Guardian)

→ Think that your plastic is being recycled? Think again. (MIT Technology Review)

The EU is finalizing rules around pulling carbon out of the atmosphere. The certification will favor techniques that work over long time scales and can be measured effectively. (The Verge)

EVs can run into trouble in extreme heat and cold. New materials, especially advancements in a part of the battery called the electrolyte, could help EVs last longer and stand up to tough conditions. (Scientific American)

A growing group of companies wants to enlist the earth to help store energy. Sage Geosystems just raised $17 million for geothermal energy storage. (Canary Media)

→ Fervo Energy demonstrated that its wells can be used like a giant underground battery. (MIT Technology Review)

Restringing power lines could be key in supercharging clean energy. The process can be quicker and cheaper than building new transmission lines, as long as red tape doesn’t get in the way. (Heatmap News)

Farmers are getting better at growing more crops faster on less land. The problem is, the benefits are focused on plants going into cars and cows, not people. (Wired)

Three things to love about batteries

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

I wouldn’t exactly say I have favorites when it comes to climate technologies. Anything that could help us get closer to tackling climate change is worth writing about, both to share the potential upsides and to carefully examine for pitfalls. But I have a special spot in my heart and my reporting notebook for batteries.

After all, what’s not to love? They play a crucial role in climate action, there are a million different kinds that can meet basically any need, and they’re at least a little bit magical. 

In honor of everyone’s favorite Hallmark-ified holiday, I thought I’d share a love letter to batteries. In any case, this should give you some sense of why I keep coming back to this subject. (Most recently, I dove into the topic of an alternative battery chemistry, lithium-sulfur—give that a read if you haven’t!)

So, how do I love batteries? Let me count the ways. 

They’re practical 

Imagine a world that’s on its way to reaching net-zero greenhouse gas emissions by 2050. That would put us on track to limit global warming to less than 2 °C, or 3.6 °F. To get there, the two biggest sectors to clean up are electricity and transportation: how we power the world and get around. And the common denominator is—you guessed it—batteries. 

Some low-emissions power sources, like wind and solar, aren’t consistently available, so they need a little backup. That’s where grid storage comes in—we’ll need to build about 100 times more energy storage by 2050 on the grid to be on track for our net-zero scenario. 

This won’t all be batteries—storing energy with pumped hydro, compressed air, and other methods could be key. But batteries, especially if cheaper alternatives can scale, will be a major piece of the puzzle.

Electrifying transport is a similar story. We need to move from gas guzzlers to zero-emissions vehicles. And batteries are going to help us do it. 

In our net-zero scenario, the world needs about 14 terawatt hours’ worth of batteries for EVs every year by 2050, according to the International Energy Agency. That’s something like 90 times greater than production in 2020. 

They’re versatile

One of my favorite things about battery technology is its adaptability. Researchers are finding and developing new chemistries all the time, and it’s fascinating to follow. 

Lithium-ion batteries tend to be the default for the industries I typically write about (think transportation and energy storage). That’s mostly because these batteries were developed for personal devices that became widespread beginning in the 1990s, so they’ve had a head start on scaling and the cost cuts that come along with it. 

Even in existing battery technologies, there’s lots of nuance and innovation. Lithium-ion batteries follow a similar blueprint, but there’s a whole world of flavors. Your phone and laptop probably house pouch cells with higher levels of cobalt, whereas your EV likely runs off cylindrical ones that are high in nickel. And a growing fraction of lithium-ion cells don’t include either of those metals—companies are looking at these options for stationary storage or lower- cost vehicles. 

But don’t stop there. Next-generation batteries could give us a different chemistry for every occasion. Need a robust, low-cost battery? Try sodium-ion. Even cheaper, for stationary storage? Zinc flow batteries or iron-air might be the chemistry for you. Something for a long-range, high performance EV? Check out solid state, or maybe something of the lithium-sulfur variety. 

I’m often asked which battery chemistry is going to “win.” Not all batteries are going to make it to widespread adoption, and not all battery companies are going to succeed. But I think the answer is that we’ll hopefully see not a single dominant type of battery, but an ever-growing menu of options. 

They’re at least a little bit magic

Last but not least, I think that one of the main reasons that I’m obsessed with batteries is that I find them a little bit mystifying. Tiny ions shuttling around in a metal container can store energy for us to use, whenever and wherever we want. 

I’ll never get sick of it, and I hope you won’t either. Here’s to spending more time with the ones we love in the year ahead. 

Related reading

Read more about lithium-sulfur batteries, which could unlock cheaper EVs with longer range, in my latest story. 

For another alternative, check out this story from last year on the sodium-ion batteries that could be closer to hitting the roads.

Form Energy and its iron-air batteries made our 2023 list of 15 Climate Tech Companies to Watch. Read all about them here.

I’m not the first MIT Technology Review reporter to dive in on batteries. Read this 2018 story from my colleague James Temple on why lithium-ion batteries won’t be able to clean up the grid on their own. 

Another thing

If you, like me, can’t get enough batteries, I’ve got a great event coming up this week for you! Join me, senior editor James Temple, and editor-at-large David Rotman for the latest in our Roundtables series, where we’ll be diving into a rousing conversation about batteries and their materials. 

This event is open to subscribers, so subscribe if you haven’t yet and come ask all the questions you have about batteries, minerals, and mining! See you there!

a line of heat pumps stretch into the distance with a yellow arrow trending up in front of the closest one

STEPHANIE ARNETT/MITTR | ENVATO

More from us

Sales might be down, but heat pumps are still hot. The devices, which can heat and cool spaces using electricity, are gaining ground on fossil fuels in the US. Check out the data in this story for more on why it matters, and what this says about decarbonization prospects for the country and beyond. 

Also, I’d like to introduce you to a new colleague, James O’Donnell! He’s joining the AI team, and he’s coming out swinging with a story about how Google is using a new satellite to detect methane leaks. Give it a read, and stay tuned for more great stories from him to come. 

Keeping up with climate  

Charging EVs might seem like it’s all about being fast, but slow chargers could be the key to getting more renters to adopt the technology. (Grist)

Chinese automaker BYD has seen massive growth in its EV sales, beating out Tesla in the last quarter of 2023 to become the world’s largest EV maker. Here’s how that happened. (New York Times)

→ BYD is moving so fast that the company is getting into shipping to move more vehicles. (MIT Technology Review)

Consumer demand for EVs is slowing a bit. Some companies are looking to smaller vehicles to help jumpstart interest. (IEEE Spectrum)

Dirt is a major carbon store, holding three times as much as the entire atmosphere. The problem for people looking to leverage dirt for carbon removal is that nobody knows exactly how much carbon can be stored in dirt. (Grist)

Last year was an awful one for the offshore wind industry, but things might be looking up in the year ahead. (Heatmap)

→ Here’s what’s coming next for offshore wind. (MIT Technology Review)

This carbon removal startup is powered by sunlight and seawater. Banyu Carbon’s reversible photoacid could help suck up greenhouse gases from the ocean, though experts have questions about the scalability and ecological effects. (Bloomberg)

Advanced solar panels still need to pass the test of time

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

It must be tough to be a solar panel. They’re consistently exposed to sun, heat, and humidity—and the panels installed today are expected to last 30 years or more.

But how can we tell that new solar technologies will stand the test of time? I’m fascinated by the challenge of predicting how new materials will hold up in decades of tough conditions. That’s been especially tricky for one emerging technology in particular: perovskites. They’re a class of materials that developers are increasingly interested in incorporating into solar panels because of their high efficiency and low cost. 

The problem is, perovskites are notorious for degrading when exposed to high temperatures, moisture, and bright light … all the things they’ll need to withstand to make it in the real world. And it’s not as if we can sit around for decades, testing out different cells in the field for the expected lifetime of a solar panel—climate change is an urgent problem. The good news: researchers have made progress in both stretching out the lifetime of perovskite materials and working out how to predict which materials will be winners in the long run. 

There’s almost constant news about perovskite solar materials breaking records. The latest such news comes from Oxford PV—in January, the company announced that one of its panels reached a 25% conversion efficiency, meaning a quarter of the solar energy beaming onto the panel was converted to electricity. Most high-end commercial panels have around a 20% efficiency, with some models topping 23%. 

The improvement is somewhat incremental, but it’s significant, and it’s all because of teamwork. Oxford PV and other companies are working to bring tandem solar technology to the market. These panels are basically sandwiches that combine layers of silicon (the material that dominates today’s solar market) and perovskites. Since the two materials soak up different wavelengths of light, they can be stacked together, adding up to a more efficient solar material. 

We’re seeing advances in tandem technology, which is why we named super-efficient tandem solar cells one of our 2024 Breakthrough Technologies. But perovskites’ nasty tendency to degrade is a major barrier standing in the way. 

Early perovskite solar cells went bad so quickly that researchers had to race across the laboratory to measure their efficiency. In the time it took to get from the area where solar cells were made to the side of the room where the testing equipment was, the materials basically lost their ability to soak up sunlight. 

The lifetime of perovskite materials isn’t nearly this fleeting now, but it’s not clear that the problem has been entirely solved. 

There’s been some real-world testing of new perovskite solar materials, with mixed results. Oxford PV hasn’t published detailed data, though as CTO Chris Case told Nature last year, the company’s outdoor tests show that the best cells lose only about 1% of their efficiency in their first year of operation, a rate that slows down afterwards. 

Other testing in more intense conditions has found less positive results, with one academic study finding that perovskite cells in hot and humid Saudi Arabia lost 20% of their efficiency after one year of operation. 

Those results are for one year of testing. How can we tell what will happen in 30 years? 

Since we don’t have years to test every new material that scientists dream up, researchers often put them through especially punishing conditions in the lab, bumping up the temperature and shining bright lights onto panels to see how quickly they’ll degrade. 

This sort of testing is standard for silicon solar panels, which make up over 90% of the commercial solar market today. But researchers are still working out just how well the correlations with known tests will transfer to new materials like perovskites. 

One of the issues has been that light, moisture, and heat all contribute to the quick degradation of perovskites. But it hasn’t been clear exactly which factor, or combination of them, would be best to apply in the lab to measure how a solar panel would fare in the real world. 

One study, published last year in Nature, suggested that a combination of high temperature and illumination would be the key to accelerated tests that reliably predict real-world performance. The researchers found that high-temperature tests lasting just a few hundred hours (a couple of weeks) translated well to nearly six months of performance in outdoor testing. 

Companies say they’re bringing new solar materials to the market as soon as this year.  Soon we’ll start to really see just how well these tests predict new technologies’ ability to withstand the tough job a commercial solar panel needs to do. I know I’ll be watching. 

Related reading

Read more about why super-efficient tandem solar cells made our list of 10 Breakthrough Technologies in 2024 here.

Here’s a look inside the race to get these next-generation solar technologies into the world.

Perovskites have been hailed as the hot new thing in solar for years. What’s been the holdup? In short: stability, stability, stability. 

Photo illustration concept of virtual power plant, showing two power plant stacks with a glitch effect.

SARAH ROGERS/MITTR | GETTY

Explained

Welcome to the wonderful world of virtual power plants (VPPs). While they’re not physical facilities, VPPs could have actual benefits for emissions by stitching together different parts of the grid to help meet electricity demand. 

What exactly is a VPP? How does it work? What does this all mean for climate action? Get the answers to all these questions and more in my colleague June Kim’s latest story.

Two more things 

Scattering small particles in the upper levels of the atmosphere could help reflect sunlight, slowing down planetary warming. While this idea, called solar geoengineering, sounds farfetched, it’s possible that small efforts could get started within a decade, as David Keith and Wake Smith write in a new op-ed. 

Read more about how geoengineering could start, and what these experts are saying we need to do about it, here

The US is pausing exports of liquefied natural gas. The move was met with a wide range of reactions and plenty of questions about what it will mean for emissions. 

As Arvind Ravikumar writes in a new op-ed, people are asking all the wrong questions about LNG. Whether this is a good idea depends on what the fuel would be replacing. Read his full take here. 

Keeping up with climate  

In an age of stronger hurricanes, some scientists say our current rating system can’t keep up. Adding a Category 6 could help us designate super-powerful storms. (Inside Climate News)

→ Here’s what we know about hurricanes and climate change. (MIT Technology Review

A fringe idea to put massive sunshades in space to cool down the planet is gaining momentum. Or we could, you know, stop burning fossil fuels? (New York Times)

Trains powered by hydrogen are starting to hit the rails. Here’s why experts say that might not be the best use for the fuel. (Canary Media)

According to the sponges, we’ve already sailed past climate goals. Scientists examining the skeletons of creatures called sclerosponges concluded that human-caused climate change has probably raised temperatures by 1.7 °C (3.1 °F) since the late 19th century. (New York Times)

A century-old law you’ve never heard of is slowing down offshore wind in the US. By requiring the use of US-built ships within the country’s waters, the Jones Act is behind some of the speed bumps facing the offshore wind industry. (Hakai Magazine)

→ Here’s what’s next for offshore wind, including when we can expect the first US-built ship to hit the waters. (MIT Technology Review)

Sorting recycling is a tough job, but AI might be able to help. New sorting systems could rescue more plastic from the landfill, though rolling out new technology to sorting facilities will be a challenge. (Washington Post)

Advanced solar panels still need to pass the test of time

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

It must be tough to be a solar panel. They’re consistently exposed to sun, heat, and humidity—and the panels installed today are expected to last 30 years or more.

But how can we tell that new solar technologies will stand the test of time? I’m fascinated by the challenge of predicting how new materials will hold up in decades of tough conditions. That’s been especially tricky for one emerging technology in particular: perovskites. They’re a class of materials that developers are increasingly interested in incorporating into solar panels because of their high efficiency and low cost. 

The problem is, perovskites are notorious for degrading when exposed to high temperatures, moisture, and bright light … all the things they’ll need to withstand to make it in the real world. And it’s not as if we can sit around for decades, testing out different cells in the field for the expected lifetime of a solar panel—climate change is an urgent problem. The good news: researchers have made progress in both stretching out the lifetime of perovskite materials and working out how to predict which materials will be winners in the long run. 

There’s almost constant news about perovskite solar materials breaking records. The latest such news comes from Oxford PV—in January, the company announced that one of its panels reached a 25% conversion efficiency, meaning a quarter of the solar energy beaming onto the panel was converted to electricity. Most high-end commercial panels have around a 20% efficiency, with some models topping 23%. 

The improvement is somewhat incremental, but it’s significant, and it’s all because of teamwork. Oxford PV and other companies are working to bring tandem solar technology to the market. These panels are basically sandwiches that combine layers of silicon (the material that dominates today’s solar market) and perovskites. Since the two materials soak up different wavelengths of light, they can be stacked together, adding up to a more efficient solar material. 

We’re seeing advances in tandem technology, which is why we named super-efficient tandem solar cells one of our 2024 Breakthrough Technologies. But perovskites’ nasty tendency to degrade is a major barrier standing in the way. 

Early perovskite solar cells went bad so quickly that researchers had to race across the laboratory to measure their efficiency. In the time it took to get from the area where solar cells were made to the side of the room where the testing equipment was, the materials basically lost their ability to soak up sunlight. 

The lifetime of perovskite materials isn’t nearly this fleeting now, but it’s not clear that the problem has been entirely solved. 

There’s been some real-world testing of new perovskite solar materials, with mixed results. Oxford PV hasn’t published detailed data, though as CTO Chris Case told Nature last year, the company’s outdoor tests show that the best cells lose only about 1% of their efficiency in their first year of operation, a rate that slows down afterwards. 

Other testing in more intense conditions has found less positive results, with one academic study finding that perovskite cells in hot and humid Saudi Arabia lost 20% of their efficiency after one year of operation. 

Those results are for one year of testing. How can we tell what will happen in 30 years? 

Since we don’t have years to test every new material that scientists dream up, researchers often put them through especially punishing conditions in the lab, bumping up the temperature and shining bright lights onto panels to see how quickly they’ll degrade. 

This sort of testing is standard for silicon solar panels, which make up over 90% of the commercial solar market today. But researchers are still working out just how well the correlations with known tests will transfer to new materials like perovskites. 

One of the issues has been that light, moisture, and heat all contribute to the quick degradation of perovskites. But it hasn’t been clear exactly which factor, or combination of them, would be best to apply in the lab to measure how a solar panel would fare in the real world. 

One study, published last year in Nature, suggested that a combination of high temperature and illumination would be the key to accelerated tests that reliably predict real-world performance. The researchers found that high-temperature tests lasting just a few hundred hours (a couple of weeks) translated well to nearly six months of performance in outdoor testing. 

Companies say they’re bringing new solar materials to the market as soon as this year.  Soon we’ll start to really see just how well these tests predict new technologies’ ability to withstand the tough job a commercial solar panel needs to do. I know I’ll be watching. 

Related reading

Read more about why super-efficient tandem solar cells made our list of 10 Breakthrough Technologies in 2024 here.

Here’s a look inside the race to get these next-generation solar technologies into the world.

Perovskites have been hailed as the hot new thing in solar for years. What’s been the holdup? In short: stability, stability, stability. 

Photo illustration concept of virtual power plant, showing two power plant stacks with a glitch effect.

SARAH ROGERS/MITTR | GETTY

Explained

Welcome to the wonderful world of virtual power plants (VPPs). While they’re not physical facilities, VPPs could have actual benefits for emissions by stitching together different parts of the grid to help meet electricity demand. 

What exactly is a VPP? How does it work? What does this all mean for climate action? Get the answers to all these questions and more in my colleague June Kim’s latest story.

Two more things 

Scattering small particles in the upper levels of the atmosphere could help reflect sunlight, slowing down planetary warming. While this idea, called solar geoengineering, sounds farfetched, it’s possible that small efforts could get started within a decade, as David Keith and Wake Smith write in a new op-ed. 

Read more about how geoengineering could start, and what these experts are saying we need to do about it, here

The US is pausing exports of liquefied natural gas. The move was met with a wide range of reactions and plenty of questions about what it will mean for emissions. 

As Arvind Ravikumar writes in a new op-ed, people are asking all the wrong questions about LNG. Whether this is a good idea depends on what the fuel would be replacing. Read his full take here. 

Keeping up with climate  

In an age of stronger hurricanes, some scientists say our current rating system can’t keep up. Adding a Category 6 could help us designate super-powerful storms. (Inside Climate News)

→ Here’s what we know about hurricanes and climate change. (MIT Technology Review

A fringe idea to put massive sunshades in space to cool down the planet is gaining momentum. Or we could, you know, stop burning fossil fuels? (New York Times)

Trains powered by hydrogen are starting to hit the rails. Here’s why experts say that might not be the best use for the fuel. (Canary Media)

According to the sponges, we’ve already sailed past climate goals. Scientists examining the skeletons of creatures called sclerosponges concluded that human-caused climate change has probably raised temperatures by 1.7 °C (3.1 °F) since the late 19th century. (New York Times)

A century-old law you’ve never heard of is slowing down offshore wind in the US. By requiring the use of US-built ships within the country’s waters, the Jones Act is behind some of the speed bumps facing the offshore wind industry. (Hakai Magazine)

→ Here’s what’s next for offshore wind, including when we can expect the first US-built ship to hit the waters. (MIT Technology Review)

Sorting recycling is a tough job, but AI might be able to help. New sorting systems could rescue more plastic from the landfill, though rolling out new technology to sorting facilities will be a challenge. (Washington Post)

Why recycling alone can’t power climate tech

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

The potential to use old, discarded products to make something new sounds a little bit like magic. I absolutely understand the draw, and in some cases, recycling is going to be a crucial tool for climate technology. I’ve written about recycling for basically any climate technology you can think of, including solar panels, wind turbines, and batteries. (I’ve also covered efforts to recycle plastic waste.)

For my most recent story, I was researching the materials used for the magnets that power EVs and wind turbines. (Read the result here!) And once again, I was struck by a stark reality: there are massive challenges ahead in material demand for climate technologies, and unfortunately, recycling alone won’t be enough to address them. Let’s take a look at why recycling isn’t always the answer, and what else might help. 

Mind the gap

We’re building a whole lot more climate technologies than we used to, which means there aren’t enough old, discarded technologies sitting around, waiting to be mined for materials. Obviously the growth in clean-energy technologies is a great thing for climate action. But it presents a problem for recycling. 

Take solar panels, for instance. They tend to last at least 25, maybe 30 years before they start to lose the ability to efficiently harness energy from the sun and transform it into electricity. So the panels available for recycling today are those that were installed over two decades ago (a relatively small fraction are ones that have been broken or need to be taken down early). 

In 2000, there was a little over one gigawatt of solar power installed globally. (Yes, 2000 was nearly 25 years ago—sorry!) So today’s recycling companies are competing with each other for that relatively small amount of material. If they can hang in there, there will eventually be plenty of solar panels to go around. Over 300 gigawatts of solar power were added in 2023.  

This gap is a common challenge in recycling for other technologies, too. In fact, one of the problems facing the growing number of battery recycling companies is a looming shortage of materials to recycle.

It’s important to start building infrastructure now, so we’re ready for the inevitable wave of solar panels and batteries that will eventually be ready for recycling. In the meantime, recyclers can get creative in where they’re sourcing materials. Battery recyclers today will rely on a lot of manufacturing scrap. Looking to other products can help as well—rare earth metals for EV motors and wind turbines could be partially sourced from old iPhones and laptops.

Closing the loop

Even if we weren’t seeing explosive growth for new technologies, there would be another problem: no recycling process is perfect. 

The issues start at the stage of collecting old materials (think of the iPods and flip phones in your junk drawer, gathering dust), but even once material makes it to a recycling center, some will wind up in the waste because it breaks down in the process or just can’t be economically recovered. 

Exactly how much material can be recovered depends on the material, the recycling process, and the economics at play. Some metals, like the silver in solar cells, might be able to reach 99% recovery or higher. Others can pose harder challenges, including the lithium in batteries—one recycler, Redwood Materials, told me last year its process can recover around 80% of the lithium from used batteries and manufacturing scrap. The rest will be lost.

I don’t mean to be a Debbie Downer. Even with imperfect recovery, recycling could help meet demand for materials in many energy technologies in the future. Recycling rare earth metals could cut mining for metals like neodymium in half, or more, by 2050.

But a robust supply of recycled materials for many climate technologies is still decades away. In the meantime, many companies are working to build options that use more widely available, cheaper alternatives. Check out my story on one startup, Niron Magnetics, which is working to build permanent magnets without rare earth metals, to see how new materials can help accelerate climate action and close the gap that recycling leaves. 

Related reading

See how old batteries could help power tomorrow’s EVs in my feature story on Redwood Materials.

For more on where battery recycling might be going, check out this accompanying interview with former Tesla exec and Redwood founder JB Straubel. 

Some companies are working out ways to recycle the valuable materials in solar panels.

Scientists are still trying to determine how we can best recycle wind turbine blades.

Thousands of cars are shown on a car carrier on a seaport, with a BYD freight boat in the background.

COSTFOTO/NURPHOTO VIA AP

Two more things

The world’s largest EV maker is getting into the shipping business. BYD is amassing a fleet of ships to export its vehicles from China to the rest of the world. Read more about why the automaker is getting creative and what comes next in this fascinating story from my colleague Zeyi Yang

Also, be sure to read the second part of James Temple’s blockbuster series on critical minerals. This one is a fascinating analysis that digs into how one Minnesota mine could unlock billions of dollars for EVs and batteries in the US. If you missed part one detailing what’s going on with the mine and the local community, that’s here, and you can check out my interview with James about his reporting in last week’s newsletter here.

Keeping up with climate  

The world’s largest cruise ship departed on its maiden voyage last week. The whole thing is a bit of a climate fiasco. Taking a cruise can be about twice as emissions intensive as flying and staying in a hotel. (Bloomberg)

A new refinery in Georgia will churn out millions of tons of jet fuel made from plants instead of petroleum. The new facility marks a milestone for alternative jet fuels. (Canary Media)

→ While alternatives are often called “sustainable aviation fuels” or SAFs, some varieties are anything but sustainable. Here’s what you need to know about all these newfangled jet fuels. (MIT Technology Review)

China nearly quadrupled its new energy storage capacity last year. It’s a massive jump for the growing industry, which is key to balancing the growing fraction of renewables on the grid. (Bloomberg)

Huge charging depots for electric trucks are coming to California. Big batteries in big vehicles require big chargers, and new funding from the US government could be crucial in building them. (Canary Media)

→ The three biggest truck makers are calling for better charging infrastructure for heavy-duty vehicles (New York Times)

EV charging can get a bit tricky for those of us who don’t live in single-family homes with a garage to charge in. Here are some solutions. (Washington Post)

The US is the world’s largest exporter of liquefied natural gas, but new exports are on pause. The Department of Energy says it’s trying to work out how to regulate them, and what the climate impact of cutting gas exports might be. (Grist)