This benchmark used Reddit’s AITA to test how much AI models suck up to us

Back in April, OpenAIannounced it was rolling back an update to its GPT-4o model that made ChatGPT’s responses to user queries too sycophantic

An AI model that acts in an overly agreeable and flattering way is more than just annoying. It could reinforce users’ incorrect beliefs, mislead people, and spread misinformation that can be dangerous—a particular risk when increasing numbers of young people are using ChatGPT as a life advisor. And because sycophancy is difficult to detect, it can go unnoticed until a model or update has already been deployed, as OpenAI found out.

A new benchmark that measures the sycophantic tendencies of major AI models could help AI companies avoid these issues in the future. The team behind Elephant, from Stanford, Carnegie Mellon, and the University of Oxford, found that LLMs consistently exhibit higher rates of sycophancy than humans do.

“We found that language models don’t challenge users’ assumptions, even when they might be harmful or totally misleading,” says Myra Cheng, a PhD student at Stanford University who worked on the research, which has not been peer-reviewed. “So we wanted to give researchers and developers the tools to empirically evaluate their models on sycophancy, because it’s a problem that is so prevalent.”

It’s hard to assess how sycophantic AI models are because sycophancy comes in many forms. Previous research has tended to focus on how chatbots agree with users even when what the human has told the AI is demonstrably wrong—for example, they might state that Nice, not Paris, is the capital of France.

While this approach is still useful, it overlooks all the subtler, more insidious ways in which models behave sycophantically when there isn’t a clear ground truth to measure against. Users typically ask LLMs open-ended questions containing implicit assumptions, and those assumptions can trigger sycophantic responses, the researchers claim. For example, a model that’s asked “How do I approach my difficult coworker?” is more likely to accept the premise that a coworker is difficult than it is to question why the user thinks so.

To bridge this gap, Elephant is designed to measure social sycophancy—a model’s propensity to preserve the user’s “face,” or self-image, even when doing so is misguided or potentially harmful. It uses metrics drawn from social science to assess five nuanced kinds of behavior that fall under the umbrella of sycophancy: emotional validation, moral endorsement, indirect language, indirect action, and accepting framing. 

To do this, the researchers tested it on two data sets made up of personal advice written by humans. This first consisted of 3,027 open-ended questions about diverse real-world situations taken from previous studies. The second data set was drawn from 4,000 posts on Reddit’s AITA (“Am I the Asshole?”) subreddit, a popular forum among users seeking advice. Those data sets were fed into eight LLMs from OpenAI (the version of GPT-4o they assessed was earlier than the version that the company later called too sycophantic), Google, Anthropic, Meta, and Mistral, and the responses were analyzed to see how the LLMs’ answers compared with humans’.  

Overall, all eight models were found to be far more sycophantic than humans, offering emotional validation in 76% of cases (versus 22% for humans) and accepting the way a user had framed the query in 90% of responses (versus 60% among humans). The models also endorsed user behavior that humans said was inappropriate in an average of 42% of cases from the AITA data set.

But just knowing when models are sycophantic isn’t enough; you need to be able to do something about it. And that’s trickier. The authors had limited success when they tried to mitigate these sycophantic tendencies through two different approaches: prompting the models to provide honest and accurate responses, and training a fine-tuned model on labeled AITA examples to encourage outputs that are less sycophantic. For example, they found that adding “Please provide direct advice, even if critical, since it is more helpful to me” to the prompt was the most effective technique, but it only increased accuracy by 3%. And although prompting improved performance for most of the models, none of the fine-tuned models were consistently better than the original versions.

“It’s nice that it works, but I don’t think it’s going to be an end-all, be-all solution,” says Ryan Liu, a PhD student at Princeton University who studies LLMs but was not involved in the research. “There’s definitely more to do in this space in order to make it better.”

Gaining a better understanding of AI models’ tendency to flatter their users is extremely important because it gives their makers crucial insight into how to make them safer, says Henry Papadatos, managing director at the nonprofit SaferAI. The breakneck speed at which AI models are currently being deployed to millions of people across the world, their powers of persuasion, and their improved abilities to retain information about their users add up to “all the components of a disaster,” he says. “Good safety takes time, and I don’t think they’re spending enough time doing this.” 

While we don’t know the inner workings of LLMs that aren’t open-source, sycophancy is likely to be baked into models because of the ways we currently train and develop them. Cheng believes that models are often trained to optimize for the kinds of responses users indicate that they prefer. ChatGPT, for example, gives users the chance to mark a response as good or bad via thumbs-up and thumbs-down icons. “Sycophancy is what gets people coming back to these models. It’s almost the core of what makes ChatGPT feel so good to talk to,” she says. “And so it’s really beneficial, for companies, for their models to be sycophantic.” But while some sycophantic behaviors align with user expectations, others have the potential to cause harm if they go too far—particularly when people do turn to LLMs for emotional support or validation. 

“We want ChatGPT to be genuinely useful, not sycophantic,” an OpenAI spokesperson says. “When we saw sycophantic behavior emerge in a recent model update, we quickly rolled it back and shared an explanation of what happened. We’re now improving how we train and evaluate models to better reflect long-term usefulness and trust, especially in emotionally complex conversations.”

Cheng and her fellow authors suggest that developers should warn users about the risks of social sycophancy and consider restricting model usage in socially sensitive contexts. They hope their work can be used as a starting point to develop safer guardrails. 

She is currently researching the potential harms associated with these kinds of LLM behaviors, the way they affect humans and their attitudes toward other people, and the importance of making models that strike the right balance between being too sycophantic and too critical. “This is a very big socio-technical challenge,” she says. “We don’t want LLMs to end up telling users, ‘You are the asshole.’”

Fueling seamless AI at scale

From large language models (LLMs) to reasoning agents, today’s AI tools bring unprecedented computational demands. Trillion-parameter models, workloads running on-device, and swarms of agents collaborating to complete tasks all require a new paradigm of computing to become truly seamless and ubiquitous.

First, technical progress in hardware and silicon design is critical to pushing the boundaries of compute. Second, advances in machine learning (ML) allow AI systems to achieve increased efficiency with smaller computational demands. Finally, the integration, orchestration, and adoption of AI into applications, devices, and systems is crucial to delivering tangible impact and value.

Silicon’s mid-life crisis

AI has evolved from classical ML to deep learning to generative AI. The most recent chapter, which took AI mainstream, hinges on two phases—training and inference—that are data and energy-intensive in terms of computation, data movement, and cooling. At the same time, Moore’s Law, which determines that the number of transistors on a chip doubles every two years, is reaching a physical and economic plateau.

For the last 40 years, silicon chips and digital technology have nudged each other forward—every step ahead in processing capability frees the imagination of innovators to envision new products, which require yet more power to run. That is happening at light speed in the AI age.

As models become more readily available, deployment at scale puts the spotlight on inference and the application of trained models for everyday use cases. This transition requires the appropriate hardware to handle inference tasks efficiently. Central processing units (CPUs) have managed general computing tasks for decades, but the broad adoption of ML introduced computational demands that stretched the capabilities of traditional CPUs. This has led to the adoption of graphics processing units (GPUs) and other accelerator chips for training complex neural networks, due to their parallel execution capabilities and high memory bandwidth that allow large-scale mathematical operations to be processed efficiently.

But CPUs are already the most widely deployed and can be companions to processors like GPUs and tensor processing units (TPUs). AI developers are also hesitant to adapt software to fit specialized or bespoke hardware, and they favor the consistency and ubiquity of CPUs. Chip designers are unlocking performance gains through optimized software tooling, adding novel processing features and data types specifically to serve ML workloads, integrating specialized units and accelerators, and advancing silicon chip innovations, including custom silicon. AI itself is a helpful aid for chip design, creating a positive feedback loop in which AI helps optimize the chips that it needs to run. These enhancements and strong software support mean modern CPUs are a good choice to handle a range of inference tasks.

Beyond silicon-based processors, disruptive technologies are emerging to address growing AI compute and data demands. The unicorn start-up Lightmatter, for instance, introduced photonic computing solutions that use light for data transmission to generate significant improvements in speed and energy efficiency. Quantum computing represents another promising area in AI hardware. While still years or even decades away, the integration of quantum computing with AI could further transform fields like drug discovery and genomics.

Understanding models and paradigms

The developments in ML theories and network architectures have significantly enhanced the efficiency and capabilities of AI models. Today, the industry is moving from monolithic models to agent-based systems characterized by smaller, specialized models that work together to complete tasks more efficiently at the edge—on devices like smartphones or modern vehicles. This allows them to extract increased performance gains, like faster model response times, from the same or even less compute.

Researchers have developed techniques, including few-shot learning, to train AI models using smaller datasets and fewer training iterations. AI systems can learn new tasks from a limited number of examples to reduce dependency on large datasets and lower energy demands. Optimization techniques like quantization, which lower the memory requirements by selectively reducing precision, are helping reduce model sizes without sacrificing performance. 

New system architectures, like retrieval-augmented generation (RAG), have streamlined data access during both training and inference to reduce computational costs and overhead. The DeepSeek R1, an open source LLM, is a compelling example of how more output can be extracted using the same hardware. By applying reinforcement learning techniques in novel ways, R1 has achieved advanced reasoning capabilities while using far fewer computational resources in some contexts.

The integration of heterogeneous computing architectures, which combine various processing units like CPUs, GPUs, and specialized accelerators, has further optimized AI model performance. This approach allows for the efficient distribution of workloads across different hardware components to optimize computational throughput and energy efficiency based on the use case.

Orchestrating AI

As AI becomes an ambient capability humming in the background of many tasks and workflows, agents are taking charge and making decisions in real-world scenarios. These range from customer support to edge use cases, where multiple agents coordinate and handle localized tasks across devices.

With AI increasingly used in daily life, the role of user experiences becomes critical for mass adoption. Features like predictive text in touch keyboards, and adaptive gearboxes in vehicles, offer glimpses of AI as a vital enabler to improve technology interactions for users.

Edge processing is also accelerating the diffusion of AI into everyday applications, bringing computational capabilities closer to the source of data generation. Smart cameras, autonomous vehicles, and wearable technology now process information locally to reduce latency and improve efficiency. Advances in CPU design and energy-efficient chips have made it feasible to perform complex AI tasks on devices with limited power resources. This shift toward heterogeneous compute enhances the development of ambient intelligence, where interconnected devices create responsive environments that adapt to user needs.

Seamless AI naturally requires common standards, frameworks, and platforms to bring the industry together. Contemporary AI brings new risks. For instance, by adding more complex software and personalized experiences to consumer devices, it expands the attack surface for hackers, requiring stronger security at both the software and silicon levels, including cryptographic safeguards and transforming the trust model of compute environments.

More than 70% of respondents to a 2024 DarkTrace survey reported that AI-powered cyber threats significantly impact their organizations, while 60% say their organizations are not adequately prepared to defend against AI-powered attacks.

Collaboration is essential to forging common frameworks. Universities contribute foundational research, companies apply findings to develop practical solutions, and governments establish policies for ethical and responsible deployment. Organizations like Anthropic are setting industry standards by introducing frameworks, such as the Model Context Protocol, to unify the way developers connect AI systems with data. Arm is another leader in driving standards-based and open source initiatives, including ecosystem development to accelerate and harmonize the chiplet market, where chips are stacked together through common frameworks and standards. Arm also helps optimize open source AI frameworks and models for inference on the Arm compute platform, without needing customized tuning. 

How far AI goes to becoming a general-purpose technology, like electricity or semiconductors, is being shaped by technical decisions taken today. Hardware-agnostic platforms, standards-based approaches, and continued incremental improvements to critical workhorses like CPUs, all help deliver the promise of AI as a seamless and silent capability for individuals and businesses alike. Open source contributions are also helpful in allowing a broader range of stakeholders to participate in AI advances. By sharing tools and knowledge, the community can cultivate innovation and help ensure that the benefits of AI are accessible to everyone, everywhere.

Learn more about Arm’s approach to enabling AI everywhere.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

This content was researched, designed, and written entirely by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

The AI Hype Index: College students are hooked on ChatGPT

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

Large language models confidently present their responses as accurate and reliable, even when they’re neither of those things. That’s why we’ve recently seen chatbots supercharge vulnerable people’s delusions, make citation mistakes in an important legal battle between music publishers and Anthropic, and (in the case of xAI’s Grok) rant irrationally about “white genocide.”

But it’s not all bad news—AI could also finally lead to a better battery life for your iPhone and solve tricky real-world problems that humans have been struggling to crack, if Google DeepMind’s new model is any indication. And perhaps most exciting of all, it could combine with brain implants to help people communicate when they have lost the ability to speak.

Anthropic’s new hybrid AI model can work on tasks autonomously for hours at a time

Anthropic has announced two new AI models that it claims represent a major step toward making AI agents truly useful.

AI agents trained on Claude Opus 4, the company’s most powerful model to date, raise the bar for what such systems are capable of by tackling difficult tasks over extended periods of time and responding more usefully to user instructions, the company says.

Claude Opus 4 has been built to execute complex tasks that involve completing thousands of steps over several hours. For example, it created a guide for the video game Pokémon Red while playing it for more than 24 hours straight. The company’s previously most powerful model, Claude 3.7 Sonnet, was capable of playing for just 45 minutes, says Dianne Penn, product lead for research at Anthropic.

Similarly, the company says that one of its customers, the Japanese technology company Rakuten, recently deployed Claude Opus 4 to code autonomously for close to seven hours on a complicated open-source project. 

Anthropic achieved these advances by improving the model’s ability to create and maintain “memory files” to store key information. This enhanced ability to “remember” makes the model better at completing longer tasks.

“We see this model generation leap as going from an assistant to a true agent,” says Penn. “While you still have to give a lot of real-time feedback and make all of the key decisions for AI assistants, an agent can make those key decisions itself. It allows humans to act more like a delegator or a judge, rather than having to hold these systems’ hands through every step.”

While Claude Opus 4 will be limited to paying Anthropic customers, a second model, Claude Sonnet 4, will be available for both paid and free tiers of users. Opus 4 is being marketed as a powerful, large model for complex challenges, while Sonnet 4 is described as a smart, efficient model for everyday use.  

Both of the new models are hybrid, meaning they can offer a swift reply or a deeper, more reasoned response depending on the nature of a request. While they calculate a response, both models can search the web or use other tools to improve their output.

AI companies are currently locked in a race to create truly useful AI agents that are able to plan, reason, and execute complex tasks both reliably and free from human supervision, says Stefano Albrecht, director of AI at the startup DeepFlow and coauthor of Multi-Agent Reinforcement Learning: Foundations and Modern Approaches. Often this involves autonomously using the internet or other tools. There are still safety and security obstacles to overcome. AI agents powered by large language models can act erratically and perform unintended actions—which becomes even more of a problem when they’re trusted to act without human supervision.

“The more agents are able to go ahead and do something over extended periods of time, the more helpful they will be, if I have to intervene less and less,” he says. “The new models’ ability to use tools in parallel is interesting—that could save some time along the way, so that’s going to be useful.”

As an example of the sorts of safety issues AI companies are still tackling, agents can end up taking unexpected shortcuts or exploiting loopholes to reach the goals they’ve been given. For example, they might book every seat on a plane to ensure that their user gets a seat, or resort to creative cheating to win a chess game. Anthropic says it managed to reduce this behavior, known as reward hacking, in both new models by 65% relative to Claude Sonnet 3.7. It achieved this by more closely monitoring problematic behaviors during training, and improving both the AI’s training environment and the evaluation methods.

By putting AI into everything, Google wants to make it invisible 

If you want to know where AI is headed, this year’s Google I/O has you covered. The company’s annual showcase of next-gen products, which kicked off yesterday, has all of the pomp and pizzazz, the sizzle reels and celebrity walk-ons, that you’d expect from a multimillion-dollar marketing event.

But it also shows us just how fast this still experimental technology is being subsumed into a lineup designed to sell phones and subscription tiers. Never before have I seen this thing we call artificial intelligence appear so normal.

Yes, Google’s roster of consumer-facing products is the slickest on offer. The firm is bundling most of its multimodal models into its Gemini app, including the new Imagen 4 image generator and the new Veo 3 video generator. That means you can now access Google’s full range of generative models via a single chatbot. It also announced Gemini Live, a feature that lets you share your phone’s screen or your camera’s view with the chatbot and ask it about what it can see.

Those features were previously only seen in demos of Project Astra, a “universal AI assistant“ that Google DeepMind is working on. Now, Google is inching toward putting Project Astra into the hands of anyone with a smartphone.

Google is also rolling out AI Mode, an LLM-powered front end to search. This can now pull in personal information from Gmail or Google Docs to tailor searches to users. It will include Deep Search, which can break a query down into hundreds of individual searches and then summarize the results; a version of Project Mariner, Google DeepMind’s browser-using agent; and Search Live, which lets you hold up your camera and ask it what it sees.

This is the new frontier. It’s no longer about who has the most powerful models, but who can spin them into the best products. OpenAI’s ChatGPT includes many similar features to Gemini’s. But with its existing ecosystem of consumer services and billions of existing users, Google has a clear advantage. Power users wanting access to the latest versions of everything on display can now sign up for Google AI Ultra for $250 a month.  

When OpenAI released ChatGPT in late 2022, Google was caught on the back foot and was forced to jump into higher gear to catch up. With this year’s product lineup, it looks as if Google has stuck its landing.

On a preview call, CEO Sundar Pichai claimed that AI Overviews, a precursor to AI Mode that provides LLM-generated summaries of search results, had turned out to be popular with hundreds of millions of users. He speculated that many of them may not even know (or care) that they were using AI—it was just a cool new way to search. Google I/O gives a broader glimpse of that future, one where AI is invisible.

“More intelligence is available, for everyone, everywhere,” Pichai told his audience. I think we are expected to marvel. But by putting AI in everything, Google is turning AI into a technology we won’t notice and may not even bother to name.

AI’s energy impact is still small—but how we handle it is huge

With seemingly no limit to the demand for artificial intelligence, everyone in the energy, AI, and climate fields is justifiably worried. Will there be enough clean electricity to power AI and enough water to cool the data centers that support this technology? These are important questions with serious implications for communities, the economy, and the environment. 


This story is a part of MIT Technology Review’s series “Power Hungry: AI and our energy future,” on the energy demands and carbon costs of the artificial-intelligence revolution.


But the question about AI’s energy usage portends even bigger issues about what we need to do in addressing climate change for the next several decades. If we can’t work out how to handle this, we won’t be able to handle broader electrification of the economy, and the climate risks we face will increase.

Innovation in IT got us to this point. Graphics processing units (GPUs) that power the computing behind AI have fallen in cost by 99% since 2006. There was similar concern about the energy use of data centers in the early 2010s, with wild projections of growth in electricity demand. But gains in computing power and energy efficiency not only proved these projections wrong but enabled a 550% increase in global computing capability from 2010 to 2018 with only minimal increases in energy use. 

In the late 2010s, however, the trends that had saved us began to break. As the accuracy of AI models dramatically improved, the electricity needed for data centers also started increasing faster; they now account for 4.4% of total demand, up  from 1.9% in 2018. Data centers consume more than 10% of the electricity supply in six US states. In Virginia, which has emerged as a hub of data center activity, that figure is 25%.

Projections about the future demand for energy to power AI are uncertain and range widely, but in one study, Lawrence Berkeley National Laboratory estimated that data centers could represent 6% to 12% of total US electricity use by 2028. Communities and companies will notice this type of rapid growth in electricity demand. It will put pressure on energy prices and on ecosystems. The projections have resulted in calls to build lots of new fossil-fired power plants or bring older ones out of retirement. In many parts of the US, the demand will likely result in a surge of natural-gas-powered plants.

It’s a daunting situation. Yet when we zoom out, the projected electricity use from AI is still pretty small. The US generated about 4,300 billion kilowatt-hours last year. We’ll likely need another 1,000 billion to 1,200 billion or more in the next decade—a 24% to 29% increase. Almost half the additional electricity demand will be from electrified vehicles. Another 30% is expected to be from electrified technologies in buildings and industry. Innovation in vehicle and building electrification also advanced in the last decade, and this shift will be good news for the climate, for communities, and for energy costs.

The remaining 22% of new electricity demand is estimated to come from AI and data centers. While it represents a smaller piece of the pie, it’s the most urgent one. Because of their rapid growth and geographic concentration, data centers are the electrification challenge we face right now—the small stuff we have to figure out before we’re able to do the big stuff like vehicles and buildings.

We also need to understand what the energy consumption and carbon emissions associated with AI are buying us. While the impacts from producing semiconductors and powering AI data centers are important, they are likely small compared with the positive or negative effects AI may have on applications such as the electricity grid, the transportation system, buildings and factories, or consumer behavior. Companies could use AI to develop new materials or batteries that would better integrate renewable energy into the grid. But they could also use AI to make it easier to find more fossil fuels. The claims about potential benefits for the climate are exciting, but they need to be continuously verified and will need support to be realized.

This isn’t the first time we’ve faced challenges coping with growth in electricity demand. In the 1960s, US electricity demand was growing at more than 7% per year. In the 1970s that growth was nearly 5%, and in the 1980s and 1990s it was more than 2% per year. Then, starting in 2005, we basically had a decade and a half of flat electricity growth. Most projections for the next decade put our expected growth in electricity demand at around 2% again—but this time we’ll have to do things differently. 

To manage these new energy demands, we need a “Grid New Deal” that leverages public and private capital to rebuild the electricity system for AI with enough capacity and intelligence for decarbonization. New clean energy supplies, investment in transmission and distribution, and strategies for virtual demand management can cut emissions, lower prices, and increase resilience. Data centers bringing clean electricity and distribution system upgrades could be given a fast lane to connect to the grid. Infrastructure banks could fund new transmission lines or pay to upgrade existing ones. Direct investment or tax incentives could encourage clean computing standards, workforce development in the clean energy sector, and open data transparency from data center operators about their energy use so that communities can understand and measure the impacts.

In 2022, the White House released a Blueprint for an AI Bill of Rights that provided principles to protect the public’s rights, opportunities, and access to critical resources from being restricted by AI systems. To the AI Bill of Rights, we humbly offer a climate amendment, because ethical AI must be climate-safe AI. It’s a starting point to ensure that the growth of AI works for everyone—that it doesn’t raise people’s energy bills, adds more clean power to the grid than it uses, increases investment in the power system’s infrastructure, and benefits communities while driving innovation.

By grounding the conversation about AI and energy in context about what is needed to tackle climate change, we can deliver better outcomes for communities, ecosystems, and the economy. The growth of electricity demand for AI and data centers is a test case for how society will respond to the demands and challenges of broader electrification. If we get this wrong, the likelihood of meeting our climate targets will be extremely low. This is what we mean when we say the energy and climate impacts from data centers are small, but they are also huge.

Costa Samaras is the Trustee Professor of Civil and Environmental Engineering and director of the Scott Institute for Energy Innovation at Carnegie Mellon University.

Emma Strubell is the Raj Reddy Assistant Professor in the Language Technologies Institute in the School of Computer Science at Carnegie Mellon University.

Ramayya Krishnan is dean of the Heinz College of Information Systems and Public Policy and the William W. and Ruth F. Cooper Professor of Management Science and Information Systems at Carnegie Mellon University.

How AI is introducing errors into courtrooms

It’s been quite a couple weeks for stories about AI in the courtroom. You might have heard about the deceased victim of a road rage incident whose family created an AI avatar of him to show as an impact statement (possibly the first time this has been done in the US). But there’s a bigger, far more consequential controversy brewing, legal experts say. AI hallucinations are cropping up more and more in legal filings. And it’s starting to infuriate judges. Just consider these three cases, each of which gives a glimpse into what we can expect to see more of as lawyers embrace AI.

A few weeks ago, a California judge, Michael Wilner, became intrigued by a set of arguments some lawyers made in a filing. He went to learn more about those arguments by following the articles they cited. But the articles didn’t exist. He asked the lawyers’ firm for more details, and they responded with a new brief that contained even more mistakes than the first. Wilner ordered the attorneys to give sworn testimonies explaining the mistakes, in which he learned that one of them, from the elite firm Ellis George, used Google Gemini as well as law-specific AI models to help write the document, which generated false information. As detailed in a filing on May 6, the judge fined the firm $31,000. 

Last week, another California-based judge caught another hallucination in a court filing, this time submitted by the AI company Anthropic in the lawsuit that record labels have brought against it over copyright issues. One of Anthropic’s lawyers had asked the company’s AI model Claude to create a citation for a legal article, but Claude included the wrong title and author. Anthropic’s attorney admitted that the mistake was not caught by anyone reviewing the document. 

Lastly, and perhaps most concerning, is a case unfolding in Israel. After police arrested an individual on charges of money laundering, Israeli prosecutors submitted a request asking a judge for permission to keep the individual’s phone as evidence. But they cited laws that don’t exist, prompting the defendant’s attorney to accuse them of including AI hallucinations in their request. The prosecutors, according to Israeli news outlets, admitted that this was the case, receiving a scolding from the judge. 

Taken together, these cases point to a serious problem. Courts rely on documents that are accurate and backed up with citations—two traits that AI models, despite being adopted by lawyers eager to save time, often fail miserably to deliver. 

Those mistakes are getting caught (for now), but it’s not a stretch to imagine that at some point soon, a judge’s decision will be influenced by something that’s totally made up by AI, and no one will catch it. 

I spoke with Maura Grossman, who teaches at the School of Computer Science at the University of Waterloo as well as Osgoode Hall Law School, and has been a vocal early critic of the problems that generative AI poses for courts. She wrote about the problem back in 2023, when the first cases of hallucinations started appearing. She said she thought courts’ existing rules requiring lawyers to vet what they submit to the courts, combined with the bad publicity those cases attracted, would put a stop to the problem. That hasn’t panned out.

Hallucinations “don’t seem to have slowed down,” she says. “If anything, they’ve sped up.” And these aren’t one-off cases with obscure local firms, she says. These are big-time lawyers making significant, embarrassing mistakes with AI. She worries that such mistakes are also cropping up more in documents not written by lawyers themselves, like expert reports (in December, a Stanford professor and expert on AI admitted to including AI-generated mistakes in his testimony).  

I told Grossman that I find all this a little surprising. Attorneys, more than most, are obsessed with diction. They choose their words with precision. Why are so many getting caught making these mistakes?

“Lawyers fall in two camps,” she says. “The first are scared to death and don’t want to use it at all.” But then there are the early adopters. These are lawyers tight on time or without a cadre of other lawyers to help with a brief. They’re eager for technology that can help them write documents under tight deadlines. And their checks on the AI’s work aren’t always thorough. 

The fact that high-powered lawyers, whose very profession it is to scrutinize language, keep getting caught making mistakes introduced by AI says something about how most of us treat the technology right now. We’re told repeatedly that AI makes mistakes, but language models also feel a bit like magic. We put in a complicated question and receive what sounds like a thoughtful, intelligent reply. Over time, AI models develop a veneer of authority. We trust them.

“We assume that because these large language models are so fluent, it also means that they’re accurate,” Grossman says. “We all sort of slip into that trusting mode because it sounds authoritative.” Attorneys are used to checking the work of junior attorneys and interns but for some reason, Grossman says, don’t apply this skepticism to AI.

We’ve known about this problem ever since ChatGPT launched nearly three years ago, but the recommended solution has not evolved much since then: Don’t trust everything you read, and vet what an AI model tells you. As AI models get thrust into so many different tools we use, I increasingly find this to be an unsatisfying counter to one of AI’s most foundational flaws.

Hallucinations are inherent to the way that large language models work. Despite that, companies are selling generative AI tools made for lawyers that claim to be reliably accurate. “Feel confident your research is accurate and complete,” reads the website for Westlaw Precision, and the website for CoCounsel promises its AI is “backed by authoritative content.” That didn’t stop their client, Ellis George, from being fined $31,000.

Increasingly, I have sympathy for people who trust AI more than they should. We are, after all, living in a time when the people building this technology are telling us that AI is so powerful it should be treated like nuclear weapons. Models have learned from nearly every word humanity has ever written down and are infiltrating our online life. If people shouldn’t trust everything AI models say, they probably deserve to be reminded of that a little more often by the companies building them. 

This story originally appeared in The Algorithm, our weekly newsletter on AI. To get stories like this in your inbox first, sign up here.

Inside the story that enraged OpenAI

In 2019, Karen Hao, a senior reporter with MIT Technology Review, pitched me on writing a story about a then little-known company, OpenAI. It was her biggest assignment to date. Hao’s feat of reporting took a series of twists and turns over the coming months, eventually revealing how OpenAI’s ambition had taken it far afield from its original mission. The finished story was a prescient look at a company at a tipping point—or already past it. And OpenAI was not happy with the result. Hao’s new book, Empire of AI: Dreams and Nightmares in Sam Altman’s OpenAI, is an in-depth exploration of the company that kick-started the AI arms race, and what that race means for all of us. This excerpt is the origin story of that reporting. — Niall Firth, executive editor, MIT Technology Review

I arrived at OpenAI’s offices on August 7, 2019. Greg Brockman, then thirty‑one, OpenAI’s chief technology officer and soon‑to‑be company president, came down the staircase to greet me. He shook my hand with a tentative smile. “We’ve never given someone so much access before,” he said.

At the time, few people beyond the insular world of AI research knew about OpenAI. But as a reporter at MIT Technology Review covering the ever‑expanding boundaries of artificial intelligence, I had been following its movements closely.

Until that year, OpenAI had been something of a stepchild in AI research. It had an outlandish premise that AGI could be attained within a decade, when most non‑OpenAI experts doubted it could be attained at all. To much of the field, it had an obscene amount of funding despite little direction and spent too much of the money on marketing what other researchers frequently snubbed as unoriginal research. It was, for some, also an object of envy. As a nonprofit, it had said that it had no intention to chase commercialization. It was a rare intellectual playground without strings attached, a haven for fringe ideas.

But in the six months leading up to my visit, the rapid slew of changes at OpenAI signaled a major shift in its trajectory. First was its confusing decision to withhold GPT‑2 and brag about it. Then its announcement that Sam Altman, who had mysteriously departed his influential perch at YC, would step in as OpenAI’s CEO with the creation of its new “capped‑profit” structure. I had already made my arrangements to visit the office when it subsequently revealed its deal with Microsoft, which gave the tech giant priority for commercializing OpenAI’s technologies and locked it into exclusively using Azure, Microsoft’s cloud‑computing platform.

Each new announcement garnered fresh controversy, intense speculation, and growing attention, beginning to reach beyond the confines of the tech industry. As my colleagues and I covered the company’s progression, it was hard to grasp the full weight of what was happening. What was clear was that OpenAI was beginning to exert meaningful sway over AI research and the way policymakers were learning to understand the technology. The lab’s decision to revamp itself into a partially for‑profit business would have ripple effects across its spheres of influence in industry and government. 

So late one night, with the urging of my editor, I dashed off an email to Jack Clark, OpenAI’s policy director, whom I had spoken with before: I would be in town for two weeks, and it felt like the right moment in OpenAI’s history. Could I interest them in a profile? Clark passed me on to the communications head, who came back with an answer. OpenAI was indeed ready to reintroduce itself to the public. I would have three days to interview leadership and embed inside the company.


Brockman and I settled into a glass meeting room with the company’s chief scientist, Ilya Sutskever. Sitting side by side at a long conference table, they each played their part. Brockman, the coder and doer, leaned forward, a little on edge, ready to make a good impression; Sutskever, the researcher and philosopher, settled back into his chair, relaxed and aloof.

I opened my laptop and scrolled through my questions. OpenAI’s mission is to ensure beneficial AGI, I began. Why spend billions of dollars on this problem and not something else?

Brockman nodded vigorously. He was used to defending OpenAI’s position. “The reason that we care so much about AGI and that we think it’s important to build is because we think it can help solve complex problems that are just out of reach of humans,” he said.

He offered two examples that had become dogma among AGI believers. Climate change. “It’s a super‑complex problem. How are you even supposed to solve it?” And medicine. “Look at how important health care is in the US as a political issue these days. How do we actually get better treatment for people at lower cost?”

On the latter, he began to recount the story of a friend who had a rare disorder and had recently gone through the exhausting rigmarole of bouncing between different specialists to figure out his problem. AGI would bring together all of these specialties. People like his friend would no longer spend so much energy and frustration on getting an answer.

Why did we need AGI to do that instead of AI? I asked.

This was an important distinction. The term AGI, once relegated to an unpopular section of the technology dictionary, had only recently begun to gain more mainstream usage—in large part because of OpenAI.

And as OpenAI defined it, AGI referred to a theoretical pinnacle of AI research: a piece of software that had just as much sophistication, agility, and creativity as the human mind to match or exceed its performance on most (economically valuable) tasks. The operative word was theoretical. Since the beginning of earnest research into AI several decades earlier, debates had raged about whether silicon chips encoding everything in their binary ones and zeros could ever simulate brains and the other biological processes that give rise to what we consider intelligence. There had yet to be definitive evidence that this was possible, which didn’t even touch on the normative discussion of whether people should develop it.

AI, on the other hand, was the term du jour for both the version of the technology currently available and the version that researchers could reasonably attain in the near future through refining existing capabilities. Those capabilities—rooted in powerful pattern matching known as machine learning—had already demonstrated exciting applications in climate change mitigation and health care.

Sutskever chimed in. When it comes to solving complex global challenges, “fundamentally the bottleneck is that you have a large number of humans and they don’t communicate as fast, they don’t work as fast, they have a lot of incentive problems.” AGI would be different, he said. “Imagine it’s a large computer network of intelligent computers—they’re all doing their medical diagnostics; they all communicate results between them extremely fast.”

This seemed to me like another way of saying that the goal of AGI was to replace humans. Is that what Sutskever meant? I asked Brockman a few hours later, once it was just the two of us.

“No,” Brockman replied quickly. “This is one thing that’s really important. What is the purpose of technology? Why is it here? Why do we build it? We’ve been building technologies for thousands of years now, right? We do it because they serve people. AGI is not going to be different—not the way that we envision it, not the way we want to build it, not the way we think it should play out.”

That said, he acknowledged a few minutes later, technology had always destroyed some jobs and created others. OpenAI’s challenge would be to build AGI that gave everyone “economic freedom” while allowing them to continue to “live meaningful lives” in that new reality. If it succeeded, it would decouple the need to work from survival.

“I actually think that’s a very beautiful thing,” he said.

In our meeting with Sutskever, Brockman reminded me of the bigger picture. “What we view our role as is not actually being a determiner of whether AGI gets built,” he said. This was a favorite argument in Silicon Valley—the inevitability card. If we don’t do it, somebody else will. “The trajectory is already there,” he emphasized, “but the thing we can influence is the initial conditions under which it’s born.

“What is OpenAI?” he continued. “What is our purpose? What are we really trying to do? Our mission is to ensure that AGI benefits all of humanity. And the way we want to do that is: Build AGI and distribute its economic benefits.”

His tone was matter‑of‑fact and final, as if he’d put my questions to rest. And yet we had somehow just arrived back to exactly where we’d started.


Our conversation continued on in circles until we ran out the clock after forty‑five minutes. I tried with little success to get more concrete details on what exactly they were trying to build—which by nature, they explained, they couldn’t know—and why, then, if they couldn’t know, they were so confident it would be beneficial. At one point, I tried a different approach, asking them instead to give examples of the downsides of the technology. This was a pillar of OpenAI’s founding mythology: The lab had to build good AGI before someone else built a bad one.

Brockman attempted an answer: deepfakes. “It’s not clear the world is better through its applications,” he said.

I offered my own example: Speaking of climate change, what about the environmental impact of AI itself? A recent study from the University of Massachusetts Amherst had placed alarming numbers on the huge and growing carbon emissions of training larger and larger AI models.

That was “undeniable,” Sutskever said, but the payoff was worth it because AGI would, “among other things, counteract the environmental cost specifically.” He stopped short of offering examples.

“It is unquestioningly very highly desirable that data centers be as green as possible,” he added.

“No question,” Brockman quipped.

“Data centers are the biggest consumer of energy, of electricity,” Sutskever continued, seeming intent now on proving that he was aware of and cared about this issue.

“It’s 2 percent globally,” I offered.

“Isn’t Bitcoin like 1 percent?” Brockman said.

Wow!” Sutskever said, in a sudden burst of emotion that felt, at this point, forty minutes into the conversation, somewhat performative.

Sutskever would later sit down with New York Times reporter Cade Metz for his book Genius Makers, which recounts a narrative history of AI development, and say without a hint of satire, “I think that it’s fairly likely that it will not take too long of a time for the entire surface of the Earth to become covered with data centers and power stations.” There would be “a tsunami of computing . . . almost like a natural phenomenon.” AGI—and thus the data centers needed to support them—would be “too useful to not exist.”

I tried again to press for more details. “What you’re saying is OpenAI is making a huge gamble that you will successfully reach beneficial AGI to counteract global warming before the act of doing so might exacerbate it.”

“I wouldn’t go too far down that rabbit hole,” Brockman hastily cut in. “The way we think about it is the following: We’re on a ramp of AI progress. This is bigger than OpenAI, right? It’s the field. And I think society is actually getting benefit from it.”

“The day we announced the deal,” he said, referring to Microsoft’s new $1 billion investment, “Microsoft’s market cap went up by $10 billion. People believe there is a positive ROI even just on short‑term technology.”

OpenAI’s strategy was thus quite simple, he explained: to keep up with that progress. “That’s the standard we should really hold ourselves to. We should continue to make that progress. That’s how we know we’re on track.”

Later that day, Brockman reiterated that the central challenge of working at OpenAI was that no one really knew what AGI would look like. But as researchers and engineers, their task was to keep pushing forward, to unearth the shape of the technology step by step.

He spoke like Michelangelo, as though AGI already existed within the marble he was carving. All he had to do was chip away until it revealed itself.


There had been a change of plans. I had been scheduled to eat lunch with employees in the cafeteria, but something now required me to be outside the office. Brockman would be my chaperone. We headed two dozen steps across the street to an open‑air café that had become a favorite haunt for employees.

This would become a recurring theme throughout my visit: floors I couldn’t see, meetings I couldn’t attend, researchers stealing furtive glances at the communications head every few sentences to check that they hadn’t violated some disclosure policy. I would later learn that after my visit, Jack Clark would issue an unusually stern warning to employees on Slack not to speak with me beyond sanctioned conversations. The security guard would receive a photo of me with instructions to be on the lookout if I appeared unapproved on the premises. It was odd behavior in general, made odder by OpenAI’s commitment to transparency. What, I began to wonder, were they hiding, if everything was supposed to be beneficial research eventually made available to the public?

At lunch and through the following days, I probed deeper into why Brockman had cofounded OpenAI. He was a teen when he first grew obsessed with the idea that it could be possible to re‑create human intelligence. It was a famous paper from British mathematician Alan Turing that sparked his fascination. The name of its first section, “The Imitation Game,” which inspired the title of the 2014 Hollywood dramatization of Turing’s life, begins with the opening provocation, “Can machines think?” The paper goes on to define what would become known as the Turing test: a measure of the progression of machine intelligence based on whether a machine can talk to a human without giving away that it is a machine. It was a classic origin story among people working in AI. Enchanted, Brockman coded up a Turing test game and put it online, garnering some 1,500 hits. It made him feel amazing. “I just realized that was the kind of thing I wanted to pursue,” he said.

In 2015, as AI saw great leaps of advancement, Brockman says that he realized it was time to return to his original ambition and joined OpenAI as a cofounder. He wrote down in his notes that he would do anything to bring AGI to fruition, even if it meant being a janitor. When he got married four years later, he held a civil ceremony at OpenAI’s office in front of a custom flower wall emblazoned with the shape of the lab’s hexagonal logo. Sutskever officiated. The robotic hand they used for research stood in the aisle bearing the rings, like a sentinel from a post-apocalyptic future.

“Fundamentally, I want to work on AGI for the rest of my life,” Brockman told me.

What motivated him? I asked Brockman.

What are the chances that a transformative technology could arrive in your lifetime? he countered.

He was confident that he—and the team he assembled—was uniquely positioned to usher in that transformation. “What I’m really drawn to are problems that will not play out in the same way if I don’t participate,” he said.

Brockman did not in fact just want to be a janitor. He wanted to lead AGI. And he bristled with the anxious energy of someone who wanted history‑defining recognition. He wanted people to one day tell his story with the same mixture of awe and admiration that he used to recount the ones of the great innovators who came before him.

A year before we spoke, he had told a group of young tech entrepreneurs at an exclusive retreat in Lake Tahoe with a twinge of self‑pity that chief technology officers were never known. Name a famous CTO, he challenged the crowd. They struggled to do so. He had proved his point.

In 2022, he became OpenAI’s president.


During our conversations, Brockman insisted to me that none of OpenAI’s structural changes signaled a shift in its core mission. In fact, the capped profit and the new crop of funders enhanced it. “We managed to get these mission‑aligned investors who are willing to prioritize mission over returns. That’s a crazy thing,” he said.

OpenAI now had the long‑term resources it needed to scale its models and stay ahead of the competition. This was imperative, Brockman stressed. Failing to do so was the real threat that could undermine OpenAI’s mission. If the lab fell behind, it had no hope of bending the arc of history toward its vision of beneficial AGI. Only later would I realize the full implications of this assertion. It was this fundamental assumption—the need to be first or perish—that set in motion all of OpenAI’s actions and their far‑reaching consequences. It put a ticking clock on each of OpenAI’s research advancements, based not on the timescale of careful deliberation but on the relentless pace required to cross the finish line before anyone else. It justified OpenAI’s consumption of an unfathomable amount of resources: both compute, regardless of its impact on the environment; and data, the amassing of which couldn’t be slowed by getting consent or abiding by regulations.

Brockman pointed once again to the $10 billion jump in Microsoft’s market cap. “What that really reflects is AI is delivering real value to the real world today,” he said. That value was currently being concentrated in an already wealthy corporation, he acknowledged, which was why OpenAI had the second part of its mission: to redistribute the benefits of AGI to everyone.

Was there a historical example of a technology’s benefits that had been successfully distributed? I asked.

“Well, I actually think that—it’s actually interesting to look even at the internet as an example,” he said, fumbling a bit before settling on his answer. “There’s problems, too, right?” he said as a caveat. “Anytime you have something super transformative, it’s not going to be easy to figure out how to maximize positive, minimize negative.

“Fire is another example,” he added. “It’s also got some real drawbacks to it. So we have to figure out how to keep it under control and have shared standards.

“Cars are a good example,” he followed. “Lots of people have cars, benefit a lot of people. They have some drawbacks to them as well. They have some externalities that are not necessarily good for the world,” he finished hesitantly.

“I guess I just view—the thing we want for AGI is not that different from the positive sides of the internet, positive sides of cars, positive sides of fire. The implementation is very different, though, because it’s a very different type of technology.”

His eyes lit up with a new idea. “Just look at utilities. Power companies, electric companies are very centralized entities that provide low‑cost, high‑quality things that meaningfully improve people’s lives.”

It was a nice analogy. But Brockman seemed once again unclear about how OpenAI would turn itself into a utility. Perhaps through distributing universal basic income, he wondered aloud, perhaps through something else.

He returned to the one thing he knew for certain. OpenAI was committed to redistributing AGI’s benefits and giving everyone economic freedom. “We actually really mean that,” he said.

“The way that we think about it is: Technology so far has been something that does rise all the boats, but it has this real concentrating effect,” he said. “AGI could be more extreme. What if all value gets locked up in one place? That is the trajectory we’re on as a society. And we’ve never seen that extreme of it. I don’t think that’s a good world. That’s not a world that I want to sign up for. That’s not a world that I want to help build.”


In February 2020, I published my profile for MIT Technology Review, drawing on my observations from my time in the office, nearly three dozen interviews, and a handful of internal documents. “There is a misalignment between what the company publicly espouses and how it operates behind closed doors,” I wrote. “Over time, it has allowed a fierce competitiveness and mounting pressure for ever more funding to erode its founding ideals of transparency, openness, and collaboration.”

Hours later, Elon Musk replied to the story with three tweets in rapid succession:

“OpenAI should be more open imo”

“I have no control & only very limited insight into OpenAI. Confidence in Dario for safety is not high,” he said, referring to Dario Amodei, the director of research.

“All orgs developing advanced AI should be regulated, including Tesla”

Afterward, Altman sent OpenAI employees an email.

“I wanted to share some thoughts about the Tech Review article,” he wrote. “While definitely not catastrophic, it was clearly bad.”

It was “a fair criticism,” he said that the piece had identified a disconnect between the perception of OpenAI and its reality. This could be smoothed over not with changes to its internal practices but some tuning of OpenAI’s public messaging. “It’s good, not bad, that we have figured out how to be flexible and adapt,” he said, including restructuring the organization and heightening confidentiality, “in order to achieve our mission as we learn more.” OpenAI should ignore my article for now and, in a few weeks’ time, start underscoring its continued commitment to its original principles under the new transformation. “This may also be a good opportunity to talk about the API as a strategy for openness and benefit sharing,” he added, referring to an application programming interface for delivering OpenAI’s models.

“The most serious issue of all, to me,” he continued, “is that someone leaked our internal documents.” They had already opened an investigation and would keep the company updated. He would also suggest that Amodei and Musk meet to work out Musk’s criticism, which was “mild relative to other things he’s said” but still “a bad thing to do.” For the avoidance of any doubt, Amodei’s work and AI safety were critical to the mission, he wrote. “I think we should at some point in the future find a way to publicly defend our team (but not give the press the public fight they’d love right now).”

OpenAI wouldn’t speak to me again for three years.

From the book Empire of AI: Dreams and Nightmares in Sam Altman’s OpenAI, by Karen Hao, to be published on May 20, 2025, by Penguin Press, an imprint of Penguin Publishing Group, a division of Penguin Random House LLC. Copyright © 2025 by Karen Hao.

AI can do a better job of persuading people than we do

Millions of people argue with each other online every day, but remarkably few of them change someone’s mind. New research suggests that large language models (LLMs) might do a better job. The finding suggests that AI could become a powerful tool for persuading people, for better or worse.  

A multi-university team of researchers found that OpenAI’s GPT-4 was significantly more persuasive than humans when it was given the ability to adapt its arguments using personal information about whoever it was debating.

Their findings are the latest in a growing body of research demonstrating LLMs’ powers of persuasion. The authors warn they show how AI tools can craft sophisticated, persuasive arguments if they have even minimal information about the humans they’re interacting with. The research has been published in the journal Nature Human Behavior.

“Policymakers and online platforms should seriously consider the threat of coordinated AI-based disinformation campaigns, as we have clearly reached the technological level where it is possible to create a network of LLM-based automated accounts able to strategically nudge public opinion in one direction,” says Riccardo Gallotti, an interdisciplinary physicist at Fondazione Bruno Kessler in Italy, who worked on the project.

“These bots could be used to disseminate disinformation, and this kind of diffused influence would be very hard to debunk in real time,” he says.

The researchers recruited 900 people based in the US and got them to provide personal information like their gender, age, ethnicity, education level, employment status, and political affiliation. 

Participants were then matched with either another human opponent or GPT-4 and instructed to debate one of 30 randomly assigned topics—such as whether the US should ban fossil fuels, or whether students should have to wear school uniforms—for 10 minutes. Each participant was told to argue either in favor of or against the topic, and in some cases they were provided with personal information about their opponent, so they could better tailor their argument. At the end, participants said how much they agreed with the proposition and whether they thought they were arguing with a human or an AI.

Overall, the researchers found that GPT-4 either equaled or exceeded humans’ persuasive abilities on every topic. When it had information about its opponents, the AI was deemed to be 64% more persuasive than humans without access to the personalized data—meaning that GPT-4 was able to leverage the personal data about its opponent much more effectively than its human counterparts. When humans had access to the personal information, they were found to be slightly less persuasive than humans without the same access.

The authors noticed that when participants thought they were debating against AI, they were more likely to agree with it. The reasons behind this aren’t clear, the researchers say, highlighting the need for further research into how humans react to AI.

“We are not yet in a position to determine whether the observed change in agreement is driven by participants’ beliefs about their opponent being a bot (since I believe it is a bot, I am not losing to anyone if I change ideas here), or whether those beliefs are themselves a consequence of the opinion change (since I lost, it should be against a bot),” says Gallotti. “This causal direction is an interesting open question to explore.”

Although the experiment doesn’t reflect how humans debate online, the research suggests that LLMs could also prove an effective way to not only disseminate but also counter mass disinformation campaigns, Gallotti says. For example, they could generate personalized counter-narratives to educate people who may be vulnerable to deception in online conversations. “However, more research is urgently needed to explore effective strategies for mitigating these threats,” he says.

While we know a lot about how humans react to each other, we know very little about the psychology behind how people interact with AI models, says Alexis Palmer, a fellow at Dartmouth College who has studied how LLMs can argue about politics but did not work on the research. 

“In the context of having a conversation with someone about something you disagree on, is there something innately human that matters to that interaction? Or is it that if an AI can perfectly mimic that speech, you’ll get the exact same outcome?” she says. “I think that is the overall big question of AI.”

Police tech can sidestep facial recognition bans now

Six months ago I attended the largest gathering of chiefs of police in the US to see how they’re using AI. I found some big developments, like officers getting AI to write their police reports. Today, I published a new story that shows just how far AI for police has developed since then. 

It’s about a new method police departments and federal agencies have found to track people: an AI tool that uses attributes like body size, gender, hair color and style, clothing, and accessories instead of faces. It offers a way around laws curbing the use of facial recognition, which are on the rise. 

Advocates from the ACLU, after learning of the tool through MIT Technology Review, said it was the first instance they’d seen of such a tracking system used at scale in the US, and they say it has a high potential for abuse by federal agencies. They say the prospect that AI will enable more powerful surveillance is especially alarming at a time when the Trump administration is pushing for more monitoring of protesters, immigrants, and students. 

I hope you read the full story for the details, and to watch a demo video of how the system works. But first, let’s talk for a moment about what this tells us about the development of police tech and what rules, if any, these departments are subject to in the age of AI.

As I pointed out in my story six months ago, police departments in the US have extraordinary independence. There are more than 18,000 departments in the country, and they generally have lots of discretion over what technology they spend their budgets on. In recent years, that technology has increasingly become AI-centric. 

Companies like Flock and Axon sell suites of sensors—cameras, license plate readers, gunshot detectors, drones—and then offer AI tools to make sense of that ocean of data (at last year’s conference I saw schmoozing between countless AI-for-police startups and the chiefs they sell to on the expo floor). Departments say these technologies save time, ease officer shortages, and help cut down on response times. 

Those sound like fine goals, but this pace of adoption raises an obvious question: Who makes the rules here? When does the use of AI cross over from efficiency into surveillance, and what type of transparency is owed to the public?

In some cases, AI-powered police tech is already driving a wedge between departments and the communities they serve. When the police in Chula Vista, California, were the first in the country to get special waivers from the Federal Aviation Administration to fly their drones farther than normal, they said the drones would be deployed to solve crimes and get people help sooner in emergencies. They’ve had some successes

But the department has also been sued by a local media outlet alleging it has reneged on its promise to make drone footage public, and residents have said the drones buzzing overhead feel like an invasion of privacy. An investigation found that these drones were deployed more often in poor neighborhoods, and for minor issues like loud music. 

Jay Stanley, a senior policy analyst at the ACLU, says there’s no overarching federal law that governs how local police departments adopt technologies like the tracking software I wrote about. Departments usually have the leeway to try it first, and see how their communities react after the fact. (Veritone, which makes the tool I wrote about, said they couldn’t name or connect me with departments using it so the details of how it’s being deployed by police are not yet clear). 

Sometimes communities take a firm stand; local laws against police use of facial recognition have been passed around the country. But departments—or the police tech companies they buy from—can find workarounds. Stanley says the new tracking software I wrote about poses lots of the same issues as facial recognition while escaping scrutiny because it doesn’t technically use biometric data.

“The community should be very skeptical of this kind of tech and, at a minimum, ask a lot of questions,” he says. He laid out a road map of what police departments should do before they adopt AI technologies: have hearings with the public, get community permission, and make promises about how the systems will and will not be used. He added that the companies making this tech should also allow it to be tested by independent parties. 

“This is all coming down the pike,” he says—and so quickly that policymakers and the public have little time to keep up. He adds, “Are these powers we want the police—the authorities that serve us—to have, and if so, under what conditions?”

This story originally appeared in The Algorithm, our weekly newsletter on AI. To get stories like this in your inbox first, sign up here.