My biotech plants are dead

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here. 

Six weeks ago, I pre-ordered the “Firefly Petunia,” a houseplant engineered with genes from bioluminescent fungi so that it glows in the dark. 

After years of writing about anti-GMO sentiment in the US and elsewhere, I felt it was time to have some fun with biotech. These plants are among the first direct-to-consumer GM organisms you can buy, and they certainly seem like the coolest.

But when I unboxed my two petunias this week, they were in bad shape, with rotted leaves. And in a day, they were dead crisps. My first attempt to do biotech at home is a total bust, and it cost me $84, shipping included.

My plants did arrive in a handsome black box with neon lettering that alerted me to the living creature within. The petunias, about five inches tall, were each encased in a see-through plastic pod to keep them upright. Government warnings on the back of the box assured me they were free of Japanese beetles, sweet potato weevils, the snail Helix aspera, and gypsy moths.

The problem was when I opened the box. As it turns out, I left for a week’s vacation in Florida the same day that Light Bio, the startup selling the petunia, sent me an email saying “Glowing plants headed your way,” with a UPS tracking number. I didn’t see the email, and even if I had, I wasn’t there to receive them. 

That meant my petunias sat in darkness for seven days. The box became their final sarcophagus.

My fault? Perhaps. But I had no idea when Light Bio would ship my order. And others have had similar experiences. Mat Honan, the editor in chief of MIT Technology Review, told me his petunia arrived the day his family flew to Japan. Luckily, a house sitter feeding his lizard eventually opened the box, and Mat reports the plant is still clinging to life in his yard.

One of the ill-fated petunia plants and its sarcophagus. Credit: Antonio Regalado
ANTONIO REGALADO

But what about the glow? How strong is it? 

Mat says so far, he doesn’t notice any light coming from the plant, even after carrying it into a pitch-dark bathroom. But buyers may have to wait a bit to see anything. It’s the flowers that glow most brightly, and you may need to tend your petunia for a couple of weeks before you get blooms and see the mysterious effect.  

“I had two flowers when I opened mine, but sadly they dropped and I haven’t got to see the brightness yet. Hoping they will bloom again soon,” says Kelsey Wood, a postdoctoral researcher at the University of California, Davis. 

She would like to use the plants in classes she teaches at the university. “It’s been a dream of synthetic biologists for so many years to make a bioluminescent plant,” she says. “But they couldn’t get it bright enough to see with the naked eye.”

Others are having success right out of the box. That’s the case with Tharin White, publisher of EYNTK.info, a website about theme parks. “It had a lot of protection around it and a booklet to explain what you needed to do to help it,” says White. “The glow is strong, if you are [in] total darkness. Just being in a dark room, you can’t really see it. That being said, I didn’t expect a crazy glow, so [it] meets my expectations.”

That’s no small recommendation coming from White, who has been a “cast member” at Disney parks and an operator of the park’s Avatar ride, named after the movie whose action takes place on a planet where the flora glows. “I feel we are leaps closer to Pandora—The World of Avatar being reality,” White posted to his X account.

Chronobiologist Brian Hodge also found success by resettling his petunia immediately into a larger eight-inch pot, giving it flower food and a good soaking, and putting it in the sunlight. “After a week or so it really started growing fast, and the buds started to show up around day 10. Their glow is about what I expected. It is nothing like a neon light but more of a soft gentle glow,” says Hodge, a staff scientist at the University of California, San Francisco.

In his daily work, Hodge has handled bioluminescent beings before—bacteria mostly—and says he always needed photomultiplier tubes to see anything. “My experience with bioluminescent cells is that the light they would produce was pretty hard to see with the naked eye,” he says. “So I was happy with the amount of light I was seeing from the plants. You really need to turn off all the lights for them to really pop out at you.”

Hodge posted a nifty snapshot of his petunia, but only after setting his iPhone for a two-second exposure.

Light Bio’s CEO Keith Wood didn’t respond to an email about how my plants died, but in an interview last month he told me sales of the biotech plant had been “viral” and that the company would probably run out of its initial supply. To generate new ones, it hires commercial greenhouses to place clippings in water, where they’ll sprout new roots after a couple of weeks. According to Wood, the plant is “a rare example where the benefits of GM technology are easily recognized and experienced by the public.”

Hodge says he got interested in the plants after reading an article about combating light pollution by using bioluminescent flora instead of streetlamps. As a biologist who studies how day and night affect life, he’s worried that city lights and computer screens are messing with natural cycles.

“I just couldn’t pass up being one of the first to own one,” says Hodge. “Once you flip the lights off, the glow is really beautiful … and it sorta feels like you are witnessing something out of a futuristic sci-fi movie!” 

It makes me tempted to try again. 


Now read the rest of The Checkup

From the archives 

We’re not sure if rows of glowing plants can ever replace streetlights, but there’s no doubt light pollution is growing. Artificial light emissions on Earth grew by about 50% between 1992 and 2017—and as much as 400% in some regions. That’s according to Shel Evergreen,in his story on the switch to bright LED streetlights.

It’s taken a while for scientists to figure out how to make plants glow brightly enough to interest consumers. In 2016, I looked at a failed Kickstarter that promised glow-in-the-dark roses but couldn’t deliver.  

Another thing 

Cassandra Willyard is updating us on the case of Lisa Pisano, a 54-year-old woman who is feeling “fantastic” two weeks after surgeons gave her a kidney from a genetically modified pig. It’s the latest in a series of extraordinary animal-to-human organ transplants—a technology, known as xenotransplantation, that may end the organ shortage.

From around the web

Taiwan’s government is considering steps to ease restrictions on the use of IVF. The country has an ultra-low birth rate, but it bans surrogacy, limiting options for male couples. One Taiwanese pair spent $160,000 to have a child in the United States.  (CNN)

Communities in Appalachia are starting to get settlement payments from synthetic-opioid makers like Johnson & Johnson, which along with other drug vendors will pay out $50 billion over several years. But the money, spread over thousands of jurisdictions, is “a feeble match for the scale of the problem.” (Wall Street Journal)

A startup called Climax Foods claims it has used artificial intelligence to formulate vegan cheese that tastes “smooth, rich, and velvety,” according to writer Andrew Rosenblum. He relates the results of his taste test in the new “Build” issue of MIT Technology Review. But one expert Rosenblum spoke to warns that computer-generated cheese is “significantly” overhyped.

AI hype continued this week in medicine when a startup claimed it has used “generative AI” to quickly discover new versions of CRISPR, the powerful gene-editing tool. But new gene-editing tricks won’t conquer the main obstacle, which is how to deliver these molecules where they’re needed in the bodies of patients. (New York Times).

A new kind of gene-edited pig kidney was just transplanted into a person

A month ago, Richard Slayman became the first living person to receive a kidney transplant from a gene-edited pig. Now, a team of researchers from NYU Langone Health reports that Lisa Pisano, a 54-year-old woman from New Jersey, has become the second. Her new kidney has just a single genetic modification—an approach that researchers hope could make scaling up the production of pig organs simpler. 

Pisano, who had heart failure and end-stage kidney disease, underwent two operations, one to fit her with a heart pump to improve her circulation and the second to perform the kidney transplant. She is still in the hospital, but doing well. “Her kidney function 12 days out from the transplant is perfect, and she has no signs of rejection,” said Robert Montgomery, director of the NYU Langone Transplant Institute, who led the transplant surgery, at a press conference on Wednesday.

“I feel fantastic,” said Pisano, who joined the press conference by video from her hospital bed.

Pisano is the fourth living person to receive a pig organ. Two men who received heart transplants at the University of Maryland Medical Center in 2022 and 2023 both died within a couple of months after receiving the organ. Slayman, the first pig kidney recipient, is still doing well, says Leonardo Riella, medical director for kidney transplantation at Massachusetts General Hospital, where Slayman received the transplant.  

“It’s an awfully exciting time,” says Andrew Cameron, a transplant surgeon at Johns Hopkins Medicine in Baltimore. “There is a bright future in which all 100,000 patients on the kidney transplant wait list, and maybe even the 500,000 Americans on dialysis, are more routinely offered a pig kidney as one of their options,” Cameron adds.

All the living patients who have received pig hearts and kidneys have accessed the organs under the FDA’s expanded access program, which allows patients with life-threatening conditions to receive investigational therapies outside of clinical trials. But patients may soon have another option. Both Johns Hopkins and NYU are aiming to start clinical trials in 2025. 

In the coming weeks, doctors will be monitoring Pisano closely for signs of organ rejection, which occurs when the recipient’s immune system identifies the new tissue as foreign and begins to attack it. That’s a concern even with human kidney transplants, but it’s an even greater risk when the tissue comes from another species, a procedure known as xenotransplantation.

To prevent rejection, the companies that produce these pigs have introduced genetic modifications to make their tissue appear less foreign and reduce the chance that it will spark an immune attack. But it’s not yet clear just how many genetic alterations are necessary to prevent rejection. Slayman’s kidney came from a pig developed by eGenesis, a company based in Cambridge, Massachusetts; it has 69 modifications. The vast majority of those modifications focus on inactivating viral DNA in the pig’s genome to make sure those viruses can’t be transmitted to the patient. But 10 were employed to help prevent the immune system from rejecting the organ.

Pisano’s kidney came from pigs that carry just a single genetic alteration—to eliminate a specific sugar called alpha-gal, which can trigger immediate organ rejection, from the surface of its cells. “We believe that less is more, and that the main gene edit that has been introduced into the pigs and the organs that we’ve been using is the fundamental problem,” Montgomery says. “Most of those other edits can be replaced by medications that are available to humans.”

JOE CARROTTA/NYU LANGONE HEALTH

The kidney is implanted along with a piece of the pig’s thymus gland, which plays a key role in educating white blood cells to distinguish between friend and foe.  The idea is that the thymus will help Pisano’s immune system learn to accept the foreign tissue. The so-called UThymoKidney is being developed by United Therapeutics Corporation, but the company has also created pigs with 10 genetic alterations. The company “wanted to take multiple shots on goal,” says Leigh Peterson, executive vice president of product development and xenotransplantation at United Therapeutics.

There’s one major advantage to using a pig with a single genetic modification. “The simpler it is, in theory, the easier it’s going to be to breed and raise these animals,” says Jayme Locke, a transplant surgeon at the University of Alabama at Birmingham. Pigs with a single genetic change can be bred, but pigs with many alterations require cloning, Montgomery says. “These pigs could be rapidly expanded, and more quickly and completely solve the organ supply crisis.”

But Cameron isn’t sure that a single alteration will be enough to prevent rejection. “I think most people are worried that one knockout might not be enough, but we’re hopeful,” he says.

So is Pisano, who is working to get strong enough to leave the hospital. “I just want to spend time with my grandkids and play with them and be able to go shopping,” she says.

The effort to make a breakthrough cancer therapy cheaper

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here. 

CAR-T therapies, created by engineering a patient’s own cells to fight cancer, are typically reserved for people who have exhausted other treatment options. But last week, the FDA approved Carvykti, a CAR-T product for multiple myeloma, as a second-line therapy. That means people are eligible to receive Carvykti after their first relapse.

While this means some multiple myeloma patients in the US will now get earlier access to CAR-T, the vast majority of patients around the globe still won’t get CAR-T at all. These therapies are expensive—half a million dollars in some cases. But do they have to be?

Today, let’s take a look at efforts to make CAR-T cheaper and more accessible.

It’s not hard to see why CAR-T comes with a high price tag. Creating these therapies is a multistep process. First doctors harvest T cells from the patient. Those cells are then engineered outside the body using a viral vector, which inserts an artificial gene that codes for a chimeric antigen receptor, or CAR. That receptor enables the cells to identify cancer cells and flag them for destruction. The cells must then be grown in the lab until they number in the millions. Meanwhile, the patient has to undergo chemotherapy to destroy any remaining T cells and make space for the CAR-T cells. The engineered cells are then reintroduced into the patient’s body, where they become living, cancer-fighting drugs. It’s a high-tech and laborious process.

In the US, CAR-T brings in big money. The therapies are priced between $300,000 and $600,000, but some estimates put the true cost—covering hospital time, the care required to manage adverse reactions, and more—at more than a million dollars in some cases.  

One way to cut costs is to produce the therapy in countries where drug development and manufacturing is significantly cheaper. In March, India approved its first homegrown CAR-T therapy, NexCAR19. It’s produced by a small biotech called ImmunoACT, based in Mumbai. The Indian CAR-T therapy costs roughly a tenth of what US products sell for: between $30,000 and $50,000. “It lights a little fire under all of us to look at the cost of making CAR-T cells, even in places like the United States,” says Terry Fry, a pediatric hematologist at the University of Colorado Anschutz Medical Campus.  

That lower cost is due to a variety of factors. Labor is cheaper in India, where the drug was developed and tested and is now manufactured. The company also saved money by manufacturing its own viral vectors, one of the most expensive line items in the manufacturing process.

Another way to curb costs is to produce the therapies in the medical centers where they’re delivered. Although cancer centers are in charge of collecting T cells from their patients, they typically don’t produce the CAR-T therapies themselves. Instead they ship the cells to pharma companies, which have specialized facilities for engineering and growing the cells. Then the company ships the therapy back. But producing these therapies in house—a model called point-of-care manufacturing—could save money and reduce wait times. One hospital in Barcelona made and tested its own CAR-T therapy and now provides it to patients for $97,000, a fraction of what the name-brand medicines cost.

In Brazil, the Oswaldo Cruz Foundation, a vaccine manufacturer and the largest biomedical research institute in Latin America, recently partnered with a US-based nonprofit called Caring Cross to help develop local CAR-T manufacturing capabilities. Caring Cross has developed a point-of-care manufacturing process able to generate CAR-T therapies for an even lower cost—roughly $20,000 in materials and $10,000 in labor and facilities.

It’s an attractive model. Demand for CAR-T often outstrips supply, leading to long wait times. “There is a growing tension around the limited access that we’re seeing for cell and gene therapies coming out of biotech,” Stanford pediatric oncologist Crystal Mackall told Stat. “It’s incredibly tempting to say, ‘Well, why don’t you just let me make it for my patients?’”

Even these treatments run in the tens of thousands of dollars, partly because approved CAR-T products are bespoke therapies, each one produced for a particular patient. But many companies are also working on off-the-shelf CAR-T therapies. In some cases, that means engineering T cells from healthy donors. Some of those therapies are already in clinical trials. 

In other cases, companies are working to engineer cells inside the body. That process should make it much, much simpler and cheaper to deliver CAR-T. With conventional CAR-T therapies, patients have to undergo chemotherapy to destroy their existing T cells. But with in vivo CAR-T, this step isn’t necessary. And because these therapies don’t require any cell manipulation outside the patient’s body, “you could take it in an outpatient clinic,” says Priya Karmali, chief technology officer at Capstan Therapeutics, which is developing in vivo CAR-T therapies. “You wouldn’t need specialized centers.”

Some in vivo strategies, just like the ex vivo strategies, rely on viral vectors. Umoja Biopharma’s platform uses a viral vector but also employs a second technology to prompt the engineered cells to survive and expand in the presence of the drug rapamycin. Last fall, the company reported that it had successfully generated in vivo CAR-T cells in nonhuman primates.

At Capstan Therapeutics, researchers are taking a different tack, using lipid nanoparticles to ferry mRNA into T cells. When a viral vector places the CAR gene into a cell’s DNA, the change is permanent. But with mRNA, the CAR operates for only a limited time. “Once the war is over, you don’t want the soldiers lurking around forever,” Karmali says.

And with CAR-T, there are plenty of potential battlefields to conquer. CAR-T therapies are already showing promise beyond blood cancers. Earlier this year, researchers reported stunning results in 15 patients with lupus and other autoimmune diseases. CAR-T is also being tested as a treatment for solid tumors, heart disease, aging, HIV infection, and more. As the number of people eligible for CAR-T therapies increases, so will the pressure to reduce the cost.


Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

Scientists are finally making headway in moving CAR-T into solid tumors. Last fall I wrote about the barriers and the progress

In the early days of CAR-T, Emily Mullin reported on patient deaths that called the safety of the treatment into question. 

Travel back in time to relive the excitement over the approval of the first CAR-T therapy with this story by Emily Mullin. 

From around the web

The Arizona Supreme Court ruled that an 1864 law banning nearly all abortions can be enforced after a 14-day grace period. (NBC)

Drug shortages are worse than they have been in more than two decades. Pain meds, chemo drugs, and ADHD medicines are all in short supply. Here’s why. (Stat)

England became the fifth European country to begin limiting children’s access to gender treatments such as puberty blockers and hormone therapy. Proponents of the restrictions say there is little evidence that these therapies help young people with gender dysphoria. (NYT

Last week I wrote about an outbreak of bird flu in cows. A new study finds that birds in New York City are also carrying the virus. The researchers found H5N1 in geese in the Bronx, a chicken in Manhattan, a red-tailed hawk in Queens, and a goose and a peregrine falcon in Brooklyn. (NYT)

Brain-cell transplants are the newest experimental epilepsy treatment

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Justin Graves was managing a scuba dive shop in Louisville, Kentucky, when he first had a seizure. He was talking to someone and suddenly the words coming out of his mouth weren’t his. Then he passed out. Half a year later he was diagnosed with temporal-lobe epilepsy.

Justin Graves
JUSTIN GRAVES

Graves’s passion was swimming. He’d been on the high school team and had just gotten certified in open-water diving. But he lost all that after his epilepsy diagnosis 17 years ago. “If you have ever had seizures, you are not even supposed to scuba-dive,” Graves says. “It definitely took away the dream job I had.”

You can’t drive a car, either. Graves moved to California and took odd jobs, at hotels and dog kennels. Anywhere on a bus line. For a while, he drank heavily. That made the seizures worse. 

Epilepsy, it’s often said, is a disease that takes people hostage.

So Graves, who is now 39 and two and half years sober, was ready when his doctors suggested he volunteer for an experimental treatment in which he got thousands of lab-made neurons injected into his brain. 

“I said yes, but I don’t think I understood the magnitude of it,” he says. 

The treatment, developed by Neurona Therapeutics, is shaping up as a breakthrough for stem-cell technology. That’s the idea of using embryonic human cells, or cells converted to an embryonic-like state, to manufacture young, healthy tissue.

And stem cells could badly use a win. There are plenty of shady health clinics that say stem cells will cure anything, and many people who believe it. In reality, though, turning these cells into cures has been a slow-moving research project that, so far, hasn’t resulted in any approved medicines.

But that could change, given the remarkable early results of Neurona’s tests on the first five volunteers. Of those, four, including Graves, are reporting that their seizures have decreased by 80% and more. There are also improvements in cognitive tests. People with epilepsy have a hard time remembering things, but some of the volunteers can now recall an entire series of pictures.

“It’s early, but it could be restorative,” says Cory Nicholas, a former laboratory scientist who is the CEO of Neurona. “I call it activity balancing and repair.”

Starting with a supply of stem cells originally taken from a human embryo created via IVF, Neurona grows “inhibitory interneurons.” The job of these neurons is to quell brain activity—they tell other cells to reduce their electrical activity by secreting a chemical called GABA.

Graves got his transplant in July. He was wheeled into an MRI machine at the University of California, San Diego. There, surgeon Sharona Ben-Haim watched on a screen as she guided a ceramic needle into his hippocampus, dropping off the thousands of the inhibitory cells. The bet was that these would start forming connections and dampen the tsunami of misfires that cause epileptic seizures.

Ben-Haim says it’s a big change from the surgeries she performs most often. Usually, for bad cases of epilepsy, she is trying to find and destroy the “focus” of misbehaving cells causing seizures. She will cut out part of the temporal lobe or use a laser to destroy smaller spots. While this kind of surgery can stop seizures permanently, it comes with the risk of “major cognitive consequences.” People can lose memories, or even their vision. 

That’s why Ben-Haim thinks cell therapy could be a fundamental advance. “The concept that we can offer a definitive treatment for a patient without destroying underlying tissue would be potentially a huge paradigm shift in how we treat epilepsy,” she says. 

Nicholas, Neurona’s CEO, is blunter. “The current standard of care is medieval,” he says. “You are chopping out part of the brain.”

For Graves, the cell transplant seems to be working. He hasn’t had any of the scary “grand mal” attacks, that kind can knock you out, since he stopped drinking. But before the procedure in San Diego, he was still having one or two smaller seizures a day. These episodes, which feel like euphoria or déjà vu, or an absent blank stare, would last as long as half a minute. 

Now, in a diary he keeps as part of the study to count his seizures, most days Graves circles “none.”

LUIS FUENTEALBA AND DANIEL CHERKOWSKY

Other patients in the study are also telling stories of dramatic changes. A woman in Oregon, Annette Adkins, was having seizures every week; but now hasn’t had one for eight consecutive months, according to Neurona. Heather Longo, the mother of another subject, has also said her son has gone for periods without any seizures. She’s hopeful his spirits are picking up and said that his memory, balance, and cognition, are improving.

Getting consistent results from a treatment made of living cells is not going to be easy, however. One volunteer in the study saw no benefit, at least initially, while Graves’s seizures tapered away so soon after the procedure that it’s unclear whether the new cells could have caused the change, since it can takes weeks for them to grow out synapses and connect to other cells.

“I don’t think we really understand all the biology,” says Ben-Haim.

Neurona plans a larger study to help sift through cause and effect. Nicholas says the next stage of the trial will enroll 30 volunteers, half of whom will undergo “sham” surgeries. That is, they’ll all don surgical gowns, and doctors will drill holes into their skulls. But only some will get the cells; for the rest it will be play-acting. That is to rule out a placebo effect or the possibility that, somehow, simply passing a needle into the brain has some benefit.

Justin Graves scuba diving prior to his diagnosis.
JUSTIN GRAVES

Graves tells MIT Technology Review he is sure the cells helped him. “What else could it be? I haven’t changed anything else,” he says.

Now he is ready to believe he can get parts of his life back. He hopes to swim again. And if he can drive, he plans to move home to Louisville to be near his parents. “Road trips were always something I liked,” he says. “One of the plans I had was to go across the country. To not have any rush to it and see what I want.”


Now read the rest of The Checkup 

Read more from MIT Technology Review’s archive

This summer, I checked into what 25 years of research using embryonic stem cells had delivered. The answer: lots of hype and no cures…yet.

Earlier this month, Cassandra Willyard wrote about the many scientific uses of “organoids.” These blobs of tissue (often grown from stem cells) mimic human organs in miniature and are proving useful for testing drugs and studying viral infections. 

Our 2023 list of young innovators to watch included Julia Joung, who is discovering the protein factors that tell stem cells what to develop into.

There’s a different kind of stem cell in your bone marrow—the kind that makes blood. Gene-editing these cells can cure sickle-cell disease. The process is grueling, though. In December, one patient, Jimi Olaghere, told us his story.

From around the web

The share of abortions that are being carried out with pills in the US continues to rise, reaching 63%. The trend predates the 2022 Supreme Court decision allowing states to bar doctors from providing abortions. Since then, more women may have started getting the pills outside the formal health-care system. (New York Times)

Excitement over pricey new weight-loss drugs is causing “pharmaco-amnesia,” Daniel Engber says. People are forgetting there were already some decent weight-loss pills that he says were “half as good … for one-30th the price.” (The Atlantic)

There’s a bird flu outbreak among US dairy cattle. It’s troubling to see a virus jump species, but so far, it’s not that bad for cows. “It was kind of like they had a cold,” one source told the AP. (Associated Press)

How scientists traced a mysterious covid case back to six toilets

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

This week I have a mystery for you. It’s the story of how a team of researchers traced a covid variant in Wisconsin from a wastewater plant to six toilets at a single company. But it’s also a story about privacy concerns that arise when you use sewers to track rare viruses back to their source. 

That virus likely came from a single employee who happened to be shedding an enormous quantity of a very weird variant. The researchers would desperately like to find that person. But what if that person doesn’t want to be found?

A few years ago, Marc Johnson, a virologist at the University of Missouri, became obsessed with weird covid variants he was seeing in wastewater samples. The ones that caught his eye were odd in a couple of different ways: they didn’t match any of the common variants, and they didn’t circulate. They would pop up in a single location, persist for some length of time, and then often disappear—a blip. Johnson found his first blip in Missouri. “It drove me nuts,” he says. “I was like, ‘What the hell was going on here?’” 

Then he teamed up with colleagues in New York, and they found a few more.

Hoping to pin down even more lineages, Johnson put a call out on Twitter (now X) for wastewater. In January 2022, he got another hit in a wastewater sample shipped from a Wisconsin treatment plant. He and David O’Connor, a virologist at the University of Wisconsin, started working with state health officials to track the signal—from the treatment plant to a pumping station and then to the outskirts of the city, “one manhole at a time,” Johnson says. “Every time there was a branch in the road, we would check which branch [the signal] was coming from.”

They chased some questionable leads. The researchers were suspicious the virus might be coming from an animal. At one point O’Connor took people from his lab to a dog park to ask dog owners for poop samples. “There were so many red herrings,” Johnson says.

Finally, after sampling about 50 manholes, the researchers found the manhole, the last one on the branch that had the variant. They got lucky. “The only source was this company,” Johnson says. Their results came out in March in Lancet Microbe

Wastewater surveillance might seem like a relatively new phenomenon, born of the pandemic, but it goes back decades. A team of Canadian researchers outlines several historical examples in this story. In one example, a public health official traced a 1946 typhoid outbreak to the wife of a man who sold ice cream at the beach. Even then, the researcher expressed some hesitation. The study didn’t name the wife or the town, and he cautioned that infections probably shouldn’t be traced back to an individual “except in the presence of an outbreak.”

In a similar study published in 1959, scientists traced another typhoid epidemic to one woman, who was then banned from food service and eventually talked into having her gallbladder removed to eliminate the infection. Such publicity can have a “devastating effect on the carrier,” they remarked in their write-up of the case. “From being a quiet and respected citizen, she becomes a social pariah.”

When Johnson and O’Connor traced the virus to that last manhole, things got sticky. Until that point, the researchers had suspected these cryptic lineages were coming from animals. Johnson had even developed a theory involving organic fertilizer from a source further upstream. Now they were down to a single building housing a company with about 30 employees. They didn’t want to stigmatize anyone or invade their privacy. But someone at the company was shedding an awful lot of virus. “Is it ethical to not tell them at that point?” Johnson wondered.

O’Connor and Johnson had been working with state health officials from the very beginning. They decided the best path forward would be to approach the company, explain the situation, and ask if they could offer voluntary testing. The decision wasn’t easy. “We didn’t want to cause panic and say there’s a dangerous new variant lurking in our community,” Ryan Westergaard, the state epidemiologist for communicable diseases at the Wisconsin Department of Health Services, told Nature. But they also wanted to try to help the person who was infected. 

The company agreed to testing, and 19 of its 30 employees turned up for nasal swabs. They were all negative.

That may mean one of the people who didn’t test was carrying the infection. Or could it mean that the massive covid infection in the gut didn’t show up on a nasal swab? “This is where I would use the shrug emoji if we were doing this over email,” O’Connor says.

At the time, the researchers had the ability to test stool samples for the virus, but they didn’t have approval. Now they do, and they’re hoping stool will lead them to an individual infected with one of these strange viruses who can help answer some of their questions. Johnson has identified about 50 of these cryptic covid variants in wastewater. “The more I study these lineages, the more I am convinced that they are replicating in the GI tract,” Johnson says. “It wouldn’t surprise me at all if that’s the only place they were replicating.” 

But how far should they go to find these people? That’s still an open question. O’Connor can imagine a dizzying array of problems that might arise if they did identify an individual shedding one of these rare variants. The most plausible hypothesis is that the lineages arise in individuals who have immune disorders that make it difficult for them to eliminate the infection. That raises a whole host of other thorny questions: what if that person had a compromised immune system due to HIV in addition to the strange covid variant? What if that person didn’t know they were HIV positive, or didn’t want to divulge their HIV status? What if the researchers told them about the infection, but the person couldn’t access treatment? “If you imagine what the worst-case scenarios are, they’re pretty bad,” O’Connor says.

On the other hand, O’Connor says, they think there are a lot of these people around the country and the world. “Isn’t there also an ethical obligation to try to learn what we can so that we can try to help people who are harboring these viruses?” he asks.


Now read the rest of The Checkup

More from MIT Technology Review

Longevity specialists aim to help people live longer and healthier lives. But they have yet to establish themselves as a credible medical field. Expensive longevity clinics that cater to the wealthy worried well aren’t helping. Jessica Hamzelou takes us inside the quest to legitimize longevity medicine.

Drug developers bet big on AI to help speed drug development. But when will we see our first generative drug? Antonio Regalado has the story

Read more from MIT Technology Review’s archive

The covid pandemic brought the tension between privacy and public health into sharp relief, wrote Karen Hao in 2020

That same year Genevieve Bell argued that we can reimagine contact tracing in a way that protects privacy.

In 2021, Antonio Regalado covered some of the first efforts to track the spread of covid variants using wastewater.  

Earlier this year I wrote about using wastewater to track measles. 

From around the web

Surgeons have transplanted a kidney from a genetically engineered pig into a 62-year-old man in Boston. (New York Times)
→ Surgeons transplanted a similar kidney into a brain-dead patient in 2021. (MIT Technology Review
→ Researchers are also looking into how to transplant other organs. Just a few months ago, surgeons connected a genetically engineered pig liver to another brain-dead patient. (MIT Technology Review)

The FDA has approved a new gene therapy for a rare but fatal genetic disorder in children. Its $4.25 million price tag will make it the world’s most expensive medicine, but it promises to give children with the disease a shot at a normal life. (CNN)
→ Read Antonio Regalado’s take on the curse of the costliest drug. (MIT Technology Review)

People who practice intermittent fasting have an increased risk of dying of heart disease, according to new research presented at the American Heart Association meeting in Chicago. There are, of course, caveats. (Washington Post and Stat)

Some parents aren’t waiting to give their young kids the new miracle drug to treat cystic fibrosis. They’re starting the treatment in utero. (The Atlantic

There is a new most expensive drug in the world. Price tag: $4.25 million

There is a new most expensive drug ever—a gene therapy that costs as much as a Brooklyn brownstone or a Miami mansion, and more than the average person will earn in a lifetime.

Lenmeldy is a gene treatment for metachromatic leukodystrophy (MLD) and was approved in the U.S. on Monday. Its maker, Orchard Therapeutics, said today the $4.25 million wholesale cost reflects the value the treatment has for patients and families.

No doubt, MLD is awful. The nerve disorder strikes toddlers, quickly robbing them of their ability to speak and walk. Around half die, the others live on in a vegetative state causing crushing burdens for families.

But it’s also incredibly rare, affecting only around 40 kids a year in the U.S. The extreme rarity of such diseases is what’s behind the soaring price-tags of new gene therapies. Just consider the economics: Orchard employs 160 people, much more than the number of kids they’ll be able to treat over several years.

A child in isolation after gene therapy for metachromatic leukodystrophy
AMY PRICE

It means even at this price, selling the newest DNA treatment could be a shaky business. “Gene therapies have struggled commercially—and I wouldn’t expect Lenmeldy to buck that trend,” says Maxx Chatsko, founder of Solt DB, which gathers data about biotech products..  

Call it the curse of being the world’s most expensive drug.

The MLD therapy was approved in Europe starting three years ago, where its price is somewhat lower, but Chatsko notes that Orchard generated only $12.7 million from product sales during most of last year. It means you can count the number of kids who got it on your hands.

There’s no doubt the treatment is a lifesaver. The gene therapy adds a missing gene to the bone marrow cells of children, reversing the condition’s root cause in the brain. Many of the kids who got it, in trials that began in 2010, have been growing up to be beautifully average.

“My heart wants to talk about what an effect this therapy has had in these children,” says Orchard’s chief medical officer, Leslie Meltzer. “Without it, they will die very young or live for many years in a vegetative state.” But kids who get the gene therapy, mostly end up being able to walk and do well cognitively “The ones we treat are going to school, they’re playing sports, and are able to tell their stories,” Meltzer says.

Independent groups also think the drug could be cost-effective. One, called the Institute for Clinical and Economic review, and which assesses the value of drugs, said last September that the MLD gene therapy was worth it at a cost between $2.3 and $3.9 million, according to their models.

But there’s no denying that super-high prices can signal that a treatment isn’t economically sustainable. 

One prior title holder for most expensive drug, the gene therapy Glybera, was purchased only once before being retired from the market. It didn’t work well enough to justify the $1 million price tag, which made it the price champion at the time.

Then there’s the treatment that’s been reigning as the costliest until today, when Lenmeldy took over. It’s a $3.5 million hemophilia treatment called Hemegenix, which is also a gene therapy. Such treatments were meant to be generate billions in sales, yet they aren’t getting nearly the uptake you’d expect according to news reports.

Orchard itself gave up on another DNA fix, Strimvelis, which was an out-and-out cure for a type of immune deficiency. It owned the gene therapy and even got it approved in Europe. The issue was both too few patients and the existence of an alternative treatment. Not even a money back guarantee could save Strimvelis, which Orchard discontinued in 2022.

Orchard was subsequently bought by Japanese drug company Kyowa Kirin, of which it’s now a subsidiary. 

So it can seem like even though gene-therapies are hitting home runs in trials, they’re losing the ballgame. In the case of this Lenmeldy, the critical issue will be early testing for the disease. That’s because once children display symptoms, it can be too late. For now, many patients are being discovered only because an older sibling has already succumbed to the inherited condition.

In 2016, MIT Technology Review recounted the dramatic effects of the MLD gene therapy, but also the heartbreak for parents as one child would die in order to save another.   

Orchard says it hopes to solve this problem by getting on the list of diseases automatically tested for at birth, something that could secure their market, and save many more children. A decision on testing, advocates say, could be reached following a May meeting of the U.S. government committee on newborn screening.

Among those cheering for the treatment is Amy Price, a rare disease advocate who runs her own consultancy, Rarralel, in Denver. Price had three children with MLD—one who died, but two who were saved by the MLD gene therapy, which they received starting in 2011, when it was in testing.

Price says her two treated kids, now in their tweens and teens, “are totally ordinary, absolutely average.” And that is worth the price, she says. “The economic burden of an untreated child….exceeds any gene therapy prices so far,” she says. “That reality is hard to understand when people want to react to the price alone.”

Brazil is fighting dengue with bacteria-infected mosquitos

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

As dengue cases continue to rise in Brazil, the country is facing a massive public health crisis. The viral disease, spread by mosquitoes, has sickened more than a million Brazilians in 2024 alone, overwhelming hospitals.

The dengue crisis is the result of the collision of two key factors. This year has brought an abundance of wet, warm weather, boosting populations of Aedes aegypti, the mosquitoes that spread dengue. It also happens to be a year when all four types of dengue virus are circulating. Few people have built up immunity against them all.   

Brazil is busy fighting back.  One of the country’s anti-dengue strategies aims to hamper the mosquitoes’ ability to spread disease by infecting the insects with a common bacteria—Wolbachia. The bacteria seems to boost the mosquitoes’ immune response, making it more difficult for dengue and other viruses to grow inside the insects. It also directly competes with viruses for crucial molecules they need to replicate. 

The World Mosquito Program breeds mosquitoes infected with Wolbachia in insectaries and releases them into communities. There they breed with wild mosquitoes. Wild females that mate with Wolbachia-infected males produce eggs that don’t hatch. Wolbachia-infected females produce offspring that are also infected. Over time, the bacteria spread throughout the population. Last year I visited the program’s largest insectary—a building in Medellín, Colombia, buzzing with thousands of mosquitoes in netted enclosures— with a group of journalists. “We’re essentially vaccinating mosquitoes against giving humans disease,” said Bryan Callahan, who was director of public affairs at the time.

At the World Mosquito Program’s insectary in Medellín, Colombia. These strips of paper are covered with Ades aegypti eggs. Dried eggs can survive for months at a time before being rehydrated, making it possible to ship them all over the world.

The World Mosquito Program first began releasing Wolbachia mosquitoes in Brazil in 2014. The insects now cover an area with a population of more than 3 million across five municipalities: Rio de Janeiro, Niterói, Belo Horizonte, Campo Grande, and Petrolina.

In Niterói, a community of about 500,000 that lies on the coast just across a large bay from Rio de Janeiro, the first small pilot releases began in 2015, and in 2017 the World Mosquito Program began larger deployments. By 2020, Wolbachia had infiltrated the population. Prevalence of the bacteria ranged from 80% in some parts of the city to 40% in others. Researchers compared the prevalence of viral illnesses in areas where mosquitoes had been released with a small control zone where they hadn’t released any mosquitoes. Dengue cases declined by 69%. Areas with Wolbachia mosquitoes also experienced a 56% drop in chikungunya and a 37% reduction in Zika.

How is Niterói faring during the current surge? It’s early days. But the data we have so far are encouraging. The incidence of dengue is one of the lowest in the state, with 69 confirmed cases per 100,000 people. Rio de Janeiro, a city of nearly 7 million, has had more than 42,000 cases, an incidence of 700 per 100,000.

“Niterói is the first Brazilian city we have fully protected with our Wolbachia method,” says Alex Jackson, global editorial and media relations manager for the World Mosquito Program. “The whole city is covered by Wolbachia mosquitoes, which is why the dengue cases are dropping significantly.”

The program hopes to release Wolbachia mosquitoes in six more cities this summer. But Brazil has more than 5,000 municipalities. To make a dent in the overall incidence in Brazil, the program will have to release millions more mosquitoes. And that’s the plan.

The World Mosquito Program is about to start construction on a mass rearing facility—the biggest in the world—in Curitiba. “And we believe that will allow us to essentially cover most of urban Brazil within the next 10 years,” Callahan says.

There are also other mosquito-based approaches in the works. The UK company Oxitec has been providing genetically modified “friendly” mosquito eggs to Indaiatuba, Brazil, since 2018. The insects that hatch—all males—don’t bite. And when they mate, their female offspring don’t survive, reducing populations. 

Another company, Forrest Brasil Tecnologia, has been releasing sterile male mosquitoes in parts of Ortigueira. When these males mate with wild females, they produce eggs that don’t hatch.  From November 2020 to July 2022, the company recorded a 98.7% decline in the Ades aegypti  population in Ortigueira. 

Brazil is also working on efforts to provide its citizens with greater immunity, vaccinating the most vulnerable with a new shot from Japan and working on its own home-grown dengue vaccine. 

None of these solutions are a quick fix. But they all provide some hope that the world can find ways to fight back even as climate change drives dengue and other infections to new peaks and into new territories. ““Cases of dengue fever are rising at an alarming rate,” Gabriela Paz-Bailey, who specializes in dengue at the US Centers for Disease Control and Prevention, told the Washington Post. “It’s becoming a public health crisis and coming to places that have never had it before.”


Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

We’ve written about the World Mosquito Program before. Here’s a 2016 story from Antonio Regalado that looked at early excitement and Bill Gates’ backing of the project. 

That same year we reported on Oxitec’s early work in Brazil using genetically modified mosquitoes. Flavio Devienne Ferreira has the story

And this story from Emily Mullin looks at Google’s sister company, Verily. It built a robot to create Wolbachia-infected mosquitoes and began releasing them in California in 2017. (The project is now called Debug). 

From around the web

The FDA-approved ALS drug Relyvrio has failed to benefit patients in a large clinical trial. It was approved early amidst questions about its efficacy, and now the medicine’s manufacturer has to decide whether to pull it off the  market. (NYT)

Wegovy: it’s not just for weight loss anymore. The FDA has approved a label expansion that will allow Novo Nordisk to market the drug for its heart benefits, which might prompt more insurers to cover it. (CNN)

Covid killed off one strain of the flu and experts suggest dropping it from the next flu vaccine. (Live Science

Scientists have published the first study linking microplastic pollution to human disease. The research shows that people with plastic in their artery tissues were twice as likely to have a heart attack, stroke, or die than people without plastic. (CNN)

The many uses of mini-organs

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

This week I wrote about a team of researchers who managed to grow lung, kidney, and intestinal organoids from fetal cells floating around in the amniotic fluid. Because these tiny 3D cell clusters come from the fetus and mimic some of the features of a real, full-size organ, they can provide a sneak peek at how the fetus is developing. That’s something nearly impossible to do with existing tools.

An ultrasound, for example, might reveal that a fetus’s kidneys are smaller than they should be, but absent a glaring genetic defect, doctors can’t say why they’re small or figure out a fix. But if they can take a small sample of amniotic fluid and grow a kidney organoid, the problem might become evident, and so might a potential solution.  

Exciting, right? But organoids can do so much more!

Let’s do a roundup of some of the weird, wild, wonderful, and downright unsettling uses that researchers have come up with for organoids.

Organoids could help speed drug development. By some estimates, 90% of drug candidates fail during human trials. That’s because the preclinical testing happens largely in cells and rodents. Neither is a perfect model. Cells lack complexity. And mice, as we all know, are not humans.

Organoids aren’t humans either, but they come from humans. And they have the advantage of having more complexity than a layer of cells in a dish. That makes them a good model for screening drug candidates. When I wrote about organoids in 2015, one cancer researcher told me that studying cells to understand how an organ functions is like studying a pile of bricks to understand the function of a house. Why not just study the house?

Big Pharma appears to agree. In 2022, Roche hired organoid pioneer Hans Clevers to head its Pharma Research and Early Development division. “My belief is that human organoids will eventually complement everything we are currently doing. I’m convinced, now that I’ve seen how the whole drug development process runs, that one can implement human organoids at every step of the way,” Clevers told Nature.

Organoids are trickier to grow than cell lines, but some companies are working to make the process automated. The Philadelphia-based biotech Vivodyne has developed a robotic system that combines organoids with organ-on-a-chip technology. The system grows 20 kinds of human tissue, each containing 200,000 to 500,000 cells, and then doses them with drugs. These “lab-grown human test subjects” provide “huge amounts of complex human data—larger than you could get from any clinical trial,” said Andrei Georgescu, CEO and cofounder of Vivodyne, in a press release.

According to Viodyne’s website, the proprietary machines can test 10,000 independent human tissues at a time, “yielding vivarium-scale output.” Vivarium-scale output. I had to roll this phrase around my brain quite a few times before I understood what they meant: the robot provides the same amount of data as a building full of lab mice.

Organoids could help doctors make medical decisions for individual patients. These mini organs can be grown from stem cells, but they can also be grown from adult cells that have been nudged into a stem-like state. That makes it possible to grow organoids from anyone for any number of uses. In cancer patients, for instance, these patient-derived organoids could be used to help figure out the best therapy.

Cystic fibrosis is another example. Many cystic fibrosis therapies are approved to treat people with specific mutations. But for people who have rarer mutations, it’s not clear which therapies will work. Enter organoids.

Doctors take rectal biopsies from people with the disease, use the cells to create personalized intestinal organoids, and then apply different drugs. If a given treatment works, the ion channels open, water rushes in, and the organoids visibly swell. The results of this test have been used to guide the off-label use of these medications. In one recent case, the test allowed a woman with cystic fibrosis to access one of these drugs through a compassionate use program. 

Organoids are also poised to help researchers better understand how our bodies interact with the microbes that surround (and sometimes infect) us. During the Zika health emergency in 2015, researchers used brain organoids to figure out how the virus causes microcephaly and brain malformations. Researchers have also managed to use organoids to grow norovirus, the pathogen responsible for most stomach flus. Human norovirus doesn’t infect mice, and it has proved especially tricky to culture in cells. That’s probably part of the reason we have no therapies for the illness.  

I’ve saved the weirdest and arguably creepiest applications for last. Some researchers are working to leverage the brain’s unparalleled ability to learn by developing brain organoid biocomputers. The current iterations of these biocomputers aren’t doing any high-level thinking. One clump of brain cells in a dish learned to play the video game Pong. Another hybrid biocomputer maybe managed to decode some audio signals from people pronouncing Japanese vowels. The field is still in extremely early stages, and researchers are wary of overhyping the technology. But given where the field wants to go—full-fledged organoid intelligence—it’s not too early to talk about ethical concerns. Could a biocomputer become conscious? Organoids arise from cells taken from an individual. What rights would that person have? Would the biocomputer have rights of its own? And what about rodents that have had brain organoids implanted in them? (Yes, that’s happening too). 

Last year, researchers reported that human organoids implanted in rat brains expanded into millions of neurons and managed to wire themselves into the animal’s brain. When they blew a puff of air over the rat’s whiskers, they could record an electrical signal zipping through the human neurons.

In a 2017 Stat story on efforts to implant human brain organoids into rodents, the late Sharon Begley talked to legal scholar and bioethicist Hank Greely of Stanford University. During their conversation, he invoked the literary classic Frankenstein as a cautionary and relevant tale: “it could be that what you’ve built is entitled to some kind of respect,” he told her.


Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

In 2023, scientists reported that brain organoids  hitched to an electronic chip could perform  some very basic speech recognition tasks. Abdullahi Tsanni has the story.

Saima Sidik tells us how organoids created from the uterine lining might reveal the mysteries of menstruation. Here’s her report

When will we be able to transplant mini lungs, livers, or thyroids into people? Ten years …  maybe, said my colleague Jess Hamzelou in this past issue of The Checkup

From around the web

An Alabama bill passed on Wednesday creates a “legal moat” around embryos. Under the new law, providers and recipients of IVF could not be prosecuted or sued for damaging or destroying embryos. But the law doesn’t answer the central question raised by Alabama courts last week: Are embryos people? (NYT)

More legal news. The Senate homeland security committee passed a bill this week that would block certain Chinese biotechs from conducting business in the US. The aim is to keep them from accessing Americans personal health data and genetic information. But some critics have raised supply chain concerns. (Reuters)

Some scientists have expressed concern that too many covid shots could fatigue the immune system and make vaccination less effective. But a man who got a whopping 217 covid vaccines showed no signs of a flagging immune response. (Washington Post)

Buckle up. Norovirus is coming for you. (USA Today).Small studies showing that ibogaine, a psychedelic derived from tree bark, can treat opioid addiction have renewed interest in this illegal drug. But some researchers question whether it could ever be a feasible therapy (NYT)

How some bacteria are cleaning up our messy water supply

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

The diabetes medication metformin has been touted as a miracle drug. Not only does it keep diabetes in check, but it can reduce inflammation, curb cancer, stave off the worst effects of covid, and perhaps even slow the aging process. No wonder it’s so popular. In the US, the number of metformin prescriptions has more than doubled in less than two decades, from 40 million in 2004 to 91 million in 2021.

Worldwide, we consume more than 100 million kilograms of metformin a year.  That’s staggering.

All that metformin enters the body. But it also exits largely unchanged and ends up in our wastewater. The quantities found there are tiny—tens of micrograms per liter—and not likely to harm humans. But even small amounts can affect aquatic organisms that are literally swimming in it. 

Lawrence Wackett, a biochemist at the University of Minnesota, got interested in this issue about a decade ago. Researchers had observed that at some wastewater treatment plants, the amount of metformin entering was much larger than the amount leaving. In 2022, Wackett’s team and two other groups identified the bacteria responsible for metabolizing the drug and sequenced their genomes. But Wackett still wondered which genes were responsible.

Now he knows. This week, he and his colleagues reported that they have identified two genes encoding proteins that can break down metformin. The study was published in the Proceedings of the National Academy of Sciences. These proteins are produced by at least five species of bacteria found in wastewater sludge across three continents. But here’s what struck me: This isn’t a coincidence. These bacteria evolved the ability to metabolize metformin. They saw an opportunity to capitalize on the ubiquity of the drug in their environment, and they seized it. “This happens all the time,” Wackett says. “Microbes adapt to the chemicals that we make.”

Here’s another example. In the 1960s, farmers began using a new weed killer called atrazine. For about a decade, scientists reported that the chemical appeared to degrade slowly in soil. But about a decade later, that changed. “Everybody was reporting, ‘No, it’s going away really fast—in weeks or a month.” That’s because bacteria evolved the capacity to metabolize atrazine to extract nitrogen. “There is selective pressure,” Wackett says. “The bacteria that figured out how to get that nitrogen out have a big selective advantage.”

This kind of bacterial evolution shouldn’t come as a surprise. We’ve all heard about how the rampant use of antibiotics in people and livestock is driving an antimicrobial resistance crisis. But for some reason, it never occurred to me that bacteria might be evolving in a way that could help us rather than harm us.

That’s good news. Because we have made a real mess of our water supply.

Let’s take a step back. This problem isn’t new. Scientists first detected pharmaceuticals in water more than 40 years ago. But concern has increased dramatically in the past 20 years. In 2008, the Associated Press reported that drinking water in the US was tainted with a wide variety of medications—everything from antibiotics to antidepressants to sex hormones.

It’s not just medicines. A dizzying number of personal care products also end up in the sewers—coconut shampoos and hydrating body washes and expensive face serums and … well, the list goes on and on. Wastewater treatment facilities were never designed to deal with these so-called micropollutants. “For the first 100 years or so of wastewater treatment, you know, the big thing was to prevent infectious diseases,” Wackett says.

Today, many wastewater treatment plants mix wastewater and air in a tank to form an activated sludge—a process that helps bacteria break down pollutants. This system was originally designed to remove nitrogen, phosphates, and organic matter—not pharmaceuticals. When bacteria in the sludge do metabolize drugs like metformin, it’s a happy accident, not the result of intentional design.

Certain technologies that rely on bacteria can do a better job of getting rid of these tiny pollutants. For example, membrane biological reactors combine activated sludge with microfiltration, while biofilm reactors rely on bacteria grown on the surface of membranes. There are even anaerobic “sludge blankets” (worst name ever), in which microbes convert contaminants to biogas in an oxygen-poor environment. But these technologies are expensive, and treatment facilities aren’t required to ensure that treated water is free of these contaminants. At least not in the US.

The European Commission is on its way to adopting new rules stipulating that by 2045, larger wastewater treatment facilities will have to remove a whole host of micropollutants. And in this case, the polluters—pharmaceutical and cosmetics companies—will pay 80% of the cost. The pharmaceutical industry is not a fan of this idea. Trade groups say the new rules will likely result in drug shortages.  

In the US, the federal government is still trying to figure out how to deal with these pollutants. It’s tricky, because it’s not entirely clear what impact small quantities of pharmaceuticals in water will have on the environment and human health. And the risk varies depending on the medication in question. Some pose a clear threat. Oral contraceptives, for example, have caused fertility issues and sex switching in fish. 

Could bacteria save us from estrogen too? Maybe. More than 100 estrogen-degrading microbes have been identified. We just need to find a way to harness them.


Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

In a 2023 issue of The Checkup, my colleague Jessica Hamzelou introduced us to the scientists who study the exposome—all the chemicals we eat, drink, inhale, and digest. Here’s the story.

Hamzelou also wrote about another pervasive pollutant: microplastics. They’re everywhere, and we still don’t really understand what they’re doing to us.  

Microbes aren’t just for cleaning up wastewater. They can also help break down food. And some companies hope to build anaerobic digesters to help them do just that, reported Casey Crownhart last year.

Saima Sidik dove into the fascinating history of how MIT’s innovations in wastewater treatment helped stop the spread of infectious diseases. 

From around the web

Long read: Jane Burns has devoted her life to solving the mystery of Kawasaki disease, a lethal childhood illness that comes on without warning. Now Burns and her oddball team of collaborators have the tools they need to pinpoint the cause.  (NYT)

Older adults should get another covid booster this spring, according to new CDC recommendations. (Washington Post)

Public health officials are “flummoxed” about the Florida surgeon general’s lackluster response to a measles outbreak in the state. (NPR)

After decades of little innovation, biotech finally has a bevy of new drug candidates to treat psychiatric illnesses. “This is a renaissance in neuroscience.” (Stat)

The weird way Alabama’s embryo ruling takes on artificial wombs

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

A ruling by the Alabama Supreme Court last week that frozen embryos stored in labs count as children is sending “shock waves” through the fertility industry and stoking fears that in vitro fertilization is getting swept up into the abortion debate.

The New York Times reports that one clinic, at the University of Alabama, has stopped fertilizing eggs in its laboratory, fearing potential criminal prosecution.

Fertility centers create millions of embryos a year. Some are frozen and others used in research, but most are intended to be transplanted into patients’ wombs so they can get pregnant. 

The Alabama legal ruling is clearly animated by religion—there are lots of Bible quotes and references to “murder” when discussing abortion. But what hasn’t gotten as much notice is the court’s specific argument that an embryo is a child “regardless of its location.” This could have implications for future technologies in development, such as artificial wombs or synthetic embryos made from stem cells. 

The case arose from an incident at an Alabama IVF clinic, the Center for Reproductive Medicine, in which a patient wandered into a storage area and removed a container of embryos from liquid nitrogen. 

That’s when “the subzero temperatures at which the embryos had been stored freeze-burned the patient’s hand, causing the patient to drop the embryos on the floor,” the decision recounts. The embryos, consisting of just a few cells, thawed out and died.

Angered by the mishap, some families then tried to collect financial damages. They sued under Alabama’s Wrongful Death of a Minor statute, which was first written in 1872, long before test-tube babies.

The question the court felt it had to decide: Do frozen embryos count as minor children or not? 

The defendants argued, in part, that an IVF embryo can’t be a child or a person because it’s not yet in a biological womb. No womb, no baby, no birth, and no child. And this is where things start to get interesting and spiral into science fiction territory. 

Justice Jay Mitchell, writing for the majority, pounced on what he called the “latent implication” of the defense’s argument. What about a baby growing to term an artificial womb? Would it also not count as a person, he asked, just because it’s not “in utero”?

According to their ruling, the wrongful-death act “applies to all unborn children, regardless of their location,” and “no exception” can be made for embryos regardless of their age, even if they’ve been in deep freeze for a decade. Nor does the law exclude any type of “extrauterine children” science can conceive.

It’s common for judges to wrestle with complex questions as they try to apply old laws to new technology. But what’s so unusual about this decision is that the judges ended up ruling on technology that hasn’t been fully invented.

“I think the opinion is really extraordinary,” says Susan Wolf, a professor of law and medicine at the University of Minnesota. “I can’t think of another case where a court powered its ruling by looking not only at technology not actually before the court, but number two, that doesn’t exist in human beings. They can’t make a binding decision about future technology that is not even part of the case.” 

Bad law or not, the question the Alabama justices ruled on could soon be a real one. Several companies are actually developing artificial wombs to keep very premature infants alive, and other research labs are working with fluid-filled bottles in which they’ve grown mouse embryos until they are fetuses with beating hearts. 

One startup company in Israel, Renewal Bio, says it wants to grow synthetic human embryos (the kind formed by stem cells) until they are 40 days old, or more, in order to collect their tissue for transplant medicine. 

All this technology is racing along, so the question of the moral and legal rights of incubated human fetuses might not be hypothetical for very long. 

Among the dilemmas lawyers and doctors could face: If a fetus is growing in a tank, would a decision to shut off its support systems be protected under liberal states’ abortion laws, which are typically based on the rights of a pregnant person? Would a fetus engineered solely to grow organs, lacking a brain cortex and without sentience, also still be considered a child in Alabama?

So while it’s obvious that the Alabama decision reflects the justices’ religious views rather than science, and that it could hurt people who just want to have a baby, maybe it is time to think about what the court calls the “many difficult questions” the wrongful-death case has raised about “the ethical status of extrauterine children.”


Now read the rest of The Checkup

For the first time, you can easily order GMOs to plant at home. The biotech plants on sale include a bright-purple tomato and a petunia plant that glows in the dark. (MIT Technology Review)

From MIT Technology Review’s archives

Last fall, my colleague Cassandra Willyard told us everything we need to know about artificial wombs. The experimental devices, she explained, are being developed to give premature babies more time to develop. So far, they’ve been tested on lambs, but human studies are being planned.

Another kind of artificial womb is used to keep very early embryos developing longer in the lab. A startup based in Israel called Renewal Bio says it hopes to grow “synthetic” human embryos this way longer than ever before as a way of bio-printing organs. 

After the US Supreme Court overturned abortion protections in 2022, several American states moved to ban the practice. Anticipating that people may seek abortions anyway, we explained how to end a pregnancy with pills ordered from an online pharmacy. 

Around the web

Elon Musk announced on X that the first volunteer to receive a brain implant from his company Neuralink can control a computer with it and can “move a mouse around the screen just by thinking.” Some commentators are annoyed at Musk for grabbing publicity while revealing few details about the study. (Wired

China is the country with the world’s largest population. It has the most obese people—about 200 million of them. But new weight-loss drugs are in short supply there. (WSJ)