Drugs like Ozempic now make up 5% of prescriptions in the US

US doctors write billions of prescriptions each year. During 2024, though, one type of drug stood out—“wonder drugs” known as GLP-1 agonists.

As of September, one of every 20 prescriptions written for adults was for one of these drugs, according to the health data company Truveta.

The drugs, which include Wegovy, Mounjaro, and Victoza, are used to treat diabetes, since they help generate insulin. But their popularity exploded after scientists determined the drugs tell your brain you’re not hungry. Without those hunger cues, people find they can lose 10% of their body weight, or even more.

During 2024, the drugs’ popularity hit an all-time high, according to Tricia Rodriguez, a principal applied scientist at Truveta, which studies medical records of 120 million Americans, or about a third of the population.

“Among adults, 5.4% of all prescriptions in September 2024 were for GLP-1s,” Rodriguez says. That is up from 3.5% a year earlier, in 2023, and 1% at the start of 2021.

According to Truveta’s data, people who get prescriptions for these drugs are younger, whiter, and more likely to be female. In fact, women are twice as likely as men to get a prescription.

Yet not everyone who’s prescribed the drugs ends up taking them. In fact, Rodriguez says, half the new prescriptions for obesity are going unfilled.

That’s very unusual, she says, and could be due to shortages or sticker shock over the cost of the treatment. Many insurers don ’t cover weight-loss drugs, and the out-of-pocket price can be $1,300 a month, according to USA Today.

“For most medications, prescribing rates and dispensing rates are pretty much identical,” says Rodriguez. “But for GLP-1s, we see this gap, which is really unique. It’s suggestive that people are really interested in getting these medications, but for whatever reason, they are not always able to.”

It also means the number of people taking these drugs could go higher—maybe much higher—if insurers would pay. “I don’t think that we are at the saturation point, or necessarily nearing the saturation point,” says Rodriguez, noting that around 70% of Americans are overweight or obese.

Use of the drugs may also grow dramatically if new applications are found. Companies are already exploring whether they can treat addiction, or even Alzheimer’s.

Many of the clues about those potential uses are coming directly out of people’s medical records. Because so many people are on the drugs, it means researchers like Rodriguez have a gold mine to sift through for signs of how use of the drugs is affecting other health problems.

“Because we have so many patients that are on these medications, you’re certainly likely to have a good number that also have all of these other conditions,” she says. “One of the things we’re excited about is: How can real-world data help accelerate how quickly we can understand those?”

Here are some of the new uses of GLP-1 drugs that are being explored, based on hints from real-world patient records.

Alzheimer’s disease

This year, researchers poking through records of a million people found that taking semaglutide (sold as Wegovy and Ozempic) was associated with a 40% to 70% lower chance of an Alzheimer’s diagnosis.

It’s still a guess why the drugs might be helping (or whether they really do), but large international studies are underway to follow up on the lead. Doctors are recruiting people with early Alzheimer’s in more than 30 countries who will take either a placebo or semaglutide for two years. Then we’ll see how much their dementia has progressed.

Addiction

The anecdotes are everywhere: A person on a weight-loss drug finds hunger isn’t the only craving that seems to stop.

Those are the types of clues Eli Lilly’s CEO, David Ricks, says his company will pursue next year, testing whether its GLP-1 drug, tirzepatide (called Mounjaro for diabetes treatment, and Zepbound for weight loss), could help with addiction to alcohol, nicotine, and “other things we don’t think about [as being] connected to weight.”

In comments he made in December, Ricks said the drugs might be “anti-hedonics”—meaning they counteract our hedonistic pursuit of pleasure, be it from food, alcohol, or drugs. A study this year mining digital health records found that opioid addicts taking the drugs were about half as likely to have had an overdose.

Sleep apnea

This idea goes back a ways, including to a 2015 case study of a 260-pound man with diabetes and sleep apnea. When he went on the drug liraglutide, doctors noticed that his sleeping improved.

In sleep apnea, a person gasps for air at night—it’s annoying and, with time, causes health problems.  This year, Eli Lilly published a study in the New England Journal of Medicine on its drug tirzepatide , finding that it caused a 50% decrease in breathing interruption in overweight patients with sleep apnea.

Longevity

This year, the U.S. Food and Drug Administration approved Wegovy as a cardiovascular medicine, after researchers showed the drugs could reduce heart attack and stroke in overweight people.

But that wasn’t all. The study, involving 17,000 people, found that the drug reduced the overall chance someone would die for any reason (known as “all-cause mortality”) by 19%.

That now has aging researchers paying attention. This year they named Wegovy, and drugs like it, among their the top four candidates for a general life-extension drug.

A woman in the US is the third person to receive a gene-edited pig kidney

Towana Looney, a 53-year-old woman from Alabama, has become the third living person to receive a kidney transplant from a gene-edited pig. 

Looney, who donated one of her kidneys to her mother back in 1999, developed kidney failure several years later following a pregnancy complication that caused high blood pressure. She started dialysis treatment in December of 2016 and was put on a waiting list for a kidney transplant soon after, in early 2017. 

But it was difficult to find a match. So Looney’s doctors recommended the experimental pig organ as an alternative. After eight years on the waiting list, Looney was authorized to receive the kidney under the US Food and Drug Administration’s expanded access program, which allows people with serious or life-threatening conditions to try experimental treatments.

The pig in question was developed by Revivicor, a United Therapeutics company. The company’s technique involves making 10 gene edits to a pig cell. The edits are made to prevent too much organ growth, curb inflammation, and, importantly, stop the recipient’s immune system from rejecting the organ. The edited pig cell is then placed into a pig egg cell that has had its nucleus removed, and the egg is transferred to the uterus of a sow, which eventually gives birth to a gene-edited piglet.

JOE CARROTTA FOR NYU LANGONE HEALTH

In theory, once the piglet has grown, its organs can be used for human transplantation. Pig organs are similar in size to human ones, after all. A few years ago, David Bennett Sr. became the first person to receive a heart transplant from such a pig. He died two months after the operation, and the heart was later found to have been infected with a pig virus.

Richard Slayman was the first person to get a gene-edited pig kidney, which he received in early 2024. He died two months after his surgery, although the hospital treating him said in a statement that it had “no indication that it was the result of his recent transplant.” In April, Lisa Pisano was reported to be the second person to receive such an organ. Pisano also received a heart pump alongside her kidney transplant. Her kidney failed because of an inadequate blood supply and was removed the following month. She died in July.

Looney received her pig kidney during a seven-hour operation that took place at NYU Langone Health in New York City on November 25. The surgery was led by Jayme Locke of the US Health Resources & Services Administration and Robert Montgomery of the NYU Langone Transplant Institute.

Looney was discharged from the hospital 11 days after her surgery, to an apartment in New York City. She’ll stay in New York for another three months so she can check in with doctors at the hospital for evaluations.

“It’s a blessing,” Looney said in a statement. “I feel like I’ve been given another chance at life. I cannot wait to be able to travel again and spend more quality time with my family and grandchildren.”

Looney’s doctors are hopeful that her kidney will last longer than those of her predecessors. For a start, Looney was in better health to begin with—she had chronic kidney disease and required dialysis, but unlike previous recipients, she was not close to death, Montgomery said in a briefing. He and his colleagues plan to start clinical trials within the next year.

There is a huge unmet need for organs. In the US alone, there more than 100,000 people are waiting for one, and 17 people on the waiting list die every day. Researchers hope that gene-edited animals might provide a new source of organs for such individuals.

Revivicor isn’t the only company working on this. Rival company eGenesis, which has a different approach to gene editing, has used CRISPR to create pigs with around 70 gene edits

“Transplant is one of the few therapies that can cure a complex disease overnight, yet there are too few organs to provide a cure for all in need,” Locke said in a statement. “The thought that we may now have a solution to the organ shortage crisis for others who have languished on our waiting lists invokes the most welcome of feelings: pure joy!”

Today, Looney is the only person living with a pig organ. “I am full of energy. I got an appetite I’ve never had in eight years,” she said at a briefing. “I can put my hand on this kidney and feel it buzzing.”

This story has been updated with additional information after a press briefing.

Donating embryos for research is surprisingly complex

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

There’s a new film about IVF out on Netflix. And “everyone in the field [of reproductive medicine] has watched it,” according to one embryologist I spoke to recently. Joy is a lovely watch about the birth of the field, thanks to the persistent efforts of Robert Edwards, Jean Purdy, and Patrick Steptoe in the face of significant opposition.

The team performed much of their key research during the 1960s and ’70s. And Louise Brown, the first “test tube baby” (as she was called at the time), was born in 1978. It’s remarkable to think that within 40 years of that milestone, another 8 million babies had been born through IVF. Today, it is estimated that over 12 million babies have resulted from IVF, and that the use of reproductive technology accounts for over 2% of births in the US.

IVF is a success story for embryo research. But today, valuable embryos that could be used for research are being wasted, say researchers who gathered at a conference in central London earlier this week.

The conference was organized by the Progress Educational Trust, a UK-based charity that aims to provide information to the public on genomics and infertility. The event marked 40 years since the publication of the Warnock Report, which followed a governmental inquiry into infertility treatment and embryological research. The report is considered to be the first to guide recognition of the embryo’s “special” status in law and helped establish regulation of the nascent technology in the UK.

The report also endorsed the “14-day rule,” which limits the growth of embryos in a lab to this two-week point. The rule, since adopted around the world, is designed to prevent scientists from growing embryos to the point where they develop a structure called the primitive streak. At this point, the development of tissues and organs begins, and the embryo is no longer able to split to form twins. 

The embryos studied in labs have usually been created for IVF but are no longer needed by the people whose cells created them. Those individuals might have completed their families, or they might not be able to use the embryos because their circumstances have changed. Sometimes the embryos have genetic abnormalities that make them unlikely to survive a pregnancy.

These embryos can be used to learn more about how humans develop before birth, and to discover potential treatments for developmental disorders like spina bifida or heart defects, for example. Research on embryos can help reveal clues about our fundamental biology, and provide insight into pregnancy and miscarriage.

A survey conducted by the Human Fertility and Embryology Authority, which regulates reproductive technology in the UK, found that the majority of patients would rather donate their embryos to research than allow them to “perish,” Geraldine Hartshorne, director of the Coventry Centre for Reproductive Medicine, told the audience.

Despite this, the number of embryos donated for research in the UK has dropped steeply over the last couple of decades, from 17,925 in 2004 to 675 in 2019—a surprising decline considering that the number of IVF cycles performed increased steadily over the same period. 

There are a few reasons why embryos aren’t making it into research labs, says Hartshorne. Part of the problem is that most IVF cycles happen at clinics that don’t have links with academic research centers.

As things stand, embryos tend to be stored at the clinics where they were created. It can be difficult to get them to research centers—clinic staff don’t have the time, energy, or head space to manage the paperwork legally required to get embryos donated to specific research projects, said Hartshorne. It would make more sense to have some large, central embryo bank where people could send embryos to donate for research, she added.

A particular problem is the paperwork. While the UK is rightly praised for its rigorous approach to regulation of reproductive technologies, which embryologists around the globe tend to describe as “world-leading,” there are onerous levels of bureaucracy to contend with, said Hartshorne. “When patients contact me and say ‘I’d like to give my embryos or my eggs to your research project,’ I usually have to turn them away, because it would take me a year to get through the paperwork necessary,” she said.

Perhaps there’s a balance to be struck. Research on embryos has the potential to be hugely valuable. As the film Joy reminds us, it can transform medical practice and change lives.

“Without research, there would be no progress, and there would be no change,” Hartshorne said. “That is definitely not something that I think we should aspire to for IVF and reproductive science.”


Now read the rest of The Checkup

Read more from MIT Technology Review‘s archive

Scientists are working on ways to create embryos from stem cells, without the use of eggs or sperm. How far should we allow these embryo-like structures to develop

Researchers have implanted these “synthetic embryos” in monkeys. So far, they’ve been able to generate a short-lived pregnancy-like response … but no fetuses.

Others are trying to get cows pregnant with synthetic embryos. Reproductive biologist Carl Jiang’s first goal is to achieve a cow pregnancy that lasts 30 days. 

Several startups are using robots to fertilize eggs with sperm to create embryos. Two girls are the first people to be born after robot-assisted fertilization, says the team behind the work. 

From around the web

Mexico’s Sinaloa cartel is recruiting young chemistry students from colleges to make fentanyl. Specifically, the students are being tasked with the often dangerous job of trying to synthesize precursor chemicals that must currently be imported. They also try to design stronger versions of the drug that are more likely to get users hooked. (New York Times)

Billionaire Greg Lindberg is running his own “baby project.” Having duped, misled, and paid off a series of egg donors and surrogates, the disgraced insurance tycoon currently has 12 children, nine of whom were born in the last five years or so. He is the sole parent caring for eight of them, despite facing significant jail time since being convicted of bribery and pleading guilty to money laundering and fraud conspiracy charges for crimes unrelated to the baby project. The scale of his project is an indictment of the US fertility industry. (Bloomberg Businessweek)

The UK government has agreed to a contract for more than 5 million doses of a vaccine designed to protect people from the H5 bird flu virus. The vaccine is being procured as part of pandemic preparedness plans and will be used only if the virus starts spreading among humans. (UK Health Security Agency)

Last week, MPs voted in favor of a bill to legalize assisted dying in England and Wales. In the past few months, the debate over the bill has included horror stories of painful deaths. Most deaths are “ordinary,” but we all stand to benefit from talking about, and understanding, what death involves. (New Statesman)

An unknown disease has killed 143 people in southwest Congo, according to local authorities. The number of infections continues to rise, and the situation is extremely worrying. (Reuters)

Brian Thompson, the 50-year-old CEO of US health insurance company UnitedHealthcare, was fatally shot in New York city on Wednesday. The New York Times is reporting that bullet casings found at the scene appear to have been marked with the words “delay” and “deny.” The words may refer to strategies used by insurance companies to avoid covering healthcare costs. (New York Times)

The risk of a bird flu pandemic is rising

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

How worried should we be about bird flu? It’s a question that I’ve been asked by friends and colleagues several times over the last couple of weeks. Their concerns have been spurred by some potentially worrisome developments in the US, including the continued spread of the virus among dairy cattle, the detection of the virus in a pig as well as cow’s milk, and—most concerning of all—the growing number of human infections.

I’ll admit that I’m worried. We don’t yet have any evidence that the virus is spreading between people, but the risk of a potential pandemic has increased since I last covered this topic a couple of months ago.

And once you combine that increased risk with an upcoming change in presidential administration that might leave US health agencies in the hands of a vaccine denier who promotes the consumption of raw milk, well … it’s not exactly a comforting thought.

The good news is we are in a much better position to tackle any potential future flu outbreaks than we were to face covid-19 back in 2020, given that we already have vaccines. But, on the whole, it’s not looking great.

The bird flu that is currently spreading in US dairy cattle is caused by the H5N1 virus. The virus is especially lethal to some bird populations and has been wiping out poultry and seabirds for the last couple of years. It has also caused fatal infections in many mammals who came into contact with those birds.

H5N1 was first detected in a dairy cow in Texas in March of this year. As of this week, the virus has been reported in 675 herds across 15 states, according to the US Department of Agriculture’s Animal and Plant Health Inspection Service (also known as APHIS).

Those are just the cases we know about. There may be more. The USDA requires testing of cattle before they are moved between states. And it offers a voluntary testing program for farmers who want to know if the virus is present in their bulk milk tanks. But participation in that program is optional.

States have their own rules. Colorado has required testing of bulk milk tanks in licensed dairy farms since July. The Pennsylvania Department of Agriculture announced plans for a program just last week. But some states have no such requirements.

At the end of October, the USDA reported that the virus had been detected in a pig for the first time. The pig was one of five in a farm in Oregon that had “a mix of poultry and livestock.” All the pigs were slaughtered.

Virologists have been especially worried about the virus making its way into pigs, because these animals are notorious viral incubators. “They can become infected with swine strains, bird strains and human strains,” says Brinkley Bellotti, an infectious disease epidemiologist at Wake Forest University in North Carolina. These strains can swap genes and give rise to new, potentially more infectious or harmful strains.

Thankfully, we haven’t seen any other cases in pig farms, and there’s no evidence that the virus can spread between pigs. And while it has been spreading pretty rapidly between cattle, the virus doesn’t seem to have evolved much, says Seema Lakdawala, a virologist at the Emory University School of Medicine in Atlanta, Georgia. That suggests that the virus made the leap into cattle, probably from birds, only once. And it has been spreading through herds since.

Unfortunately, we still don’t really know how it is spreading. There is some evidence to suggest the virus can be spread from cow to cow through shared milking equipment. But it is unclear how the virus is spreading between farms. “It’s hard to form an effective control strategy when you don’t know exactly how it’s spreading,” says Bellotti.

But it is in cows. And it’s in their milk. When scientists analyzed 297 samples of Grade A pasteurized retail milk products, including milk, cream and cheese, they found viral RNA from H5N1 in 20% of them. Those samples were collected from 17 states across the US. And the study was conducted in April, just weeks after the virus was first detected in cattle. “It’s surprising to me that we are totally fine with … our pasteurized milk products containing viral DNA,” says Lakdawala.

Research suggests that, as long as the milk is pasteurized, the virus is not infectious. But Lakdawala is concerned that pasteurization may not inactivate all of the virus, all the time. “We don’t know how much virus we need to ingest [to become infected], and whether any is going to slip through pasteurization,” she says.

And no reassurances can be made for unpasteurized raw milk. When cows are infected with H5N1, their milk can turn thick, yellow and “chunky.” But research has shown that, even when the milk starts to look normal again, it can still contain potentially infectious virus.

The most concerning development, though, is the rise in human cases. So far, 55 such cases of H5N1 bird flu have been reported in the US, according to the US Centers for Disease Control and Prevention (CDC). Twenty-nine of those cases have been detected in California. In almost all those cases, the infected person is thought to have caught the virus from cattle or poultry on farms. But in two of those cases, the source of the infection is unknown.

Health professionals don’t know how a teenager in British Columbia, Canada, got so sick with bird flu, either. The anonymous teenager, who sought medical care for an eye infection on November 2, is still seriously ill in hospital, and continues to rely on a ventilator to breathe. Local health officials have closed their investigation into the teen’s infection.

There may be more, unreported cases out there, too. When researchers tested 115 dairy farm workers in Michigan and Colorado, they found markers of recent infection with the virus in 7% of them.

So far, there is no evidence that the virus can spread between people. But every human infection offers the virus another opportunity to evolve into a form that can do just that. People can act as viral incubators, too. And during flu season, there are more chances for the H5N1 virus to mix with circulating seasonal flu viruses

“Just because we [haven’t seen human-to-human spread] now doesn’t mean that it’s not capable of happening, that it won’t happen, or that it hasn’t already happened,” says Lakdawala.

So where do we go from here? Lakdawala thinks we should already have started vaccinating dairy farm workers. After all, the US has already stockpiled vaccines for H5N1, which were designed to protect against previous variants of the virus. “We’re not taking [the human cases] seriously enough,” she says.

We need to get a better handle on exactly how the virus is spreading, too, and implement more effective measures to stop it from doing so. That means more testing of both cows and dairy farm workers at the very least. And we need to be clear that, despite what Robert F. Kennedy Jr., the current lead contender for the role of head of the US Department of Health and Human Services, says, raw milk can be dangerous, and vaccines are a vital tool in the prevention of pandemics.

We still have an opportunity to prevent the outbreak from turning into a global catastrophe. But the situation has worsened since the summer. “This is sort of how the 2009 pandemic started,” says Lakdawala, referring to the H1N1 swine flu pandemic. “We started to have a couple of cases sporadically, and then the next thing you knew, you were seeing it everywhere.”


Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

The US is planning to stockpile millions of doses of H5N1 vaccines. But our current approach to making flu vaccines is slow and cumbersome. New vaccines that don’t rely on the use of eggs, or make use of mRNA, might offer a better alternative.

Flu season is already underway in the US, where bird flu is spreading among cattle. That has virologists worried that a person infected with both viruses could unwittingly incubate an all-new strain of the virus.

Robert F. Kennedy Jr. has already spread harmful misinformation, pseudoscience and fringe theories about AIDS and covid-19.

Some researchers are exploring new ways to prevent the spread of H5N1 in poultry. The gene editing tool CRISPR could be used to help make chickens more resistant to the virus, according to preliminary research published last year.

From around the web

President-elect Donald Trump has chosen Jay Bhattacharya for his pick to lead the US National Institutes of Health, an agency with a $48 billion budget that oversees the majority of medical research in the country. Bhattacharya was one of three lead authors of the Great Barrington Declaration, a manifesto published in 2020 arguing against lockdowns during the height of the covid-19 pandemic, and supporting a “let it rip” approach instead. (STAT)

An IVF mix up left two families raising each other’s biological babies. They didn’t realize until the children were a couple of months old. What should they do? (Have the tissues ready for this one, which is heartbreaking and heartwarming in equal measure) (New York Times)

Why do we feel the need to surveil our sleeping babies? This beautiful comic explores the various emotional pulls experienced by new parents. (The Verge)

Australia’s parliament has passed a law that bans children under the age of 16 from using social media. Critics are concerned that the law is a “blunt instrument” that might drive young teens to the dark web, or leave them feeling isolated. (The Guardian)

Lab-grown foie gras, anyone? Cultivated meat is going high-end, apparently. (Wired)

Who should get a uterus transplant? Experts aren’t sure.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Earlier this year, a boy in Sweden celebrated his 10th birthday. Reproductive scientists and doctors marked the occasion too. This little boy’s birth had been special. He was the first person to be born from a transplanted uterus.

The boy was born in 2014 after his mother, a 35-year-old woman who had been born without a uterus, received a donated uterus from a 61-year-old close family friend. At the time, she was one of only 11 women who had undergone the experimental procedure.

A decade on, over 135 uterus transplants have been performed globally, resulting in the births of over 50 healthy babies. The surgery has had profound consequences for these families—the recipients would not have been able to experience pregnancy any other way.

But legal and ethical questions continue to surround the procedure, which is still considered experimental. Who should be offered a uterus transplant? Could the procedure ever be offered to transgender women? And if so, who should pay for these surgeries?

These issues were raised at a recent virtual event run by Progress Educational Trust, a UK-based charity that aims to provide information to the public on genomics and infertility. One of the speakers was Mats Brännström, who led the team at the University of Gothenburg that performed the first successful transplant.

For Brännström, the story of uterus transplantation begins in 1998. While traveling in Australia, he said, he met a 27-year-old woman called Angela, who longed to be pregnant but lacked a functional uterus. She suggested to Brännström that her mother could donate hers. “I was amazed I hadn’t thought of it before,” he said.

According to Brännström, around 1 in 500 women experience infertility due to what’s known as absolute uterine factor infertility, or AUFI, meaning they do not have a functional uterus. Uterus transplants could offer them a way to get pregnant.

His meeting with Angela kick-started a research project that started in mice and eventually moved on to pigs, sheep, and baboons. Brännström’s team started performing uterus transplants in women as part of a small clinical trial in 2012. In that trial, all the donors were living, and in many cases they were the mothers or aunts of the recipients.

The surgeries ended up being more complicated than he had anticipated, said Brännström. The operation to remove a donor’s uterus was expected to take between three and four hours. It ended up taking between eight and 11 hours.  

In that first trial, Brännström’s team transplanted uteruses into nine women, each of whom had IVF to create and store embryos beforehand. The woman who was the first to give birth had IVF over a 12-month period, which ended six months before her surgery. It took a little over 10 hours to remove the uterus from the donor, and just under five hours to stitch it into the recipient.

The recipient started getting her period 43 days after her transplant. Doctors transferred one of her embryos into the uterus a year after her surgery. Three weeks later, a pregnancy test confirmed she was pregnant.

At 31 weeks, she was admitted to hospital with preeclampsia, a serious medical condition that can develop during pregnancy, and her baby was delivered by C-section 16 hours later. She was discharged from hospital after three days, although the baby spent 16 days in the hospital’s neonatal unit.

Despite those difficulties, her story is considered a success. Other uterus recipients have also experienced pregnancy complications, and some have had surgical complications. And all transplant recipients must adhere to a regimen of immunosuppressant drugs, which can have side effects.

The uteruses aren’t intended to last forever, either. Surgeons remove them once the recipients have completed their families, often after one or two children. The removal is also a significant operation.

Given all that, uterus transplants are not to be taken lightly. And there are other paths to parenthood. Some ethicists are concerned that in pursuing uterus transplantation as a fertility treatment, we might reinforce ideas that define a woman’s value in terms of her reproductive potential, Natasha Hammond-Browning, a legal scholar at Cardiff University in Wales, said at the event. “There is debate around whether we should be giving greater preference to adoption, to surrogacy, and to supporting children who already exist and who need care,” she said.

We also need to consider whether there is a “right to gestate,” and if there is, who has that right, said Hammond-Browning. And these concerns need to be balanced with the importance of reproductive autonomy—the idea that people have the right to decide and control their own reproductive efforts.

Further questions remain over whether uterus transplants might ever be an option for trans women, who not only lack a uterus but also have a different pelvic anatomy. I asked the speakers if the surgery might ever be feasible. They weren’t hugely optimistic that it would, at least in the near future.

“I personally think that the transgender community have been given … false hope for responsible transplantation in the near future,” was the response of J. Richard Smith of Imperial College London, who co-led the first uterus transplant performed in the UK. Even cisgender women who have needed surgery to create “neovaginas” aren’t eligible for the uterus transplants his team are offering as part of a clinical study. They have an altered vaginal microbiome that appears to increase the risk of miscarriage, he said.

“There is a huge amount of work to be done before this work can be translated to the transgender community,” Smith said. Brännström agreed but added that he thinks the surgery will be available at some point—just after a lot more research.

And then there are the legal and ethical questions, none of which have easy answers. Hammond-Browning pointed out that clinical teams would first need to determine what the goal of such an operation would be. Is it about reproduction or gender realignment, for example? And how might that goal influence decisions over who should get a donated uterus, and why?

Considering only 135 human uterus transplants have ever been carried out, we still have a lot to learn about the best way to perform them. (For context, more than 25,000 kidney transplants were carried out in 2023 in the US alone.) Researchers are still figuring out how uteruses from deceased donors differ from those of living ones, and how to minimize complications in young, healthy women. Since that little boy was born 10 years ago, only 50 other children have been born in a similar way. It’s still early days.


Now read the rest of The Checkup

Read more from MIT Technology Review

The first birth following the transplantation of a uterus from a dead donor happened in 2017. A team in Brazil transferred the uterus of a 45-year-old donor, who had died from a brain hemorrhage, to a 32-year-old recipient born without a uterus. 

Researchers are working on artificial wombs—“biobags” designed to care for premature babies. They have been tested on lambs and piglets. Now FDA advisors are figuring out how to move the technology into human trials

An alternative type of artificial womb is being used to grow mouse embryos. Jacob Hanna at the Weizmann Institute of Science and his colleagues say they’ve been able to grow embryos in this environment for 11 or 12 days—around half the animal’s gestational period. 

Research is underway to develop new fertility options for transgender men. Some of these men are put off by existing approaches, which tend to involve pausing hormone therapy and undergoing potentially distressing procedures. 

From around the web

People on Ozempic, Wegovy, and similar drugs are losing their appetite for sugary, ultraprocessed foods. The food industry will have to adapt. (TIL Nestlé has already started a line of frozen meals targeted at people on these weight-loss drugs.) (The New York Times Magazine)

People who have a history of obesity can find it harder to lose weight. That might be because the fat cells in our bodies seem to “remember” that history and have an altered response to food. (The Guardian)

Robert F. Kennedy Jr. took leave as chairman of Children’s Health Defense, a nonprofit known for spreading doubt about vaccines, to run for US president last year. But he is still involved in legal cases filed by the group. And several of its cases remain open, including ones against the Food and Drug Administration, the Centers for Disease Control and Prevention, and the National Institutes of Health—all agencies Kennedy would lead if his nomination for head of Health and Human Services is confirmed. (STAT)

Researchers are among the millions of new users of Bluesky, a social media alternative to X (formerly known as Twitter). “There is this pent-up demand among scientists for what is essentially the old Twitter,” says one researcher who found that the number of influential scientists using the platform doubled between August and November. (Science

Since 2016, a team of around 100 scientists have been working to catalogue the 37 trillion or so cells in the human body. This week, the Human Cell Atlas published a collection of studies that represents a significant first step toward that goal—including maps of cells in the nervous system, lungs, heart, gut, and immune system. (Nature)

Why the term “women of childbearing age” is problematic

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Every journalist has favorite topics. Regular Checkup readers might already know some of mine, which include the quest to delay or reverse human aging, and new technologies for reproductive health and fertility. So when I saw trailers for The Substance, a film centered on one middle-aged woman’s attempt to reexperience youth, I had to watch it.

I won’t spoil the movie for anyone who hasn’t seen it yet (although I should warn that it is not for the squeamish, or anyone with an aversion to gratuitous close-ups of bums and nipples). But a key premise of the film involves harmful attitudes toward female aging.

“Hey, did you know that a woman’s fertility starts to decrease by the age of 25?” a powerful male character asks early in the film. “At 50, it just stops,” he later adds. He never explains what stops, exactly, but to the viewer the message is pretty clear: If you’re a woman, your worth is tied to your fertility. Once your fertile window is over, so are you.

The insidious idea that women’s bodies are, above all else, vessels for growing children has plenty of negative consequences for us all. But it has also set back scientific research and health policy.

Earlier this week, I chatted about this with Alana Cattapan, a political scientist at the University of Waterloo in Ontario, Canada. Cattapan has been exploring the concept of “women of reproductive age”—a descriptor that is ubiquitous in health research and policy.

The idea for the research project came to her when the Zika virus was making headlines around eight years ago. “I was planning on going to the Caribbean for a trip related to my partner’s research, and I kept getting advice that women of reproductive age shouldn’t go,” she told me. At the time, Zika was being linked to microcephaly—unusually small heads—in newborn babies. It was thought that the virus was affecting key stages of fetal development.

Cattapan wasn’t pregnant. And she wasn’t planning on becoming pregnant at the time. So why was she being advised to stay away from areas with the virus?

The experience got her thinking about the ways in which attitudes toward our bodies are governed by the idea of potential pregnancy. Take, for example, biomedical research on the causes and treatment of disease. Women’s health has lagged behind men’s as a focus of such work, for multiple reasons. Male bodies have long been considered the “default” human form, for example. And clinical trials have historically been designed in ways that make them less accessible for women.

Fears about the potential effects of drugs on fetuses have also played a significant role in keeping people who have the potential to become pregnant out of studies. “Scientific research has excluded women of ‘reproductive age,’ or women who might potentially conceive, in a blanket way,” says Cattapan. “The research that we have on many, many drugs does not include women and certainly doesn’t include women in pregnancy.”  

This lack of research goes some way to explaining why women are much more likely to experience side effects from drugs—some of them fatal. Over the last couple of decades, greater effort has been made to include people with ovaries and uteruses in clinical research. But we still have a long way to go.

Women are also often subjected to medical advice designed to protect a potential fetus, whether they are pregnant or not. Official guidelines on how much mercury-containing fish it is safe to eat can be different for “women of childbearing age,” according to the US Environmental Protection Agency, for example.  And in 2021, the World Health Organization used the same language to describe people who should be a focus of policies to reduce alcohol consumption

The takeaway message is that it’s women who should be thinking about fetal health, says Cattapan. Not the industries producing these chemicals or the agencies that regulate them. Not even the men who contribute to a pregnancy. Just women who stand a chance of getting pregnant, whether they intend to or not. “It puts the onus of the health of future generations squarely on the shoulders of women,” she says.

Another problem is the language itself. The term “women of reproductive age” typically includes women between 15 and 44. Women at one end of that spectrum will have very different bodies and a very different set of health risks from those at the other. And the term doesn’t account for people who might be able to get pregnant but don’t necessarily identify as female.

In other cases it is overly broad. In the context of the Zika virus, for example, it was not all women between the ages of 15 and 44 who should have considered taking precautions. The travel advice didn’t apply to people who’d had hysterectomies or did not have sex with men, for example, says Cattapan. “Precision here matters,” she says. 

More nuanced health advice would be helpful in cases like these. Guidelines often read as though they’re written for people assumed to be stupid, she adds. “I don’t think that needs to be the case.”

Another thing

On Thursday, president-elect Donald Trump said that he will nominate Robert F. Kennedy Jr. to lead the US Department of Health and Human Services. The news was not entirely a surprise, given that Trump had told an audience at a campaign rally that he would let Kennedy “go wild” on health, “the foods,” and “the medicines.”

The role would give Kennedy some control over multiple agencies, including the Food and Drug Administration, which regulates medicines in the US, and the Centers for Disease Control and Prevention, which coordinates public health advice and programs.

That’s extremely concerning to scientists, doctors, and health researchers, given Kennedy’s positions on evidence-based medicine, including his antivaccine stance. A few weeks ago, in a post on X, he referred to the FDA’s “aggressive suppression of psychedelics, peptides, stem cells, raw milk, hyperbaric therapies, chelating compounds, ivermectin, hydroxychloroquine, vitamins, clean foods, sunshine, exercise, nutraceuticals and anything else that advances human health and can’t be patented by Pharma.”  

“If you work for the FDA and are part of this corrupt system, I have two messages for you,” continued the post. “1. Preserve your records, and 2. Pack your bags.”

There’s a lot to unpack here. But briefly, we don’t yet have good evidence that mind-altering psychedelic drugs are the mental-health cure-alls some claim they are. There’s not enough evidence to support the many unapproved stem-cell treatments sold by clinics throughout the US and beyond, either. These “treatments” can be dangerous.

Health agencies are currently warning against the consumption of raw unpasteurized milk, because it might carry the bird flu virus that has been circulating in US dairy farms. And it’s far too simplistic to lump all vitamins together—some might be of benefit to some people, but not everyone needs supplements, and high doses can be harmful.

Kennedy’s 2021 book The Real Anthony Fauci has already helped spread misinformation about AIDS. Here at MIT Technology Review, we’ll continue our work reporting on whatever comes next. Watch this space.


Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

The tech industry has a gender problem, as the Gamergate and various #MeToo scandals made clear. A new generation of activists is hoping to remedy it

Male and female immune systems work differently. Which is another reason why it’s vital to study both women and female animals as well as males

Both of the above articles were published in the Gender issue of MIT Technology Review magazine. You can read more from that issue online here.

Women are more likely to receive abuse online. My colleague Charlotte Jee spoke to the technologists working on an alternative way to interact online: a feminist internet.

From around the web 

The scientific community and biopharma investors are reacting to the news of Robert F. Kennedy Jr.’s nomination to lead the Department of Health and Human Services. “It’s hard to see HHS functioning,” said one biotech analyst. (STAT)

Virologist Beata Halassy successfully treated her own breast cancer with viruses she grew in the lab. She has no regrets. (Nature)

Could diet influence the growth of endometriosis lesions? Potentially, according to research in mice fed high-fat, low-fiber “Western” diets. (BMC Medicine)

Last week, 43 female rhesus macaque monkeys escaped from a lab in South Carolina. The animals may have a legal claim to freedom. (Vox)

What’s next for reproductive rights in the US

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Earlier this week, Americans cast their votes in a seminal presidential election. But it wasn’t just the future president of the US that was on the ballot. Ten states also voted on abortion rights.

Two years ago, the US Supreme Court overturned Roe v. Wade, a legal decision that protected the right to abortion. Since then, abortion bans have been enacted in multiple states, and millions of people in the US have lost access to local clinics.

Now, some states are voting to extend and protect access to abortion. This week, seven states voted in support of such measures. And voters in Missouri, a state that has long restricted access, have voted to overturn its ban.

It’s not all good news for proponents of reproductive rights—some states voted against abortion access. And questions remain over the impact of a second term under former president Donald Trump, who is set to return to the post in January.

Roe v. Wade, the legal decision that enshrined a constitutional right to abortion in the US in 1973, guaranteed the right to an abortion up to the point of fetal viability, which is generally considered to be around 24 weeks of pregnancy. It was overturned by the US Supreme Court in the summer of 2022.

Within 100 days of the decision, 13 states had enacted total bans on abortion from the moment of conception. Clinics in these states could no longer offer abortions. Other states also restricted abortion access. In that 100-day period, 66 of the 79 clinics across 15 states stopped offering abortion services, and 26 closed completely, according to research by the Guttmacher Institute.

The political backlash to the decision was intense. This week, abortion was on the ballot in 10 states: Arizona, Colorado, Florida, Maryland, Missouri, Montana, Nebraska, Nevada, New York, and South Dakota. And seven of them voted in support of abortion access.

The impact of these votes will vary by state. Abortion was already legal in Maryland, for example. But the new measures should make it more difficult for lawmakers to restrict reproductive rights in the future. In Arizona, abortions after 15 weeks had been banned since 2022. There, voters approved an amendment to the state constitution that will guarantee access to abortion until fetal viability.

Missouri was the first state to enact an abortion ban once Roe v. Wade was overturned. The state’s current Right to Life of the Unborn Child Act prohibits doctors from performing abortions unless there is a medical emergency. It has no exceptions for rape or incest. This week, the state voted to overturn that ban and protect access to abortion up to fetal viability. 

Not all states voted in support of reproductive rights. Amendments to expand access failed to garner enough support in Nebraska, South Dakota, and Florida. In Florida, for example, where abortions after six weeks of pregnancy are banned, an amendment to protect access until fetal viability got 57% of the vote, falling just short of the 60% the state required for it to pass.

It’s hard to predict how reproductive rights will fare over the course of a second Trump term. Trump himself has been inconsistent on the issue. During his first term, he installed members of the Supreme Court who helped overturn Roe v. Wade. During his most recent campaign he said that decisions on reproductive rights should be left to individual states.

Trump, himself a Florida resident, has refused to comment on how he voted in the state’s recent ballot question on abortion rights. When asked, he said that the reporter who posed the question “should just stop talking about that,” according to the Associated Press.

State decisions can affect reproductive rights beyond abortion access. Just look at Alabama. In February, the Alabama Supreme Court ruled that frozen embryos can be considered children under state law. Embryos are routinely cryopreserved in the course of in vitro fertilization treatment, and the ruling was considered likely to significantly restrict access to IVF in the state. (In March, the state passed another law protecting clinics from legal repercussions should they damage or destroy embryos during IVF procedures, but the status of embryos remains unchanged.)

The fertility treatment became a hot topic during this year’s campaign. In October, Trump bizarrely referred to himself as “the father of IVF.” That title is usually reserved for Robert Edwards, the British researcher who won the 2010 Nobel prize in physiology or medicine for developing the technology in the 1970s.

Whatever is in store for reproductive rights in the US in the coming months and years, all we’ve seen so far suggests that it’s likely to be a bumpy ride.


Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

My colleague Rhiannon Williams reported on the immediate aftermath of the decision that reversed Roe v. Wade when it was announced a couple of years ago. 

The Alabama Supreme Court ruling on embryos could also affect the development of technologies designed to serve as “artificial wombs,” as Antonio Regalado explained at the time.

Other technologies are set to change the way we have babies. Some, which could lead to the creation of children with four parents or none at all, stand to transform our understanding of parenthood.  

We’ve also reported on attempts to create embryo-like structures using stem cells. These structures look like embryos but are created without eggs or sperm. There’s a “wild race” afoot to make these more like the real thing. But both scientific and ethical questions remain over how far we can—and—should go.

My colleagues have been exploring what the US election outcome might mean for climate policies. Senior climate editor James Temple writes that Trump’s victory is “a stunning setback for climate change.” And senior reporter Casey Crownhart explains how efforts including a trio of laws implemented by the Biden administration, which massively increased climate funding, could be undone.

From around the web

Donald Trump has said he’ll let Robert F. Kennedy Jr. “go wild on health.” Here’s where the former environmental lawyer and independent candidate—who has no medical or public health degrees—stands on vaccines, fluoride, and the Affordable Care Act. (New York Times)

Bird flu has been detected in pigs on a farm in Oregon. It’s a worrying development that virologists were dreading. (The Conversation)

And, in case you need it, here’s some lighter reading:

Scientists are sequencing the DNA of tiny marine plankton for the first time. (Come for the story of the scientific expedition; stay for the beautiful images of jellies and sea sapphires.) (The Guardian)

Dolphins are known to communicate with whistles and clicks. But scientists were surprised to find a “highly vocal” solitary dolphin in the Baltic Sea. They think the animal is engaging in “dolphin self-talk.” (Bioacoustics)

How much do you know about baby animals? Test your knowledge in this quiz. (National Geographic)

How exosomes could become more than just an “anti-aging” fad

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Over the past month or so, I’ve been working on a story about exosomes. You might have seen them advertised—they’re being touted as a hot new beauty treatment, a fountain of youth, and generally a cure-all therapy for a whole host of ailments.

Any cell biologist, though, will tell you what exosomes really are: tiny little blobs that bud off from cells and contain a mixture of proteins and other components. We’re not entirely clear what those components are or what they do, despite the promises made by medspas and cosmetic clinics charging thousands of dollars for exosome “therapies.” As one recipient of an exosome treatment told me, “I feel like it’s a little bit of health marketing bullshit.”

But there is some very exciting scientific research underway to better understand exactly what exosomes do. Scientists are exploring not only how these tiny particles might help cells communicate, but also how they might be used to diagnose or treat diseases. One company is trying to use exosomes to deliver drugs to the brains of people with rare neurological disorders.

It might take longer for these kinds of exosome applications to get to the clinic, but when they do, at least they’ll be evidence based.

Exosomes are a type of extracellular vesicle. This is a scientific way of saying they are basically little packages that bud off from cells. They were once thought to contain cellular garbage, but now scientists believe they convey important signals between cells and tissues.

Exactly what those signals are is still being figured out.  The contents of exosomes from cancer cells will probably be somewhat different to those from healthy cells, for example.

Because of that, many scientists hope that exosomes could one day be used to help us diagnose diseases. In theory, you could isolate exosomes from a blood sample, examine their contents, and figure out what might be going on in a person’s cells. Exosomes might provide clues as to how stressed or close to death a cell is. They might indicate the presence of a tumor.

Raghu Kalluri, a cancer biologist at MD Anderson Cancer Center in Houston, is one of the researchers exploring this possibility. “I believe that exosomes are likely providing a forensic fingerprint of what the cells are undergoing,” he says.

But understanding these signals won’t be straightforward. Exosomes from cancer cells might send signals to surrounding cells in order to “subjugate” them into helping the cancer grow, says Kalluri. Cells around a tumor might also send distress signals, alerting the immune system to fight back against it. “There’s definitely a role for these exosomes in cancer progression and metastasis,” he says. “Precisely what [that role is] is an active area of research right now.”

Exosomes could also be useful for delivering drug treatments. After all, they are essentially little packages of proteins and other matter that can be shuttled between cells. Why not fill them with a medicine and use them to target specific regions of the body?

Because exosomes are made in our bodies, they are less likely to be seen as “foreign” and rejected by our immune systems. And the outer layer of an exosome can serve as a protective coat, shielding the drug from being degraded until it reaches its destination, says James Edgar, who studies exosomes at the University of Cambridge. “It’s a really attractive method for drug delivery,” he says.

Dave Carter is one scientist working on it. Carter and his colleagues at Evox Therapeutics in Oxford, UK, are engineering cells to produce compounds that might help treat rare neurological diseases. These compounds could then be released from the cells in exosomes.

In their research, Carter and his colleagues can change almost everything about the exosomes they study. They can alter their contents, loading them with proteins or viruses or even gene-editing therapies. They can tweak the proteins on their surfaces to make them target different cells and tissues. They can control how long exosomes stay in an animal’s circulation.

“I always used to love playing with Lego,” he adds. “I feel like I’m playing with Lego when I’m working with exosomes.”

Others are hopeful that exosomes themselves hold some kind of therapeutic value. Some hope that exosomes derived from stem cells, for example, might have some regenerative capacity.

Ke Cheng at Columbia University in New York is interested in the idea of using exosomes to treat heart and lung conditions. Several preliminary studies suggest that exosomes from heart and stem cells might help animals like mice and pigs recover from heart injuries, such as those caused by a heart attack.

There are certainly plenty of clinical trials of exosomes underway. When I searched for “exosomes” on clinicaltrials.gov, I got over 400 results. These are early-stage trials, however—and are of variable quality.

Still, it’s an exciting time for exosome research. “It’s a growing field … I think we will see a lot of exciting science in the next five years,” says Cheng. “I’m very optimistic.”


Now read the rest of The Checkup

Read more from MIT Technology Review’s archive

You can read the piece about the costly exosome treatments being sold in aesthetic clinics and medspas in my longer piece, which was published earlier this week. 

It can be difficult to establish credibility in a medical field when you’re being undercut by clinics selling unapproved treatments and individuals making outlandish claims. Just ask the doctors and scientists trying to legitimize longevity medicine

Some treatments can take off culturally without the backing of rigorous evidence, only to go up in flames when the trial results come in. We saw this earlier this year, when FDA advisors rejected the use of MDMA (or ecstasy) for post-traumatic stress disorder (PTSD) owing to “significant confounders” in the trials. 

For some people, unproven treatments might represent a last hope for survival. In those cases, how do we balance access to experimental medicine with the need to protect people who are vulnerable?

Stem cells from human embryos promised to “launch a medical revolution in which ailing organs and tissues might be repaired” when they were isolated just over 25 years ago. So why haven’t they?  

From around the web

Having a disability shouldn’t prevent you from getting married. But that’s exactly the conundrum facing some people in the US, as this heartbreaking short documentary shows. (STAT)

A Neuralink rival says its eye implant restored vision in blind people. Science Corporation’s retinal implant enabled some legally blind individuals to read from a book, play cards, and fill out crossword puzzles. (Wired)

Women in Texas are dying after doctors delay treating them for miscarriages. Doctors treating Josseli Barnica waited 40 hours for the heart of her fetus to stop beating, despite the fact that miscarriage was “inevitable.” Her husband says doctors worried that “it would be a crime to give her an abortion.” She died of a preventable infection three days later. (ProPublica)

Between 30% and 50% of twins share a secret language or mode of communication, a phenomenon known as cryptophasia. The Youlden twins call theirs Umeri. (BBC Future)

Can a machine express fear? Try your hand at creating AI-generated images frightening enough to “spook the machine” as part of a project to explore how machines might express humanlike emotions. It is Halloween, after all. (Spook the Machine)

Exosomes are touted as a trendy cure-all. We don’t know if they work.

There’s a trendy new cure-all in town—you might have seen ads pop up on social media or read rave reviews in beauty magazines. Exosomes are being touted as a miraculous treatment for hair loss, aging skin, acne, eczema, pain conditions, long covid, and even neurological diseases like Parkinson’s and Alzheimer’s. That’s, of course, if you can afford the price tag—which can stretch to thousands of dollars.

“They’re magic!” claims one YouTube review. One US clinic exhorts: “Unlock the fountain of youth with exosome therapy.” “All aspects of skin health improve with exosome therapy,” states one UK clinic’s website, adding that “this is as cutting-edge as it gets.” Exosome particles could be used to treat “any inflammatory disease you could think about, which is almost all of them,” the founder of an exosome company says in a video on YouTube.

But there’s a big problem with these big promises: We don’t fully understand how exosomes work—or what they even really are

We do know that exosomes are tiny particles that bud off from cells and that their contents can vary hugely, depending on the source of the cell (some popular options include human umbilical cords, salmon testicles, and roses) and how healthy or stressed it is. Even cell biologists can’t agree on what, exactly, is inside them, and how beneficial—or dangerous—those contents may be.  

The world of exosome treatments is being likened to a “Wild West” by some researchers. Rigorous trials have not been conducted, so we don’t know how safe it is to spray on or inject these tiny mystery blobs. Exosome products have not been approved by regulatory agencies in the US, UK, or Europe, where the treatments are growing in popularity. Nor have they been approved for medical uses in Japan or South Korea, two other countries where exosome treatments are popular. Still, “exosomes have emerged as a sort of panacea for almost everything,” says Leigh Turner, a bioethicist and public health researcher at the University of California, Irvine, who tracks direct-to-consumer marketing of unapproved health products. “Risks are commonly minimized, and benefits are commonly exaggerated.”

This hasn’t stopped customers from flocking to the growing number of aesthetic centers, stem-cell clinics, and medspas offering exosome treatments, hoping for a miracle fix. The global market for exosome skin-care products was valued at $256 million in 2023 and is forecast to grow to $674 million in the next six years. 

Mystery blobs

Technically referred to as vesicles, exosomes are made inside cells before being released. They’ve long been mysterious. The term “exosome” was introduced in the 1980s. Before that, tiny particles that are now thought to have been exosomes were described as “platelet dust” or “matrix vesicles.”  

At first, scientists assumed that exosomes functioned as trash bags, shuttling waste out of the cell. But research in 1996 suggested that exosomes might also work to help cells communicate by delivering signals between them. If a cell is dying, for instance, it could perhaps send a signal to neighboring cells, giving them a chance to produce more protective substances in order to save themselves from the same fate. Cancer cells, on the other hand, could potentially use exosomes to send signals that co-opt other cells to support the growth of a tumor. Still, it’s not fully understood what signals are actually being sent.

Another major mystery is what, exactly, is inside exosomes. “It depends who you ask,” says James Edgar, who studies exosomes and similar vesicles at the University of Cambridge, UK. Cell biologists agree that exosomes contain proteins, lipids, and other molecules that result from cell metabolism. Some believe they also contain DNA and RNA, but not everyone is convinced. “It’s just very difficult to prove or disprove,” says Edgar.

That’s partly because exosomes are so small—only about 70 nanometers wide, around one-hundredth the size of a red blood cell. While the first images of them were published in the 1970s, we still don’t even know for sure what they look like; Raghu Kalluri at MD Anderson Cancer Center in Houston and his colleagues are studying the shape of exosomes to figure out if they are round, oval, or rod-like, for example.

Further complicating all of this, cell biologists don’t know what triggers the release of an exosome from a cell. Most cells release them at a relatively steady pulse. Some cells release a lot of exosomes; others release a relatively small number. Immune cells, for example, release more exosomes than cancer cells. “We don’t really understand why that’s the case,” says Edgar.

“Fundamentally, we don’t know enough,” he adds. “We don’t quite know yet where these things go when they hit cells, and if they’re released into that cell—or how any of it happens, basically.”

Exosome explosion

Despite these enduring questions, exosomes have taken off as a beauty and health treatment. Turner has been tracking stem-cell clinics both in the US and globally for years. When he and his colleagues assessed US clinics offering direct-to-consumer treatments in 2016, exosomes “just didn’t pop up at all,” he says. When he did the same analysis in 2021, he identified around 100 clinics in the US offering exosome therapies.

It’s not clear why exosomes are taking off now. “It’s not as though there’s an overwhelming amount of safety and efficacy data,” says Turner. “I think it might be more of a buzz kind of phenomenon. This seems to be kind of a moment for exosomes.”

There are many different types of exosomes available on the market. Some are from human cells, including those from the placenta or umbilical cord. Some companies are selling exosomes from plants and animals. In the US, exosomes are regulated as drugs and biological products when they are “intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease” and “intended to affect the structure of any function of the body of man or other animals,” according to the Food and Drug Administration, which regulates medicines in the US. 

Clinics get around this by using them as cosmetics, defined in law as “articles intended to be rubbed, poured, sprinkled, or sprayed on, introduced into, or otherwise applied to the human body … for cleansing, beautifying, promoting attractiveness, or altering the appearance.” What practitioners are not allowed to do is make claims about the health benefits of exosomes. After all, even anti-dandruff shampoo, which purports to treat a skin condition, is considered a drug by the FDA.

Dev Patel offers exosome treatments at his “anti-aging and skin rejuvenation” clinic, Perfect Skin Solutions, in Portsmouth, UK. Over the last 10 years, he says, he has noticed a trend: Customers are less interested in injectable treatments that merely give an impression of youth, like fillers and Botox, and more interested in the idea of treatments that can rejuvenate their skin. The demand for devices like lasers, which create heat on the skin and trigger repair, has “gone through the roof,” he says. Now, exosomes are catching on too.

Patel—who has a medical degree, served in the Royal Navy, and holds a postgraduate diploma in dermatology—left his job in the UK’s National Health Service to start his clinic around 10 years ago. He didn’t start offering exosome treatments until 2020, after he heard about them at a meeting for aesthetic clinicians. 

The first treatment he offered involved unapproved exosomes derived from human fat cells—making them illegal to sell in Europe, he says. Patel says that he didn’t realize this until after he’d bought the exosomes and started using them, partly because of the misinformation he’d been fed by the distributor. He says some of the sellers were telling doctors that they were allowed to use the exosomes topically (on a person’s skin) and then inject them as part of an “off-label” use. Patel won’t name the distributor he bought from, but he says the company continued to sell its exosome products to clinics in the UK for at least two years after that point.

Patel stresses that as soon as he found out about the regulations surrounding exosomes derived from human cells, he stopped using the product. “I had probably had £5,000 [around $6,500] worth of product sitting in my clinic, and it was just thrown away,” he says. Instead, he switched to exosomes from plant cells and, more recently, others derived from salmon testes.

For hair regrowth, Perfect Skin Solutions offers a course of five exosome treatments, each delivered during a half-hour appointment, at a total cost of £2,000. When it comes to skin treatments, Patel recommends two or three sessions—more for those who are looking to counter the signs of aging. “By harnessing the power of exosomes, you can achieve a more youthful and radiant complexion, while also addressing specific skin concerns and promoting overall skin health,” according to the company’s website.  

Patel says he uses the exosomes to treat clients for baldness around four times a week. He and his team members will first perform microneedling on the scalp. This technique uses tiny needles to make miniature holes in the skin—“80,000 holes a minute,” he says. Microneedling is often used to trigger a wound healing process that can improve the look of the skin. But after Patel performs the procedure on a person’s head, he uses a “jet propulsion device” that uses carbon dioxide to spray cooled salmon exosomes into the tiny indentations. “You basically create these … micro-icicles containing the product,” he says. “They pierce the skin, but you don’t feel it. It feels quite nice, actually.” After six to 10 weeks, customers can expect healthier skin and thicker, stronger hair, he says.

“The results are amazing,” says Patel. “I’ve had it done on my hair, which is probably why it’s looking out of control now,” he adds, pointing to his thick but neatly styled do, combed back and shaved at the sides. 

Not everyone is as enthusiastic. Sarah, who is being identified by a pseudonym to protect her professional image, tried exosomes last year, though not at Patel’s clinic. Now in her 30s, she had acne as a teenager, and her dermatologist suggested that rubbing exosomes from human umbilical-cord cells into her face after a microneedling treatment might reduce the scarring. But he didn’t fully explain exactly what exosomes are or what they were expected to do, she says. 

“I feel like it’s a little bit of health marketing bullshit,” she says. “I don’t really understand how they work.”

Sarah received three treatments, three months apart, as part of a trial her dermatologist was participating in. As a participant, Sarah didn’t have to pay for her treatment. In each of the sessions, the doctor numbed Sarah’s face with lidocaine cream before microneedling it. “Then they kind of dribbled the exosomes on with a syringe,” she recalls. She was advised to sleep on a clean pillow and avoid washing her face that evening. “There was some redness … but my skin was mostly back to normal the following day,” she says.

Her last treatment was a year ago. And she hasn’t seen a reduction in her scarring. “I don’t think I’d recommend it,” she says. “The results were very underwhelming.”

Safety in salmon?

In theory, exosomes should be safer than stem-cell therapies. Cells can be thought of as “living drugs,” while exosomes are non-living collections of biological molecules, says Ke Cheng at Columbia University in New York, who is doing more conventional research into potential applications of exosomes. Cheng is exploring the use of engineered exosomes for heart diseases. Exosomes are less likely than cells to trigger an immune response, and because they can’t replicate, the risk of tumor formation is also lower. 

But that, of course, does not make them risk-free. There are no established standards or regulations for the manufacture of exosomes to be used in people. This leaves plenty of room for companies to manufacture exosomes in different ways—and for disagreements over which method is the best and safest. 

The product Sarah tried that was derived from human umbilical-cord cells is called Age Zero. Erin Crowley and her father, Michael Crowley, who manufacture and sell the product, have a team that grows the cells and then harvests the exosome-containing liquid surrounding them at a clean lab in Rochester, New York. 

“We have in stock right now about $3.5 billion worth of exosomes,” says Michael Crowley. That’s enough for millions of treatments, he says, although the figure will depend on what they are used for: The pair have different companies that sell exosomes for experimental medical use (25 billion to 100 billion exosomes per treatment) and cosmetic use (5 to 10 billion). Cosmetic clinics can buy vials that the company says contain 5, 10, 50, or 100 billion exosomes. Those with 10 billion exosomes are sold in packs of nine for $1,999, according to the company’s website.

“Right now, we’re in about a little less than a thousand medspas, aesthetician offices, dermatologists, plastic surgeons with our cosmetic product,” Erin Crowley says. “We can sell direct to consumer, but the product really works great after microneedling or after laser or dermaplaning.” They have been selling in the US for the last year and half; she says the product is also available in the UAE, Pakistan, Lebanon, Canada, and Turkey. 

The Crowleys argue that because their exosomes come from human umbilical-cord cells, they are more effective than those from other sources, although again, rigorous side-by-side comparison studies have not been done. Exosomes from plant or fish cells “just don’t have the right language to speak to human cells,” says Erin Crowley, who has a background in mechanical engineering and quality control. She says that she analyzed the exosome market a couple of years ago and was “appalled” at what was on offer. 

“The industry now … is very, very confused, and the marketing is very confused,” she says. Across the board, production quality standards are low, she says, adding that she and her dad hold their product to higher standards by testing for potential sources of infections (which can arise from contamination) and using devices to count exosomes.

On the other hand, Primacure, the company that sells the product derived from salmon testicles, argues that fish exosomes are safer than those taken from human cells or from other animals. These exosomes are collected from cells grown in a medium that contains a mix of growth factors and peptides, and the team uses ultrasound to release the exosomes from the cells, according to a video presentation by Mike Lee, CEO of Primacure. “We want to refrain from using products that are human-derived, or maybe even animal-derived, that can transmit diseases to humans,” Lee says in the video. 

There are no known cases of exosomes causing such diseases in people. But some practitioners buy that argument: “Fish present a very low-risk option in terms of disease transmission,” says Patel. Turner, though, isn’t convinced: “I don’t see any reason why they would be [safer],” he says, adding that usually, biological materials from other animals are seen as posing a greater risk to patients. The use of animal cells or tissues in humans carries risks of infection, for example.

We can’t be sure either way, because rigorous research comparing these exosomes and their safety simply has not been done. “If they are from different sources, their outcomes and effects will be different,” says Cheng. “You need to have science; you need to know why they work.”

Exosomes derived from human cells will still have molecules that are foreign to a person’s body and could trigger an immune response, says Edgar. He is also concerned that because exosomes may hold the original cell’s waste, they could be introducing things that a recipient’s cells would rather be rid of. They might, for example, shuttle excess receptors for growth factors out of a cell. If another cell takes these up, it might end up with too many growth factor receptors, which could help drive cancer, he says. “We do need to understand the basics of what’s going on here before we jump into the clinic,” he adds.

At any rate, there are no rigorous human studies to support the safety or effectiveness of using exosomes for skin health, hair growth, or anything else. Look at any clinic website, and it will probably have some impressive-looking before-and-after photos of a customer or two. But these individuals are often having several treatments at the same time. Microneedling alone has been used for decades as an aesthetic treatment. And Patel says he delivers each vial of exosomes alongside a second vial containing a concoction of many other ingredients that are thought to be beneficial to skin health.

So how can a clinician be sure that the apparent effects are due to the exosomes? I put this question to Patel. “I can’t answer that,” he told me. “I’ve never just used the mix on its own to see [what it does]. You’d have to do countless patients with either [vial] to know.”

Beyond beauty

While many of the clinics offering exosome treatments are focused on their purported cosmetic benefits, a significant number claim that they can treat diseases. In the three months between November 2021 and January 2022, Turner and his colleagues identified 16 businesses that were marketing exosome-based therapies to treat or prevent covid-19 or long covid, for example. Others claim exosomes can treat sports injuries and even disorders like Alzheimer’s disease. Again, there is no rigorous research to support these claims.

There have been some promising early studies in animals, and a handful of small, weak phase I trials exploring the use of exosomes in medical treatments. But these fall way below the approval standards of the FDA. 

“There are currently no FDA-approved exosome products for any use,” Paul Richards, an FDA representative, wrote in an email to MIT Technology Review. Because of this, no exosome product should be marketed for any medical use.

“There is an abundance of misleading information in the public domain regarding regenerative medicine products, including exosome products,” wrote Richards. “The FDA continues to remind consumers to be cautious of any clinics, including regenerative medicine clinics, health-care providers, physicians, chiropractors, or nurses, that advertise or offer anything purported to be an exosome product. These products are not without risk and are often marketed by clinics as being safe and effective for the treatment of a wide range of diseases or conditions, even though they haven’t been adequately studied in clinical trials.” 

No exosome-based products have been approved by the UK’s Medicines & Healthcare products Regulatory Agency (MHRA) or by the European Medicine Agency (EMA), either.

“They’re unproven technologies, at least from the perspective of the FDA,” says Dave Carter, head of research at the biotech company Evox, which is exploring the use of exosomes for drug delivery. “We don’t really understand [how they work] … I personally would be somewhat wary of these types of things outside of the context of proper clinical trials.”

The FDA has issued letters to some of the clinics providing these treatments. In 2020, for example, the organization wrote to Douglas Spiel, president of Regenerative Solutions of New Jersey, about its claims—being published on Facebook at the time—that exosomes could “mitigate, prevent, treat, or cure” covid. The company was also marketing exosome products for a range of other disorders, including spinal cord injury, Parkinson’s, Alzheimer’s, lupus, and multiple sclerosis.The FDA letter listed the problematic posts and requested a response within 30 days. Spiel’s current clinic doesn’t make any claims about exosomes. 

Turner is concerned that letters like these have little impact. “It’s not terribly consequential,” he says. “No one has to surrender their medical license, and there are no automatic financial penalties.”

Beyond potential harm to individual patients, both scientists and regulatory agencies are concerned that unapproved, untested, and unregulated exosome “treatments” could set back an exciting field of research. Potential uses of exosomes to diagnose and treat diseases are being explored through lab-based research and early-stage clinical trials. Companies making unsubstantiated claims to sell products could undermine that progress.

These marketing claims are often “a mishmash of marketing froth, marketing hype, and some credible claims cut and paste[d] from [scientific] papers and websites,” says Turner. “It makes it more challenging for us to have any kind of meaningful public understanding or discussion.”

In the meantime, Turner is one of many scientists cautioning people against the use of exosomes. “I would say that it’s a bit of a Wild West out there with respect to how these are being used,” says Kalluri of MD Anderson Cancer Center. “Ultimately, some science needs to be done to show that this actually works.”

“From a very basic point of view, we don’t really know what they’re doing, good or bad,” says Edgar, from the University of Cambridge. “I wouldn’t take them, let’s put it that way.”

Even Sarah, who received three exosome treatments last year, agrees. “I think there needs to be more research around it … I would just hold on and see,” she says. “Maybe [I would feel] different if I looked a million years younger after using it. But that wasn’t the case.”

GMOs could reboot chestnut trees

Under a slice-of-heaven sky, 150 acres of rolling green hills stretch off into the distance. About a dozen people—tree enthusiasts, conservationists, research biologists, biotech entrepreneurs, and a venture capitalist in long socks and a floppy hat—have driven to this rural spot in New York state on a perfect late-July day. 

We are here to see more than 2,500 transgenic chestnut seedlings at a seed farm belonging to American Castanea, a new biotech startup. The sprouts, no higher than our knees, are samples of likely the first genetically modified trees to be considered for federal regulatory approval as a tool for ecological restoration. American Castanea’s founders, and all the others here today, hope that the American chestnut (Castanea dentata) will be the first tree species ever brought back from functional extinction—but, ideally, not the last.

Living as long as a thousand years, the American chestnut tree once dominated parts of the Eastern forest canopy, with many Native American nations relying on them for food. But by 1950, the tree had largely succumbed to a fungal blight probably introduced by Japanese chestnuts. “Now after hard work, great ideas, and decades of innovation, we have a tree and a science platform designed to make restoration possible,” American Castanea cofounder Michael Bloom told the people squinting in the sun.

As recently as last year, it seemed the 35-year effort to revive the American chestnut might grind to a halt. Now, federal regulatory approval is expected soon. And there’s millions of dollars in new funding coming in from private investors and the federal government. One conservation nonprofit is in discussions with American Castanea to plant up to a million of its chestnuts per year as soon as they’re ready and approved. 

Nothing like this has ever been tried before. But the self-­proclaimed “nutheads” believe the reintroduction of a GMO, blight-resistant American chestnut at scale could also become a model for how environmentalists can redeploy trees in general: restoring forests and shifting food production, all to combat climate change and biodiversity loss. 

“It’s a hard time to be a tree,” says Leigh Greenwood, director of the forest pest and pathogen program at the Nature Conservancy, which has been supportive of the GMO chestnut’s regulatory application. “But there’s some really interesting promise and hope.”  

Four billion trees dead 

“Charismatic megafauna” is the scientific term for species, like pandas and blue whales, that draw a disproportionate amount of love and, thus, resources. The nearly vanished American chestnut may be the most charismatic tree east of the Rockies. Because of its historical importance, fast growth, and abundant productivity of both nuts and timber, it’s drawn an exceptional amount of interest among biologists, conservationists, and a new crop of farmers. 

Trees that die back from blight occasionally resprout. Volunteer groups like the American Chestnut Cooperators’ Foundation have been working for decades to gather and crossbreed wild trees in the hopes of nudging along natural resistance to the blight. Meanwhile, the State University of New York’s College of Environmental Science and Forestry (ESF), with the support of a different group, the American Chestnut Foundation (TACF), has been pursuing genetic engineering in its labs and on its 44 wooded acres outside Syracuse. 

When ESF biologist Bill Powell and his colleagues began working with chestnut embryonic cells in 1989, it took them a decade just to optimize the growing process to make research practical. After that, researchers in the small lab inserted a wheat gene in embryos that inactivated oxalic acid, the toxin produced by the blight fungus. Gathering results on these transgenic trees takes time, because each generation has to grow for a few years before it produces the most useful data. But they eventually created a promising line, named Darling-58 after Herb Darling, a New York construction magnate who funded this research through TACF. Darling-58 was not perfect, and results varied from tree to tree and site to site. But eventually, the data showed slower infections and smaller cankers, the bulbous growths produced by the blight. 

In 2020, Darling-58 became, in all likelihood, the first genetically modified forest tree to be submitted for federal regulatory approval to the US Department of Agriculture’s Animal and Plant Health Inspection Service, the EPA, and the FDA to determine the safety of introducing it in the wild. 

“It’s a hard time to be a tree. But there’s some really interesting promise and hope.”

It is this genetically engineered strain of chestnut that American Castanea, too, is now planting and propagating in New York state, under a nonexclusive commercial license from ESF. They want to sell these trees, pending approval. And then they want to keep going, engineering ever-better chestnuts, and selling them first to enthusiasts, then to farmers, and finally to conservationists for timber, reforestation, maybe even carbon capture. 

To aid the effort, the company is looking for extraordinary wild specimens. In early 2024, it purchased an orchard that had been lovingly cultivated for three decades by a conservationist. The windy hilltop spot houses hundreds of trees, collected like stray kittens from a dozen states throughout the chestnut’s natural range. 

Most of the trees are homely and sickly with blight. They have bulging cankers, “flagging” branches sporting yellow and brown leaves, or green shoots that burst each season from their large root systems only to flop over and die back. “They make me a little sad,” admits Andrew Serazin, cofounder of American Castanea. But a few have shot up as tall as 40 feet, with only a few cankers. All these specimens have been sampled and are being analyzed. They will become the basis of a chestnut gene database that’s as complete as American Castanea can make it. 

From there, the plan is: Apply bioinformatics and AI techniques to correlate genetic signatures with specific traits. Borrow techniques developed in the cannabis industry for seedling production, cloning, and growth acceleration in high-intensity light chambers—none of which have yet been yet applied at this scale to forest trees. Develop several diverse, improved new strains of chestnut that are blight-resistant and optimized for different uses like forest restoration, nut production, and timber. Then produce seedlings at a scale previously unknown. The hope is to accelerate restoration, cutting down the time it would take resistant strains of the tree to propagate in the wild. “Tree growth takes a long time. We need to bend the curve of something that’s like a 30-year problem,” says Serazin.

The breadtree revival

The chestnut has not disappeared from the US: In fact, Americans eat some 33 million pounds of the nuts a year. These are European and Asian varieties, mostly imported. But some companies are looking to expand the cultivation of the nuts domestically. 

Among those leading the quest is a company called Breadtree Farms in upstate New York, named for a traditional nickname for the chestnut. In March, it won a $2 million grant from the USDA to build the largest organic chestnut processing facility in the US. It will be up to eight times larger than needed for its own 250 acres of trees. The company is dedicated to scaling the regional industry. “We have a list of over 100 growers that are, and will be, planting chestnut trees,” says Russell Wallack, Breadtree’s young cofounder.

Chestnuts have a nutritional profile similar to brown rice; they’re high in carbohydrates and lower in fat than other nuts. And unlike other nut trees, the chestnut “masts”—produces a large crop—every year, making it far more prolific.

That makes it a good candidate for an alternative form of agriculture dubbed agroforestry, which incorporates more trees into food cultivation. Food, agriculture, and land use together account for about one-quarter of greenhouse-gas emissions. Adding trees, whether as windbreaks between fields or as crops, could lower the sector’s carbon footprint.

Many different trees can be used this way. But Joe Fargione, science director for the Nature Conservancy’s North America region, says the chestnut is a standout candidate. “It’s great from a climate perspective, and there’s a lot of farmers that are excited about it,” he says. “Chestnuts end up being big trees that store a lot of CO2 and have a product that can be very prolific. They have the potential to pay for themselves. We want not just environmental sustainability but economic sustainability.”

The passion for chestnut revival connects the foresters and the farmers. Farmers aren’t waiting for the GMO trees to get federal approval. They are planting existing Chinese varieties, and hybrids between American and Chinese chestnuts, which thrive in the East. Still, Fargione says that if nut cultivation is going to scale up, farmers will need reliable seed stock of genetically improved trees. 

A Tennessee family poses at the base of a chestnut tree, circa 1920. A deadly fungus nearly drove the once mighty species extinct by 1940.
NEGATIVES OF GREAT SMOKY MOUNTAINS NATIONAL PARK

On the other hand, those foreign orchard varieties would be considered invasives if planted in the wild. And they wouldn’t feed wildlife in the same way, says Sara Fern Fitzsimmons, chief conservation officer of the American Chestnut Foundation. “Wild turkeys prefer American chestnuts,” she says. “And the blue jay—since the American chestnut is smaller, he can fit more in his crop,” a food storage area inside a bird’s throat. For forest restoration you need American chestnuts or something as close to them as possible. That’s where the genetic engineering and crossbreeding projects will be crucial. But that path has been full of pitfalls.

Switched at birth

In late 2023, a biologist at the University of New England discovered evidence that Darling-58 was not what people thought it was. For nearly 10 years, all the data that ESF had painstakingly gathered on the strain actually pertained to a different line, Darling-54, which has its wheat gene in a different place on the genome. The promising results were all still there. The trees had simply been mislabeled that entire time. 

 A few weeks later, in December 2023, the American Chestnut Foundation suddenly announced it was withdrawing its support of ESF’s Darling tree research, citing the 54-58 mix-up, as well as what it called “disappointing performance results” for 54. 

But Andy Newhouse, director of the American Chestnut Project at SUNY ESF, says the mislabeling is not a deal-breaker. The research doesn’t “need to start from scratch,” he says. “This is correcting the record, making sure we have the appropriate label on it, and moving forward.” Newhouse says the regulatory application is ongoing (the USDA and FDA declined to comment on a pending regulatory application; the EPA did not respond to requests for comment). 

Newhouse defends the documented blight response of the trees that, we now know, are actually Darling-54.

And besides, he says, they’ve got a potentially better strain coming: the DarWin. The “Win” stands for “wound-inducible.” In these trees, the anti-blight action turns on—is induced—only when the tree’s bark is wounded, working something like an animal’s immune response. This could be more efficient than continuously expressing the anti-blight gene, the way Darling-54 does. So DarWin trees might reserve more of their energy to grow and produce nuts. 

The DarWin trees are about three years old, meaning data is still being collected. And if the Darling trees are approved for safety, it should smooth the path for a much faster approval of the DarWin trees, Newhouse says.

There was another reason, though, that TACF dropped its support of the Darling regulatory petition. In a FAQ on its website, the foundation said it was “surprised and concerned” that ESF had made a licensing deal for the Darling and DarWin trees—potentially worth millions—with a for-profit company: American Castanea.

TACF said it had been supporting the project under the assumption that the results would be available, for free, to anyone, in the “public commons.” Commercialization, it says, could make the trees more expensive for anyone who might want to plant them. Fitzsimmons wouldn’t comment further. 

The biotech boys

American Castanea’s Andrew Serazin is a Rhodes scholar whose scientific background is in tropical disease research. He rose in the ranks in global philanthropy, running million-­dollar grant competitions for the Gates Foundation, funding projects like vitamin-­enhanced “golden rice” and HIV vaccines. 

He was president of the Templeton World Charity Foundation in 2020 when it gave a “transformational” $3.2 million grant to SUNY ESF’s chestnut project. Serazin became convinced that the chestnut could be the seed of something much, much bigger. It didn’t hurt that he had a sentimental chestnut connection through his wife’s family farm in West Virginia, which dates back to the time of George Washington. 

With pests and pathogens threatening so many different species, “there’s a huge potential for there to be precision management of forests using all of the same capabilities we’ve used in human medicine,” he says. 

For that, Serazin was convinced, they needed money. Real money. Venture capital money. “I mean, really, there’s only one system that we know about that works the best for this kind of innovation, and that’s using incentives for companies to bring together these resources,” he says. 

Serazin teamed up with his friend Michael Bloom, an entrepreneur who’s sold two previous companies. They incorporated American Castanea for certification as a public benefit corporation in Delaware, pledging to balance profit with purpose and adhere to a high degree of transparency on social and environmental impact. They went to “impact investors” to sell the vision. That was part of what was going on at the seed farm on that July day; the company has $4 million in seed financing and wants to raise $7 million to $10 million more next year. 

What he’s offering investors, Serazin says, isn’t quick returns but a chance to “participate in the once-in-a-lifetime opportunity to bring back a tree species from functional extinction, and participate in this great American story.” 

What they’re proposing, over the next several decades or more, is no less than replanting the entire Eastern forest with a variety of genetically superior breeds, on the scale of millions of trees. 

It sounds, at first blush, like a sci-fi terraforming scenario. On the other hand, Leigh Greenwood, at the Nature Conservancy, says every species group of tree in the woods is threatened by climate change. Pathogens are emerging in new territories, trees are stressed by extreme weather, and the coldest winter temperatures, which used to reliably kill off all manner of forest insects and diseases at the edges of their habitats, are getting milder.

Besides chestnut blight, there’s Dutch elm disease, the emerald ash borer, butternut canker, oak wilt, and white pine blister rust. The southern pine beetle now ranges as far north as Massachusetts because of milder winters. The spongy (formerly gypsy) moth is a champion defoliator, munching enough leaves “to make an entire forest look naked in June,” says Greenwood. A new nematode that attacks leaves and buds, previously unknown to science, has emerged near the Great Lakes in the last decade. Sick and dying trees stop sequestering carbon and storing water, are prone to wildfire, and can take entire ecosystems down with them. 

“Invasive species are moving faster than biological time,” Greenwood says. “What we have to do is speed up the host trees, their natural selection. And that is an enormous task that only in very recent times have we really developed the tools in order to figure out how the heck we’re going to do that.” 

By “recent tools,” Greenwood means, more or less, what American Castanea is trying: genetic analysis and advanced horticultural techniques that allow resistant trees to be propagated and introduced into the wild more quickly. 

Greenwood is quick to say that the Nature Conservancy also supports the American Chestnut Cooperators’ Foundation, which crossbreeds wild American chestnuts for blight resistance. They are a small, all-volunteer organization with no university affiliation. They mail their crossbred chestnuts out to hobbyist landowners all over the country, and president Ed Greenwell tells me they don’t really know exactly how many are growing out there—maybe 5,000, maybe more. He has seen some that are big and healthy, he says. “We have many trees of 40-plus years of age.” 

What they don’t have is a sense of urgency. “We’re self-funded, so we could do our breeding as we choose,” says Greenwell. “Our method is tried and true, and we have no pressure to take shortcuts, like genetic modification, which theoretically could have shortened the time to get trees back in the woods.” 

The whole idea of a GMO forest tests our concept of what “nature” is. And that may just be a marker of where we are at this point in the Anthropocene.

Greenwell is not the only one to object to GMO chestnuts. In 2023, Joey Owle, then the secretary of agriculture and natural resources for the Eastern Band of Cherokee Indians, told Grist magazine that while the group was open to introducing transgenic trees on its land if necessary, it was the “last option that we would like to pursue.”

Greenwood led the writing of an expert letter, something like an amicus brief, in support of SUNY ESF’s regulatory petition for the Darling tree. She takes such objections seriously. “If we do not address the human dimensions of change, no matter how good the biological, chemical designs are,” she says, “those changes will fail.” 

That July day out at the seed farm, sitting under a tent with plates of pork barbecue, the scientists, conservationists, and businesspeople started debating how deep these GMO objections really run. Serazin said he believes that what people really hate is corporate monopoly, not the technology per se. “It’s really about the exertion of power and capital,” he said. He’s hoping that by incorporating as a public benefit corporation and making the trees widely available to conservation groups and responsible forest product and nut producers, he can convince people that American Castanea’s heart is in the right place. 

Still, others pointed out, the whole idea of a GMO forest tests our concept of what “nature” is. And that may just be a marker of where we are at this point in the Anthropocene—it’s hard to envision a future where any living creature in the ecological web can remain untouched by humans. 

That responsibility may connect us more to the past than we realize. For centuries, Native people like the Haudenosaunee Nation practiced intentional land management to improve habitat for the chestnut. When the Europeans began clearing land for farming and timber, the fast-growing tree was able to claim proportionately even more space for itself. It turns out the forest those colonists embraced—the forest dominated by chestnut trees—was no true accident of nature. It was a product of a relationship between people and chestnuts. One that continues to evolve today. 

Anya Kamenetz is a freelance reporter who writes the Substack newsletter The Golden Hour.