Walk just a few blocks in New York City and you’ll likely spot an electric bike zipping by.
The vehicles have become increasingly popular in recent years, especially among delivery drivers, tens of thousands of whom weave through New York streets. But the e-bike influx has caused a wave of fires sparked by their batteries, some of them deadly.
Now, the city wants to fight those fires with battery swapping. A pilot program will provide a small number of delivery drivers with alternative options to power up their e-bikes, including swapping stations that supply fully charged batteries on demand.
Proponents say the program could lay the groundwork for a new mode of powering small electric vehicles in the city, one that’s convenient and could reduce the risk of fires. But the road to fire safety will likely be long and winding given the sheer number of batteries we’re integrating into our daily lives, in e-bikes and beyond.
While batteries can catch fire for a variety of reasons, many incidents appear to have been caused by e-bike drivers charging their batteries in apartment buildings, including a February blaze that killed one person and injured 22.
The city’s most recent effort, designed to address charging, is a pilot program for delivery drivers who use e-bikes. For six months, 100 drivers will be matched with one of three startups that will provide a charging solution that doesn’t involve plugging in batteries in apartment buildings.
One of the startups, Swiftmile, is building fast charging stations that look like bike racks and can charge an e-bike battery within two hours. The other two participating companies, Popwheels and Swobbee, are proposing a different, even quicker solution: battery swapping. Instead of plugging in a battery and waiting for it to power up, a rider can swap out a dead battery for a fresh one.
Battery swapping is already being used for some electric vehicles, largely across Asia. Chinese automaker Nio operates a network of battery swapping stations that can equip a car with a fresh battery in just under three minutes. Gogoro, one of MIT Technology Review’s 2023 Climate Tech Companies to Watch, has a network of battery swapping stations for electric scooters that can accommodate more than 400,000 swaps each day.
The concept will need to be adjusted for New York and for delivery drivers, says Baruch Herzfeld, co-founder and CEO of Popwheels. “But if we get it right,” he says, “we think everybody in New York will be able to use light electric vehicles.”
Existing battery swap networks like Nio’s have mostly included a single company’s equipment, giving the manufacturer control over the vehicle, battery, and swapping equipment. That’s because one of the keys to making battery swapping work is fleet commonality—a base of many vehicles that can all use the same system.
Fortunately, delivery drivers have formed something of a de facto fleet in New York City, says David Hammer, co-founder and president of Popwheels. Roughly half of the city’s 60,000-plus delivery workers rely on e-bikes, according to city estimates. Many of them use bikes from a brand called Arrow, which include removable batteries.
Convenience is key for delivery drivers working on tight schedules. “For a lot of people, battery charging, battery swapping, it’s just technology. But for [delivery workers], it’s their livelihood,” says Irene Figueroa-Ortiz, a policy advisor at the NYC Department of Transportation.
For the New York pilot, Popwheels is building battery cabinets in several locations throughout the city that will include 16 charging slots for e-bike batteries. Riders will open a cabinet door using a smartphone app, plug in the used battery and take a fresh one from another slot. Based on the company’s modeling, each cabinet should be able to support constant use by 40 to 50 riders, Hammer says.
“Maybe it leads to an even larger vision of battery swapping as a part of an urban future,” Hammer says. “But for now, it’s solving a very real and immediate problem that delivery workers have around how they can work a full day, and earn a reasonable living, and do it without having to put their lives at risk for battery fires.”
A growing problem
Lithium-ion batteries power products from laptops and cellphones to electric vehicles, including cars, trucks, and e-bikes. A major benefit of the battery chemistry is its energy density, or ability to pack a lot of energy into a small container. But all that stored energy can also be dangerous.
Batteries can catch fire during charging or use, and even while being stored. Generally, fires happen when temperatures around the battery rise to unsafe levels or if a physical problem in a battery causes a short circuit, allowing current to flow unchecked. These factors can set in motion a dangerous process called thermal runaway.
Most batteries include a battery management system to control charging, which prevents temperatures from spiking and sparking a fire. But if this system malfunctions or if a battery doesn’t include one, charging can lead to fires, says Ben Hoff, who leads fire safety engineering and hardware design at Popwheels.
Some of the delivery drivers who attended a sign-up event for New York’s charging pilot program in late February cited safety as a reason they were looking for alternative solutions for their batteries. “Of course, I worry about that,” Jose Sarmiento, a longtime delivery worker, said at the event. “Even when I’m sleeping, I’m thinking about the battery.”
Battery swapping could also be a key to safer electric transit, Popwheels’ Hammer says. The company has tight control over the batteries it provides drivers, and its monitoring systems include temperature sensors installed in the charging cabinets. Charging can be shut down immediately if a battery starts to overheat, and an aerosol fire suppression system can slow a fire if one does happen to start inside a cabinet.
The batteries Popwheels provides are also UL-certified, meaning they’re required to pass third-party safety tests. New York City banned the sale of uncertified batteries and e-bikes last year, but many drivers still use them, Hammer says.
Low-quality batteries are more likely to cause fires, a problem that can often be traced to the manufacturing process, says Michael Pecht, a professor at the University of Maryland who studies the reliability and safety of electronic devices.
Battery manufacturing facilities should be as clean as a medical operating room or a semiconductor facility, Pecht explains. Contamination from dust and dirt that wind up in batteries can create problems over time as charging and discharging a battery causes small physical changes. After enough charging cycles, even a tiny dust particle can lead to a short circuit that sparks a fire.
Low-quality manufacturing makes battery fires more likely, but it’s a daunting task to keep tight control over the huge number of cells being made each year. Large manufacturers can produce billions of batteries annually, making the solution to battery fires a complex one, Pecht says: “I think there’s a group who want an easy answer. To me, the answer is not that easy.”
New programs that provide well-manufactured batteries and tightly control charging could make a dent in safety concerns. But real progress will require quick and dramatic scale-up, alongside regulations and continual outreach to communities.
Popwheels would need to install hundreds of its battery swapping cabinets to support a significant fraction of the city’s delivery drivers. The pilot will help determine whether riders are willing to use new methods of powering their livelihood. As Hammer says, “If they don’t use it, it doesn’t matter.”
Debate around the pace and nature of decarbonization continues to dominate the global news agenda, from the European Scientific Advisory Board on Climate Change warning that the EU must double annual emissions cuts, to forecasts that it could cost more than $1 trillion to decarbonize the global shipping industry. Despite differing opinions on the right path to net zero, all agree that every sector needs to reduce emissions to avoid the worst effects of climate change.
Oil and gas production accounts for 15% of the world’s emissions, according to the International Energy Agency. Some of the largest global companies have embarked on bold plans to cut to zero by 2050 the carbon and methane associated with their production. One player with an ambition to get there five years ahead of the rest is the UAE’s ADNOC, having announced in January 2024 it will lift spending on decarbonization projects to $23 billion from $15 billion.
In an exclusive interview, Musabbeh Al Kaabi, ADNOC’s Executive Director for Low Carbon Solutions and International Growth, says he is hopeful the industry can make a meaningful contribution while supplying the secure and affordable energy needed to meet growing global demand.
Q: Mr. Al Kaabi, how do you plan to spend the extra $8 billion ADNOC has allocated to decarbonization?
Mr. Mussabeh Al Kaabi: Much of our investment focus is on the technologies and systems that will deliver tangible action in eliminating the emissions from our energy production. At 7 kilograms of CO2 per barrel of oil equivalent, the energy we provide is among the least carbon-intensive in our industry, yet we continue to explore every opportunity for further reductions. For example, we are using clean grid power—from renewable and nuclear sources—to meet the needs of our onshore operations. Meanwhile, we are investing almost $4 billion to electrify our offshore production in order to cut our carbon footprint from those operations by up to 50%.
We also see great potential in carbon capture utilization and sequestration (CCUS), especially where emissions are hard to abate. Last year, we doubled our capacity target to 10 million tonnes per annum by 2030. We currently have close to 4 million tonnes in capacity in development or operation and are working with key players in our industry to create a world-leading carbon management platform.
Additionally, we’re developing nature-based solutions to support our target for net zero by 2045. One of our initiatives is to plant 10 million mangroves, which serve as powerful carbon sinks, along our coastline by 2030. We used drone technology to plant 2.5 million mangrove seeds in 2023.
Q: What about renewables?
Mr. Mussabeh Al Kaabi: It’s in everyone’s interests that we invest in the growth of renewables and low-carbon fuels like hydrogen. Through our shareholding in Masdar and Masdar Green Hydrogen, we are tripling our renewable capacity by supporting a growth target of 100 gigawatts by 2030.
Q: We have been talking about hydrogen and carbon capture and storage (CCS) as the energies and solutions of tomorrow for decades. Why haven’t they broken through yet?
Mr. Mussabeh Al Kaabi: Hydrogen and CCS offer great promise, but, like any other transformative technology, they require R&D attention, investment, and scale-up opportunities.
Hydrogen is an abundant and portable fuel that could help reduce emissions from many sectors, including transport and power. Meanwhile, CCS could abate emissions from heavy, energy-intensive industries like steel and cement.
These technologies are proven, and we expect more improvements to allow wider consumer use. We will continue to develop and invest in them, while continuing to responsibly provide our traditional portfolio of low-carbon energy products that the world needs.
Q:Is there any evidence the costs can come down?
Mr. Mussabeh Al Kaabi: Yes, absolutely. The dramatic fall in the price of solar over recent years—an 89% reduction from 2010 to 2022 according to the International Renewable Energy Agency—just goes to show that clean technologies can become viable, mainstream sources of energy if the right policy and investment mechanisms are in place.
Q: Do you favor a particular decarbonization technology?
Mr. Mussabeh Al Kaabi: We don’t have the luxury of picking winners and losers. The scale of the challenge is too great. World economies consume the equivalent of around 250 million barrels of oil, gas, and coal every single day. We are going to need to invest in every viable clean energy and decarbonization technology. If CCS can do it, let’s do it. If renewables can do it, let’s invest in it.
That said, I am especially optimistic about the role artificial intelligence will play in our decarbonization drive. We’ve been implementing AI and machine learning tools across our value chain for many years; they’ve helped us eliminate around a million tonnes of CO2 emissions over the past two years. As AI technology grows at an exponential rate, we will continue to invest in the latest innovations to ensure we provide maximum energy with minimum emissions.
Q: Can traditional energy companies be part of the solution?
Mr. Mussabeh Al Kaabi: They can and they must be part of the solution. Energy companies have the technical capabilities, the project management experience and, crucially, the financial strength to advance solutions. For example, we’re investing in one of the largest integrated carbon capture projects in the Middle East and North Africa, at our gas processing facility in Habshan. Once complete, it will add 1.5 million tonnes of CCUS capacity. We’ve also just announced an investment into Storegga, the lead developer of the UK’s Acorn CCS project in Scotland, marking our first overseas investment of its kind.
Q:What’s your approach to decarbonization investment?
Mr. Mussabeh Al Kaabi:Our approach is to partner with successful developers of economic technologies and to incubate promising climate solutions so ADNOC and other players can use them to accelerate the path to net zero. There are numerous examples.
Last year, we launched the ADNOC Decarbonization Technology Challenge, a global competition that attracted 650 climate tech startups vying for a million-dollar piloting opportunity with us. The winner was Revterra, a Houston-based startup that will pilot its kinetic battery technology with us over the coming months.
We’re also working to deploy another cutting-edge battery technology that involves taking used electric vehicle batteries and upcycling them into a battery energy storage system, which we’ll use to help decarbonize our remote production activity by up to 25%.
In the northern regions of the UAE, we’re working closely with another startup company to pilot carbon dioxide mineralization technology. It is a project we are all excited about because it presents opportunities for CO2 removal at a significant scale.
Additionally, we are working with leading industry service providers to explore new ways of producing graphene and low-carbon hydrogen.
Q:Finally, how confident are you that transformation will happen?
Mr. Mussabeh Al Kaabi: I am confident.It can be done. Transformation is happening. It won’t happen overnight, and it needs to be just and equitable for the poorest among us, but I am optimistic.We must focus on taking tangible action and not underestimate the power of human innovation. History has shown that, when we come together, we can innovate and act. I am positive that, over time, we will continue to see progress towards our common goal.
This content was produced by ADNOC. It was not written by MIT Technology Review’s editorial staff.
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.
If you follow papers in climate and energy for long enough, you’re bound to recognize some patterns.
There are a few things I’ll basically always see when I’m sifting through the latest climate and energy research: one study finding that perovskite solar cells are getting even more efficient; another showing that climate change is damaging an ecosystem in some strange and unexpected way. And there’s always some new paper finding that we’re still underestimating methane emissions.
That last one is what I’ve been thinking about this week, as I’ve been reporting on a new survey of methane leaks from oil and gas operations in the US. (Yes, there are more emissions than we thought there were—get the details in my story here.) But what I find even more interesting than the consistent underestimation of methane is why this gas is so tricky to track down.
Methane is the second most abundant greenhouse gas in the atmosphere, and it’s responsible for around 30% of global warming so far. The good news is that methane breaks down quickly in the atmosphere. The bad news is that while it’s floating around, it’s a super-powerful greenhouse gas, way more potent than carbon dioxide. (Just how much more potent is a complicated question that depends on what time scale you’re talking about—read more in this Q&A.)
The problem is, it’s difficult to figure out where all this methane is coming from. We can measure the total concentration in the atmosphere, but there are methane emissions from human activities, there are natural methane sources, and there are ecosystems that soak up a portion of all those emissions (these are called methane sinks).
Narrowing down specific sources can be a challenge, especially in the oil and gas industry, which is responsible for a huge range of methane leaks. Some are small and come from old equipment in remote areas. Other sources are larger, spewing huge amounts of the greenhouse gas into the atmosphere but only for short times.
A lot of stories about tracking methane have been in the news recently, mostly because of a methane-hunting satellite launched earlier this month. It’s designed to track down methane using tools called spectrometers, which measure how light is reflected and absorbed.
This is just one of a growing number of satellites that are keeping an eye on the planet for methane emissions. Some take a wide view, spotting which regions have high emissions. Other satellites are hunting for specific sources and can see within a few dozen meters where a leak is coming from. (If you want to read more about why there are so many methane satellites, I recommend this story from Emily Pontecorvo at Heatmap.)
But methane tracking isn’t just a space game. In a new study published in Nature, researchers used nearly a million measurements taken from airplanes flown over oil- and gas-producing regions to estimate total emissions.
The results are pretty staggering: researchers found that, on average, roughly 3% of oil and gas production at the sites they examined winds up as methane emissions. That’s about three times the official government estimates used by the US Environmental Protection Agency.
I spoke with one of the authors of the study, Evan Sherwin, who completed the research as a postdoc at Stanford. He compared the challenge of understanding methane leaks to the parable of the blind men and the elephant: there are many pieces of the puzzle (satellites, planes, ground-based detection), and getting the complete story requires fitting them all together.
“I think we’re really starting to see an elephant,” Sherwin told me.
That picture will continue to get clearer as MethaneSAT and other surveillance satellites come online and researchers get to sift through the data. And that understanding will be crucial as governments around the world race to keep promises about slashing methane emissions.
Pulling methane out of the atmosphere could be a major boost for climate action. Some startups hope that spraying iron particles above the ocean could help, as my colleague James Temple wrote in December.
PHOTO ILLUSTRATION | GETTY IMAGES
Another thing
Making minor changes to airplane routes could put a significant dent in emissions, and a new study found that these changes could be cheap to implement.
The key is contrails, thin clouds that planes produce when they fly. Minimizing contrails means less warming, and changing flight paths can reduce the amount of contrail formation. Read more about how in the latest from my colleague James Temple.
Keeping up with climate
New rules from the US Securities and Exchange Commission were watered down, cutting off the best chance we’ve had at forcing companies to reckon with the dangers of climate change, as Dara O’Rourke writes in a new opinion piece. (MIT Technology Review)
Yes, heat pumps slash emissions, even if they’re hooked up to a pretty dirty grid. Switching to a heat pump is better than heating with fossil fuels basically everywhere in the US. (Canary Media)
Rivian announced its new R2, a small SUV set to go on sale in 2026. The reveal signals a shift to focusing on mass-market vehicles for the brand. (Heatmap)
Toyota has focused on selling hybrid vehicles instead of fully electric ones, and it’s paying off financially. (New York Times)
→ Here’s why I wrote in December 2022 that EVs wouldn’t be fully replacing hybrids anytime soon. (MIT Technology Review)
Some scientists think we should all pay more attention to tiny aquatic plants called azolla. They can fix their own nitrogen and capture a lot of carbon, making them a good candidate for crops and even biofuels. (Wired)
New York is suing the world’s largest meat company. The company has said it’ll produce meat with no emissions by 2040, a claim that is false and misleading, according to the New York attorney general’s office. (Vox)
A massive fire in Texas has destroyed hundreds of homes. Climate change has fueled dry conditions, and power equipment sparked an intense fire that firefighters struggled to contain. (Grist)
→ Many of the homes destroyed in the blaze are uninsured, creating a tough path ahead for recovery. (Texas Tribune)
Methane emissions in the US are worse than scientists previously estimated, a new study has found.
The study, published today in Nature, represents one of the most comprehensive surveys yet of methane emissions from US oil- and gas-producing regions. Using measurements taken from planes, the researchers found that emissions from many of the targeted areas were significantly higher than government estimates had found. The undercounting highlights the urgent need for new and better ways of tracking the powerful greenhouse gas.
Methane emissions are responsible for nearly a third of the total warming the planet has experienced so far. While there are natural sources of the greenhouse gas, including wetlands, human activities like agriculture and fossil-fuel production have dumped millions of metric tons of additional methane into the atmosphere. The concentration of methane has more than doubled over the past 200 years. But there are still large uncertainties about where, exactly, emissions are coming from.
Answering these questions is a challenging but crucial first step to cutting emissions and addressing climate change. To do so, researchers are using tools ranging from satellites like the recently launched MethaneSAT to ground and aerial surveys.
The US Environmental Protection Agency estimates that roughly 1% of oil and gas produced winds up leaking into the atmosphere as methane pollution. But survey after survey has suggested that the official numbers underestimate the true extent of the methane problem.
For the sites examined in the new study, “methane emissions appear to be higher than government estimates, on average,” says Evan Sherwin, a research scientist at Lawrence Berkeley National Laboratory, who conducted the analysis as a postdoctoral fellow at Stanford University.
The data Sherwin used comes from one of the largest surveys of US fossil-fuel production sites to date. Starting in 2018, Kairos Aerospace and the Carbon Mapper Project mapped six major oil- and gas-producing regions, which together account for about 50% of onshore oil production and about 30% of gas production. Planes flying overhead gathered nearly 1 million measurements of well sites using spectrometers, which can detect methane using specific wavelengths of light.
Sherwin et al., Nature
Here’s where things get complicated. Methane sources in oil and gas production come in all shapes and sizes. Some small wells slowly leak the gas at a rate of roughly one kilogram of methane an hour. Other sources are significantly bigger, emitting hundreds or even thousands of kilograms per hour, but these leaks may last for only a short period.
The planes used in these surveys detect mostly the largest leaks, above roughly 100 kilograms per hour (though they catch smaller ones sometimes, down to around one-tenth that size, Sherwin says). Combining measurements of these large leak sites with modeling to estimate smaller sources, researchers estimated that the larger leaks account for an outsize proportion of emissions. In many cases, around 1% of well sites can make up over half the total methane emissions, Sherwin says.
But some scientists say that this and other studies are still limited by the measurement tools available. “This is an indication of the current technology limits,” says Ritesh Gautam, a lead senior scientist at the Environmental Defense Fund.
Because the researchers used aerial measurements to detect large methane leaks and modeled smaller sources, it’s possible that the study may be overestimating the importance of the larger leaks, Gautam says. He pointed to several other recent studies, which found that smaller wells contribute a larger fraction of methane emissions.
The problem is, it’s basically impossible to use just one instrument to measure all these different methane sources. We’ll need all the measurement technologies available to get a clearer picture, Gautam explains.
Ground-based tools attached to towers can keep constant watch over an area and detect small emissions sources, though they generally can’t survey large regions. Aerial surveys using planes can cover more ground but tend to detect only larger leaks. They also represent a snapshot in time, so they can miss sources that only leak methane for periods.
And then there are the satellites. Earlier this month, Google and EDF launched MethaneSAT, which joined the growing constellation of methane-detecting satellites orbiting the planet. Some of the existing satellites map huge areas, getting detail only on the order of kilometers. Others have much higher resolution, with the ability to pin methane emissions down to within a few dozen meters.
Satellites will be especially helpful in finding out more about the many countries around the world that haven’t been as closely measured and mapped as the US has, Gautham says.
Understanding methane emissions is one thing; actually addressing them is another matter. After identifying a leak, companies then need to take actions like patching faulty pipelines or other equipment, or closing up the vents and flares that routinely release methane into the atmosphere. Roughly 40% of methane emissions from oil and gas production have no net cost, since the money saved by not losing the methane is more than enough to cover the cost of the abatement, according to estimates from the International Energy Agency.
Over 100 countries joined the Global Methane Pledge in 2021, taking on a goal of cutting methane emissions 30% from 2020 levels by the end of the decade. New rules for oil and gas producers announced by the Biden administration could help the US meet those targets. Earlier this year, the EPA released details of a proposed methane fee for fossil-fuel companies, to be calculated on the basis of excess methane released into the atmosphere.
While researchers are slowly getting a better picture of methane emissions, addressing them will be a challenge, as Sherwin notes: “There’s a long way to go.”
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.
Hydropower is a staple of clean energy—the modern version has been around for over a century, and it’s one of the world’s largest sources of renewable electricity.
But last year, weather conditions caused hydropower to fall short in a major way, with generation dropping by a record amount. In fact, the decrease was significant enough to have a measurable effect on global emissions. Total energy-related emissions rose by about 1.1% in 2023, and a shortfall of hydroelectric power accounts for 40% of that rise, according to a new report from the International Energy Agency.
Between year-to-year weather variability and climate change, there could be rocky times ahead for hydropower. Here’s what we can expect from the power source and what it might mean for climate goals.
Drying up
Hydroelectric power plants use moving water to generate electricity. The majority of plants today use dams to hold back water, creating reservoirs. Operators can allow water to flow through the power plant as needed, creating an energy source that can be turned on and off on demand.
This dispatchability is a godsend for the grid, especially because some renewables, like wind and solar, aren’t quite so easy to control. (If anyone figures out how to send more sunshine my way, please let me know—I could use more of it.)
But while most hydroelectric plants do have some level of dispatchability, the power source is still reliant on the weather, since rain and snow are generally what fills up reservoirs. That’s been a problem for the past few years, when many regions around the world have faced major droughts.
The world actually added about 20 gigawatts of hydropower capacity in 2023, but because of weather conditions, the amount of electricity generated from hydropower fell overall.
The shortfall was especially bad in China, with generation falling by 4.9% there. North America also faced droughts that contributed to hydro’s troubles, partly because El Niño brought warmer and drier conditions. Europe was one of the few places where conditions improved in 2023—mostly because 2022 was an even worse year for drought on the continent.
As hydroelectric plants fell short, fossil fuels like coal and natural gas stepped in to fill the gap, contributing to a rise in global emissions. In total, changes in hydropower output had more of an effect on global emissions than the post-pandemic aviation industry’s growth from 2022 to 2023.
A trickle
Some of the changes in the weather that caused falling hydropower output last year can be chalked up to expected yearly variation. But in a changing climate, a question looms: Is hydropower in trouble?
The effects of climate change on rainfall patterns can be complicated and not entirely clear. But there are a few key mechanisms by which hydropower is likely to be affected, as one 2022 review paper outlined:
Rising temperatures will mean more droughts, since warmer air sucks up more moisture, causing rivers, soil, and plants to dry out more quickly.
Winters will generally be warmer, meaning less snowpack and ice, which often fills up reservoirs in the early spring in places like the western US.
There’s going to be more variability in precipitation, with periods of more extreme rainfall that can cause flooding (meaning water isn’t stored neatly in reservoirs for later use in a power plant).
What all this will mean for electricity generation depends on the region of the world in question. One global study from 2021 found that around half of countries with hydropower capacity could expect to see a 20% reduction in generation once per decade. Another report focused on China found that in more extreme emissions scenarios, nearly a quarter of power plants in the country could see that level of reduced generation consistently.
It’s not likely that hydropower will slow to a mere trickle, even during dry years. But the grid of the future will need to be prepared for variations in the weather. Having a wide range of electricity sources and tying them together with transmission infrastructure over wide geographic areas will help keep the grid robust and ready for our changing climate.
Chinese EVs have entered center stage in the ongoing tensions between the US and China. The vehicles could help address climate change, but the Biden administration is wary of allowing them into the market. There are two major motivations: security and the economy. Read more in my colleague Zeyi Yang’s latest newsletter here.
Keeping up with climate
A new satellite that launched this week will be keeping an eye on methane emissions. Tracking leaks of the powerful greenhouse gas could be key in addressing climate change. (New York Times)
→ This isn’t our first attempt at tracking greenhouse gases from space—but here’s how MethaneSAT is different from other methane-detecting satellites. (Heatmap)
Smarter charging of EVs could be essential to the grid of the future, and California is working on a new program to test it out. (Canary Media)
The magnets that power wind turbines nearly always wind up in a landfill. A new program aims to change that by supporting new methods of recycling. (Grist)
→ One company wants to do without the rare earth metals that are used in today’s powerful magnets. (MIT Technology Review)
Data centers burn through water to keep machinery cool. As more of the facilities pop up, in part to support AI tools like ChatGPT, they could stretch water supplies thin in some places. (The Atlantic)
No US state has been more enthusiastic about heat pumps than Maine. While it might seem an unlikely match—the appliances can lose some of their efficiency in the cold—the state is a success story for the technology. (New York Times)
New rules from the US Securities and Exchange Commission would require companies to report their emissions and expected climate risks. The final version is watered down from an earlier proposal, which would have included a wider variety of emissions. (Associated Press)
This week, the US Securities and Exchange Commission enacted a set of long-awaited climate rules, requiring most publicly traded companies to disclose their greenhouse-gas emissions and the climate risks building up on their balance sheets.
Unfortunately, the federal agency watered down the regulations amid intense lobbying from business interests, undermining their ultimate effectiveness—and missing the best shot the US may have for some time at forcing companies to reckon with the rising dangers of a warming world.
These new regulations were driven by the growing realization that climate risks are financial risks. Global corporations now face climate-related supply chain disruptions. Their physical assets are vulnerable to storms, their workers will be exposed to extreme heat events, and some of their customers may be forced to relocate. There are fossil-fuel assets on their balance sheets that they may never be able to sell, and their business models will be challenged by a rapidly changing planet.
These are not just coal and oil companies. They are utilities, transportation companies, material producers, consumer product companies, even food companies. And investors—you, me, your aunt’s pension—are buying and holding these fossilized stocks, often unknowingly.
Investors, policymakers, and the general public all need clearer, better information on how businesses are accelerating climate change, what they are doing to address those impacts, and what the cascading effects could mean for their bottom line.
The new SEC rules formalize and mandate what has essentially been a voluntary system of corporate carbon governance, now requiring corporations to report how climate-related risks may affect their business.
They also must disclose their “direct emissions” from sources they own or control, as well as their indirect emissions from the generation of “purchased energy,” which generally means their use of electricity and heat.
But crucially, companies will have to do so only when they determine that the information is financially “material,” providing companies considerable latitude over whether they do or don’t provide those details.
The original draft of the SEC rules would have also required corporations to report emissions from “upstream and downstream activities” in their value chains. That generally refers to the associated emissions from their suppliers and customers, which can often make up 80% of a company’s total climate pollution.
The loss of that requirement and the addition of the “materiality” standard both seem attributable to intense pressure from business groups.
To be sure, these rules should help make it clearer how some companies are grappling with climate change and their contributions to it. Out of legal caution, plenty of businesses are likely to determine that emissions are material.
And clearer information will help accelerate corporate climate action as firms concerned about their reputation increasingly feel pressure from customers, competitors, and some investors to reduce their emissions.
But the SEC could and should have gone much further.
After all, the EU’s similar policies are much more comprehensive and stringent. California’s emissions disclosure law, signed this past October, goes further still, requiring both public and private corporations with revenues over $1 billion to report every category of emissions, and then to have this data audited by a third party.
Unfortunately, the SEC rules merely move corporations to the starting line of the process required to decarbonize the economy, at a time when they should already be deep into the race. We know these rules don’t go far enough, because firms already following similar voluntary protocols have shown minimal progress in reducing their greenhouse-gas emissions.
The disclosure system upon which the SEC rules are based faces two underlying problems that have limited how much and how effectively any carbon accounting and reporting can be put to use.
First: problems with the data itself. The SEC rules grant firms significant latitude in carbon accounting, allowing them to set different boundaries for their “carbon footprint,” model and measure emissions differently, and even vary how they report their emissions. In aggregate, what we will end up with are corporate reports of the previous year’s partial emissions, without any way to know what a company actually did to reduce its carbon pollution.
Second: limitations in how stakeholders can use this data. As we’ve seen with voluntary corporate climate commitments, the wide variations in reporting make it impossible to compare firms accurately. Or as the New Climate Institute argues, “The rapid acceleration in the volume of corporate climate pledges, combined with the fragmentation of approaches and the general lack of regulation or oversight, means that it is more difficult than ever to distinguish between real climate leadership and unsubstantiated greenwashing.”
Investor efforts to evaluate carbon emissions, decarbonization plans, and climate risks through ESG (environmental, social, and governance) rating schemes have merely produced what some academics call “aggregate confusion.” And corporations have faced few penalties for failing to clearly disclose emissions or even meet their own standards.
All of which is to say that a new set of SEC carbon accounting and reporting rules that largely replicate the problems with voluntary corporate action, by failing to require consistent and actionable disclosures, isn’t going to drive the changes we need, at the speed we need.
Companies, investors, and the public require rules that drive changes inside companies and that can be properly assessed from outside them.
This system needs to track the main sources of corporate emissions and incentivize companies to make real investments in efforts to achieve deep emissions cuts, both within the company and across its supply chain.
The good news is that even though the rules in place are limited and flawed, regulators, regions, and companies themselves can build upon them to move toward more meaningful climate action.
The smartest firms and investors are already going beyond the SEC regulations. They’re developing better systems to track the drivers and costs of carbon emissions, and taking concrete steps to address them: reducing fuel use, building energy-efficient infrastructure, and adopting lower-carbon materials, products, and processes.
It is now just good business to look for carbon reductions that actually save money.
The SEC has taken an important, albeit flawed, first step in nudging our financial laws to recognize climate impacts and risks. But regulators and corporations need to pick up the pace from here, ensuring that they’re providing a clear picture of how quickly or slowly companies are moving as they take the steps and make the investments needed to thrive in a transitioning economy—and on an increasingly risky planet.
Dara O’Rourke is an associate professor and co-director of the master of climate solutions program at the University of California, Berkeley.
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.
There’s a looming problem in the carbon removal space.
By one count, nearly 800 companies around the world are exploring a wide variety of methods for drawing planet-warming greenhouse gas out of the atmosphere and storing it away or putting it to use, a gigantic leap from the five startups I could have named in 2019. Globally, venture investors poured more than $4 billion into this sector between 2020 and the end of last year, according to data provided by PitchBook.
The trouble is, carbon dioxide removal (CDR) is a very expensive product that, strictly speaking, no one needs right now. It’s not a widget; it’s waste management for invisible garbage, a public good that nobody is eager to pay for.
“CDR is a pure cost, and we’re trying to force it to be something that’s profitable—and the only way you can do that is with public money or through voluntary markets,” says Emily Grubert, an associate professor at Notre Dame, who previously served as deputy assistant secretary in the US Energy Department’s Office of Carbon Management.
Both of those are playing a part to certain degrees. So far, the main markets for carbon removal come from government procurement, which is limited; government subsidies, which don’t cover the cost; and voluntary purchases by corporations and individuals, which are restricted to those willing to pay the true cost of high-quality, reliable removal. You can also use the CO2 as a feedstock in other products, but then you’re generally starting with a high-cost version of a cheap commodity.
Given these market challenges, some investors are scratching their heads as they witness the huge sums flowing into the space.
In a report last summer, the venture capital firm DCVC said that all of the approaches it evaluated faced “multiple feasibility constraints.” It noted that carbon-sucking direct-air-capture factories are particularly expensive, charging customers hundreds of dollars per ton.
“That will still likely be the case in five, seven, even 10 years—which is why we at DCVC are somewhat surprised to see hundreds of millions of dollars in capital flowing into early-stage direct air capture companies,” the authors wrote.
Rachel Slaybaugh, a DCVC partner, said of direct-air capture in the report: “I’m not saying we won’t need it. And I’m not saying there won’t eventually be good businesses here. I’m saying right now the markets are very nascent, and I don’t see how you can possibly make a venture return.”
In background conversations, several industry insiders I’ve spoken with acknowledge that the number of carbon removal companies is simply unsustainable, and that a sizable share will flame out at some point.
The sector has taken off, in part, because a growing body of studies has found that a huge amount of carbon removal will be needed to keep rising temperatures in check. By some estimates, nations may have to remove 10 billion tons of carbon dioxide a year by midcentury to keep the planet from blowing past 2 °C of warming, or to pull it back into safer terrain.
On top of that, companies are looking for ways to meet their net-zero commitments. For now, some businesses are willing to pay the really high current costs for carbon removal, in part to help the sector scale up. These include Microsoft and companies participating in the $1 billion Frontier program.
At the moment, I’m told, corporate demand is outstripping the availability of reliable forms of carbon removal. There are only a handful of direct-air-capture plants, which take years to construct, and companies are still testing out or scaling up other approaches, like burying biochar and pumping bio-oil deep underground.
Costs are sure to come down, but it’s always going to be relatively expensive to do this well, and there are only so many corporate customers that will be willing to pay the true cost, observers say. So as carbon removal capacity catches up with that corporate demand, the fate of the industry will increasingly depend on how much more help governments are willing to provide—and on how thoughtfully they craft any accompanying rules.
Countries may support the emerging industry through carbon trading markets, direct purchases, mandates on polluters, fuel standards, or other measures.
It seems safe to assume that nations will continue to dangle more carrots or wield bigger sticks to help the sector along. Notably, the European Commission is developing a framework for certifying carbon dioxide removal, which could allow countries to eventually use various approaches to work toward the EU goal of climate neutrality by 2050. But it’s far from clear that such government support will grow as much and as quickly as investors hope or as entrepreneurs need.
Indeed, some observers argue it’s a “fantasy” that nations will ever fund high-quality carbon removal—on the scale of billions of tons a year—just because climate scientists said they should (see: our decades of inaction on climate change). To put it in perspective, the DCVC report notes that removing 100 billion tons at $100 a ton would add up to $10 trillion—“more than a tenth of global GDP.”
Growing financial pressures in the sector could play out in a variety of worrisome ways.
“One possibility is there’s a bubble and it pops and a lot of investors lose their shirts,” says Danny Cullenward, a climate economist and research fellow with the Institute for Responsible Carbon Removal at American University.
If so, that could shut down the development of otherwise promising carbon removal methods before we’ve learned how well and affordably they work (or not).
The other danger is that when an especially frothy sector fizzles, it can turn public or political sentiment against the space and kill the appetite for further investment. This, after all, is precisely what played out after the cleantech 1.0 bubble burst. Conservatives assailed government lending to green startups, and VCs, feeling burned, backed away for the better part of a decade.
But Cullenward fears another possibility even more. As funding runs dry, startups eager to bring in revenue and expand the market may resort to selling cheaper, but less reliable, forms of carbon removal—and lobbying for looser standards to allow them.
He sees a scenario where the sector replicates the sort of widespread credibility problems that have occurred with voluntary carbon offsets, building up big marketplaces that move a lot of money around but don’t achieve all that much for the atmosphere.
Now read the rest of The Spark
Related reading
In December, I highlighted an essay by Grubert and another former DOE staffer, in which they warned that sucking down greenhouse gas to cancel out corporate emissions could come at the expense of more pressing public needs.
In an earlier piece, I explored how the energy, attention, and money flowing into carbon removal could feed unrealistic expectations about how much we can rely on it—and thus how much we can carry on emitting.
In a story out today, Tech Review’s Casey Crownhart explains why hydrogen vehicles may be lurching toward a dead end, as vehicle sales stagnate and fueling stations shut down. (MIT Technology Review)
A Trump victory would be bad news for climate change. In particular, I took a hard look at what it might mean for Joe Biden’s landmark law, the Inflation Reduction Act. (Short answer: nothing good.) (MIT Technology Review)
The Inflation Reduction Act includes a little-known methane fee, which kicks into effect for excess emissions in 2024. Grist reports that the US’s largest oil and gas companies could be on the hook for more than $1 billion, based on recent emissions patterns—marking another reason why, as I reported, Trump would likely try to rescind the provision. (Grist)
The US Securities and Exchange Commission could release long-awaited climate rules as soon as next week, requiring companies to disclose their corporate emissions and exposure to climate risks. Heatmap explores why the SEC is doing this and what it may mean for businesses, climate progress, and the cottage industry forming to conduct emissions accounting. (Heatmap)
President Joe Biden’s crowning legislative achievement was enacting the Inflation Reduction Act, easily the nation’s largest investment into addressing the rising dangers of climate change.
Yet Donald Trump’s advisors and associates have clearly indicated that dismantling the landmark law would sit at the top of the Republican front-runner’s to-do list should he win the presidential election. If he succeeds, it could stall the nation’s shift to cleaner industries and stunt efforts to cut the greenhouse-gas pollution warming the planet.
The IRA unleashes at least hundreds of billions of dollars in federal subsidies for renewable energy sources, electric vehicles, batteries, heat pumps, and more. It is the “backbone” of the Biden administration’s plan to meet the nation’s commitments under the Paris climate agreement, putting the US on track to cut emissions by as much as 42% from 2005 levels by the end of this decade, according to the Rhodium Group, a research firm.
But the sprawling federal policy package marks the “biggest defeat” conservatives have suffered during Biden’s tenure, according to Myron Ebell, who led the Environmental Protection Agency transition team during Trump’s administration. And repealing the law has become an obsession among many conservatives, including the authors of the Heritage Foundation’s Project 2025, widely seen as a far-right road map for the early days of a second Trump administration.
The IRA’s tax credits for EVs and clean power projects appear especially vulnerable, climate policy experts say. Losing those provisions alone could reshape the nation’s emissions trajectory, potentially adding back hundreds of millions of metric tons of climate pollution this decade.
Moreover, Trump’s wide-ranging pledges to weaken international institutions, inflame global trade wars, and throw open the nation’s resources to fossil-fuel extraction could have compounding effects on any changes to the IRA, potentially undermining economic growth, the broader investment climate, and prospects for emerging green industries.
Farewell to EV tax credits
The IRA leverages government funds to accelerate the energy transition through a combination of direct grants and tax credits, which allow companies or individuals to cut their federal obligations in exchange for buying, installing, investing in, or producing cleaner power and products. It is enacted law, not a federal agency regulation or executive order, which means that any substantial changes would need to be achieved through Congress.
But the tax cuts for individuals pushed through during Trump’s time in office are set to expire next year. If he wins a second term, legislators seeking to extend those cuts could crack up the tax code and excise key components of the IRA, particularly if Republicans retain control of the House and pick up seats in the Senate. Eliminating any of those tax credits could help offset the added cost of restoring those Trump-era benefits.
Numerous policy observers believe that the pair of EV tax credits in the IRA, which together lop $7,500 off the cost of electric cars and trucks, would be one of the top targets. Subsidizing the cost of EVs polls terribly among Republicans, and throughout the primaries, most of the party’s candidates for president have fiercely attacked government support for the vehicles—none more than Trump himself.
Former President Donald Trump speaks at a campaign event in Iowa.
SCOTT OLSON/GETTY IMAGES
On the campaign trail, he has repeatedly, erroneously referred to the policy as a mandate rather than a subsidy, while geographically tailoring the critique to his audience.
At a December rally in Iowa, the nation’s biggest corn producer, he pledged to cancel “Crooked Joe Biden’s insane, ethanol-killing electric-vehicle mandate on day one.”
And in the battleground state of Michigan in September, he pandered to the fears of autoworkers.
“Crooked Joe is siding with the left-wing crazies who will destroy automobile manufacturing and will destroy the country itself,” Trump said. “The damn things don’t go far enough, and they’re too expensive.”
Other Trump targets
Other IRA components likely to fall into Trump’s crosshairs include tax credits for investing in or operating emissions-free power plants that would come online in 2025 or later, says Josh Freed, who leads the climate and energy program at Third Way, a center-left think tank in Washington, DC.
These so-called technology-neutral credits are intended to replace earlier subsidies dedicated to renewables like solar and wind, encompassing a more expansive suite of energy-producing possibilities like nuclear, bioenergy, or power plants with carbon capture capabilities.
Those latter categories are more likely to have Republican support than, say, solar farms. But any policy primarily designed to accelerate the shift away from fossil fuels would likely be a ripe target in a second Trump administration, given the industry’s support for the candidate and his ideological opposition to climate action.
A number of other provisions could also come under attack within the law. Among them:
additional measures supporting the growing adoption of EVs, including tax credits for individuals and businesses that install charging infrastructure;
fees on methane emissions from wells, processing plants, and pipelines, when they exceed certain thresholds;
a reinstated Superfund excise tax on crude oil and petroleum products, which could raise billions of dollars to fund the cleanup of hazardous-waste sites;
Observers are quick to note, however, that a wholesale repeal of the IRA is unlikely, because—well—it’s working.
By some accounts, the law has helped spur hundreds of billions of dollars in private investment into projects that could create nearly 200,000 jobs—and get this: eight of the 10 congressional districts set to receive the biggest clean-energy investments announced in recent quarters are led by Republicans, according to one analysis (and backed up by others).
A disproportionate amount of the money is also flowing into low-income areas and “energy communities,” or regions that previously produced fossil fuels, according to data from the MIT Center for Energy and Environmental Policy Research and the Rhodium Group.
As more and more renewables projects, mineral processing facilities, battery plants, and EV factories bring jobs and tax revenue to red states, the politics around clean energy are shifting, at least behind the scenes if not always in the public debate.
All of which means some sizable share of Republicans will likely push back on more sweeping changes to the IRA, particularly if they would raise the costs on businesses and reduce the odds that new projects will move forward, says Sasha Mackler, executive director of the energy program at the Bipartisan Policy Center, a Washington, DC, think tank.
“Most of the tax credits are pretty popular within industry and in red states, which are generally the constituency that the Republican Party listens to when they shape their policies,” Mackler says. “When you start to go beyond the top-line political rhetoric and look at the actual tax credits themselves, they’re on much firmer ground than you might initially think just reading the newspaper and looking at what’s being said on the campaign trail.”
That means it might prove more difficult to rescind some of the hit-list items above than Trump would hope. And there are other big parts of the legislative package that Republicans might avoid picking fights over at all, such as the support for processing critical minerals, manufacturing batteries, capturing and storing carbon dioxide, and producing biofuels, given the broader support for these areas.
DC sources also say that clean-energy-focused policy shops and some climate tech companies themselves are already playing defense, stressing the importance of these policies to legislators in the run-up to the election. Meanwhile, if staffers at the Department of Energy and other federal agencies aren’t already rushing to get as much of the grant-based money in the IRA out the door as possible, they should be, says Leah Stokes, an associate professor of environmental politics at the University of California, Santa Barbara, who advised Democrats on crafting the law.
Among other funds, the law appropriates nearly $12 billion for the DOE’s loans office, which provides financing to accelerate the development of clean-energy projects. It also sets aside $5 billion in EPA grants designed to help states, local governments, and tribes implement efforts to cut greenhouse-gas pollution.
“If DOE and EPA work fast enough, that money should be difficult to somehow claw back, because it will have been spent,” Stokes says.
Impact
Still, there’s no question that Trump and legislators eager to curry his favor could do real damage to the IRA and the clean-energy industries poised to benefit from it.
How much damage depends, of course, on what he succeeds in unraveling.
But take the example of the power sector subsidies. A study last year in the journal Science noted that with the IRA’s support for clean electricity, around 68% of the country’s power generation would come from low-emission sources by 2030, as opposed to 54% without the law.
The Rhodium Group estimates that the IRA could cut power-sector pollution by nearly 500 million tons in 2030, as a central estimate.
GETTY IMAGES
How much these projections change would depend on which and how many of the provisions supporting the shift to cleaner power legislators manage to remove. In addition to the technology-neutral credits noted above, the IRA also provides federal support for extending the life of nuclear plants, deploying energy storage, and adding carbon capture and storage capabilities.
Meanwhile, an earlier report from RMI (formerly known as the Rocky Mountain Institute) offered a hint at what’s at stake for the EV sector. The research group noted that the assorted provisions within the IRA, when combined with the EPA’s proposal to tighten tailpipe rules, could propel electric passenger vehicles to 76% of all new sales by 2030. Without it, they will only make up about half such sales by that point. (Notably, however, the Biden administration is now reportedly considering relaxing those rules to give automakers more time to ramp up EV production.)
All told, some 37 million additional EVs could hit the nation’s roads between now and 2032, eliminating more than 830 million tons of transportation emissions by that year and 2.4 billion tons by 2040, RMI estimates.
That adds up to a huge difference in the market prospects for EV makers, and in the economics of building new plants.
The loss of the EV credits could create another notable ripple effect. For a purchased vehicle to qualify for one of the $3,750 tax credits, at least 60% of the battery components must be manufactured or assembled in North America. The other credit is available only if the batteries include a significant share of critical minerals extracted or processed in the US or through free-trade partners, or recycled in North America.
The varied goals of these “domestic content requirements,” which helped drive the law past the legislative finish line, included ensuring that the US produces more of materials and components for cleantech industries domestically, creating more jobs, reducing the nation’s reliance on China, and safeguarding US energy security as the country moves away from fossil fuels.
Losing the tax credits could dim hopes for reaching those goals—though some critics argue that trade deals and IRS interpretations have already watered down the credits’ provisions, ensuring that more manufacturers and models qualify.
Trump’s broader agenda
Trump has made clear he intends to hamstring additional climate efforts and bolster the oil and gas sector through numerous other means, potentially including federal regulations, executive orders, and Department of Justice actions. All of these would only magnify any impact from changes he might make to the IRA.
If he wins in November, he’s also likely, for instance, to direct the EPA to eliminate those tailpipe rules altogether. He may work to slow down, cut off, or claw back some of the $7.5 billion allocated under the Bipartisan Infrastructure Law to build out a national EV charging network.
Trump could also remove and refuse to replace the staff necessary to implement and oversee programs and funding throughout the DOE, the EPA, the National Oceanic and Atmospheric Administration, and other federal agencies. And he would very likely pull the US out of the Paris climate agreement again.
How much of this Trump accomplishes could depend, in part, on how emboldened he feels upon entering office for a second term, when he’d likely still be battling multiple criminal cases against him.
“It just depends if we assume he’s going to respect the law and color within the lines of our legal system, or if he’s going to be a fascist,” Stokes says. “That’s a huge question—and we should take it very seriously.”
The potentially chaotic economic and geopolitical effects of such policies, at a point of spiraling global conflicts, could easily dwarf any direct consequences of altering climate laws and regulations.
As Freed puts it: “A world that is less stable and much more dangerous, economically and militarily, would have incalculable damage on climate and energy issues in a second Trump term.”
This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.
For someone who does not own or drive a car, I sure do have a lot of thoughts about them.
I spend an inordinate amount of time thinking about transportation in general, since it’s one of the biggest areas we need to clean up to address climate change: it accounts for something like a quarter of global emissions. And the vehicles that we use to shuttle around to work, school, and the grocery store in many parts of the world are a huge piece of the problem.
Last week, MIT Technology Review hosted an event where my colleagues and I dug into a conversation about the future of batteries and the materials that go into them. We got so many great questions, and we answered quite a few of them (subscribers should check out the recording of the full event here).
But there were still a lot of questions, particularly about EVs, that we didn’t get to, so let’s take a look at a few. (I’ve edited these for length and clarity, but they came from subscribers, so thank you to everyone who submitted!)
Why is there not a bigger push for plug-in hybrids during the transition to full EVs? Could those play a role?
Hybrids are sometimes relegated to the fringes of the EV discussion, but I think they’re absolutely worth talking about.
Before we get into this, let’s get a couple of terms straight. All hybrid vehicles use both an internal-combustion engine that burns gasoline and a battery, but there are two key types to know about. Plug-in hybrids can be charged up using an EV charger and run for short distances on electricity. Conventional hybrids have a small battery to help recapture energy that would otherwise be wasted, which boosts gas mileage, but they always run on gasoline.
Any technology that helps reduce emissions immediately can help address climate change, and even a conventional hybrid will cut emissions by something like 20%.
Personally, I think plug-in hybrids in particular are a great option for people who can’t commit to an EV just yet. These vehicles often have a range of around 50 miles on electricity, so if you’re commuting short distances, nearly all your driving can be zero-emissions.
Plug-ins aren’t the perfect solution, though. For one thing, the vehicles may have higher rates of problems than both EVs and gas-powered vehicles, and they need a bit more maintenance. And some studies have shown that plug-in hybrids don’t tend to get the full emissions benefits advertised, because people use the electric mode less than expected.
Ultimately, we need to stop burning fossil fuels, so we’ll need to get used to vehicles that run without gasoline at all. But in the meantime, dipping a toe into the world of electric vehicles could be a good option for many drivers.
Will current charging technology be able to support EVs? How practical is it to bring chargers to remote areas of the country?
These questions hit on one of the biggest potential barriers to EV adoption: charging availability.
In many parts of the world, there’s a massive need to build more chargers to support the EVs already on the road, not to mention all the new ones being built and sold each year. Some agencies have recommended that there should be one public charger for every 10 EVs on the road, though factors like density and rates of at-home charging mean different communities will have different needs.
The US had about 24 EVs per charger as of the end of 2022, while the EU is at about 13, and China is among the leading nations with around eight. Improving that ratio is crucial to getting more drivers comfortable with EVs.
But building out the charging network is a big project, and one that looks different for different communities. In dense cities, many people live in apartments as opposed to single-family homes with garages, so even more public chargers will be needed to make up for the lack of at-home charging. For rural communities, or those that are less wealthy, getting any chargers built at all can be a challenge.
These so-called charging deserts often suffer from a sort of chicken-and-egg problem: there’s a lack of demand for chargers because people aren’t driving EVs, and people aren’t driving EVs because there are no chargers.
Public funding will be key to filling in gaps left by private companies installing charging networks. In the US, some money is tied to making sure that disadvantaged communities will benefit.
The bottom line is that it’s possible to make chargers available and equitable, but it’s definitely going to take a while, and it’s going to be expensive.
What about hydrogen—could that be an alternative to batteries?
I’ve been digging into this question, so stay tuned for a story coming very soon. But I’ll give you a sneak peek: the short answer is that I think there are many reasons to be skeptical of claims that hydrogen will swoop in to save the day for vehicles.
A small number of vehicles on the road today do use hydrogen as a fuel. The Toyota Mirai is one of the most popular fuel-cell models on the market, though only a few thousand were sold last year.
The big draw is that fueling up such a car looks a lot like fueling up a gas-powered vehicle today, taking just a few minutes at a pump. Even the fastest chargers can take around half an hour to juice up an EV, so hydrogen refueling is generally faster and more convenient.
But for a range of reasons, hydrogen vehicles are more expensive both to buy and to drive, and they’re likely to stay that way. There are better uses for hydrogen, too, in heavy industry and fertilizer and even long-range shipping. So EVs are probably going to be our best option for a long while.
I hope I’ve piqued your interest—look out for a longer story on this topic soon. In the meantime, check out some of our other transportation coverage.
Related reading
We put electric vehicles on our 2023 list of breakthrough technologies—see why here.
The EV revolution is happening faster in China than anywhere else in the world. So it’s no wonder that the country is also a center for the world of virtual power plants, which pull together energy resources like EV batteries. Read more about why China needs VPPs in my colleague Zeyi Yang’s latest story.
Keeping up with climate
Plastic is really difficult to recycle. A new report shows that some companies knew just how extensive the challenges are and obscured the truth for decades. (The Guardian)
The EU is finalizing rules around pulling carbon out of the atmosphere. The certification will favor techniques that work over long time scales and can be measured effectively. (The Verge)
EVs can run into trouble in extreme heat and cold. New materials, especially advancements in a part of the battery called the electrolyte, could help EVs last longer and stand up to tough conditions. (Scientific American)
A growing group of companies wants to enlist the earth to help store energy. Sage Geosystems just raised $17 million for geothermal energy storage. (Canary Media)
→ Fervo Energy demonstrated that its wells can be used like a giant underground battery. (MIT Technology Review)
Restringing power lines could be key in supercharging clean energy. The process can be quicker and cheaper than building new transmission lines, as long as red tape doesn’t get in the way. (Heatmap News)
Farmers are getting better at growing more crops faster on less land. The problem is, the benefits are focused on plants going into cars and cows, not people. (Wired)
There was something strange about the way the sharks were moving between the islands of the Bahamas.
Tiger sharks tend to hug the shoreline, explains marine biologist Austin Gallagher, but when he began tagging the 1,000-pound animals with satellite transmitters in 2016, he discovered that these predators turned away from it, toward two ancient underwater hills made of sand and coral fragments that stretch out 300 miles toward Cuba. They were spending a lot of time “crisscrossing, making highly tortuous, convoluted movements” to be near them, Gallagher says.
It wasn’t immediately clear what attracted sharks to the area: while satellite images clearly showed the subsea terrain, they didn’t pick up anything out of the ordinary. It was only when Gallagher and his colleagues attached 360-degree cameras to the animals that they were able to confirm what they were so drawn to: vast, previously unseen seagrass meadows—a biodiverse habitat that offered a smorgasbord of prey.
The discovery did more than solve a minor mystery of animal behavior. Using the data they gathered from the sharks, the researchers were able to map an expanse of seagrass stretching across 93,000 square kilometers of Caribbean seabed—extending the total known global seagrass coverage by more than 40%, according to a study Gallagher’s team published in 2022. This revelation could have huge implications for efforts to protect threatened marine ecosystems—seagrass meadows are a nursery for one-fifth of key fish stocks and habitats for endangered marine species—and also for all of us above the waves, as seagrasses can capture carbon up to 35 times faster than tropical rainforests.
Animals have long been able to offer unique insights about the natural world around us, acting as organic sensors picking up phenomena that remain invisible to humans. More than 100 years ago, leeches signaled storms ahead by slithering out of the water; canaries warned of looming catastrophe in coal mines until the 1980s; and mollusks that close when exposed to toxic substances are still used to trigger alarms in municipal water systems in Minneapolis and Poland.
Attaching 360-degree cameras to tiger sharks helped demystify the
animals’ strange movements around the Bahamas.
COURTESY OF BENEATH THE WAVES
These days, we have more insight into animal behavior than ever before thanks to sensor tags, which have helped researchers answer key questions about globe-spanning migrations and the sometimes hard-to-reach places animals visit along the way. In turn, tagged animals have increasingly become partners in scientific discovery and planetary monitoring.
But the data we gather from these animals still adds up to only a relatively narrow slice of the whole picture. Results are often confined to silos, and for many years tags were big and expensive, suitable only for a handful of animal species—like tiger sharks—that are powerful (or large) enough to transport them.
This is beginning to change. Researchers are asking: What will we find if we follow even the smallest animals? What if we could monitor a sample of all the world’s wildlife to see how different species’ lives intersect? What could we learn from a big-data system of animal movement, continuously monitoring how creatures big and small adapt to the world around us? It may be, some researchers believe, a vital tool in the effort to save our increasingly crisis-plagued planet.
Wearables for the wild
Just a few years ago, a project called ICARUS seemed ready to start answering the big questions about animal movement.
A team led by Martin Wikelski, a director at the Max Planck Institute of Animal Behavior in southern Germany and a pioneer in the field, launched a new generation of affordable and lightweight GPS sensors that could be worn by animals as small as songbirds, fish, and rodents.
Martin Wikelski envisions a big-data system that monitors animal behavior to help us better understand the environment.
CHRISTIAN ZIEGLER/MAX PLANCK INSTITUTE FOR ORNITHOLOGY
These Fitbits for wild creatures, to use Wikelski’s analogy, could produce live location data accurate to a few meters and simultaneously allow scientists to monitor animals’ heart rates, body heat, and sudden movements, plus the temperature, humidity, and air pressure in their surroundings. The signals they transmitted would be received by a three-meter antenna affixed to the International Space Station—the result of a €50 million investment from the German Aerospace Centre and the Russian Space Agency—and beamed down to a data bank on Earth, producing a map of the animals’ paths in close to real time as they crisscrossed the globe.
Wikelski and his peers hoped the project, formally the International Cooperation for Animal Research Using Space, would provide insights about a much wider variety of animals than they’d previously been able to track. It also aimed to show proof of concept for Wikelski’s dream of the past several decades: the Internet of Animals—a big-data system that monitors and analyzes animal behavior to help us understand the planet and predict the future of the environment.
Researchers have been laying the groundwork for years, connecting disparate data sets on animal movement, the environment, and weather and analyzing them with the help of AI and automated analytics. But Wikelski had his sights on something even grander and more comprehensive: a dashboard in which 100,000 sensor-tagged animals could be simultaneously monitored as near-real-time data flowed in from Earth-imaging satellites and ground-based sources.
By bringing together each of these snapshots of animals’ lives, we might begin to understand the forces that are shaping life across the planet. The project had the potential to help us better understand and conserve the world’s most vulnerable species, showing how animals are responding to the challenges of climate change and ecosystem loss. It also promised another way to monitor the Earth itself during a period of increasing instability, transforming our animal co-inhabitants into sentinels of a changing world.
When ICARUS first went into space in 2018, it was widely celebrated in the press. Yet what should have been a moment of glory for Wikelski and the field of animal ecology instead became a test of his will. The ICARUS antenna first went down for a year because of a technical issue; it went back up but was only just out of testing in February 2022 when the Russian invasion of Ukraine halted the project altogether.
Wikelski and his peers, though, have used the time since to innovate and evangelize. They now envision a more complete and technologically advanced version of the Internet of Animals than the one they hoped to build even just a few years ago, thanks to innovations in tracking technologies and AI and satellite systems. They have made even smaller and cheaper sensors and found a new, more affordable way to work in space with microsatellites called CubeSats. Their efforts have even gotten NASA to invest its time and resources into the possibility of building the Internet of Animals.
Now Wikelski and his collaborators are again on the verge, with an experimental CubeSat successfully transmitting data as part of a testing phase that started last June. If all goes as planned, another fully operational ICARUS CubeSat will begin collecting data next year, with more launches to follow.
The potential benefits of this system are extraordinary and still not yet fully understood, says Scott Yanco, a researcher in movement ecology at the University of Michigan. Perhaps it could help prevent mountain lion attacks or warn about a zoonotic disease about to make a jump to humans. It could alert researchers of behavioral changes that seem to happen in some animals before earthquakes, a phenomenon Wikelski has studied, and determine what conditions tell boobies in the Indo-Pacific to lay fewer eggs in years before strong El Niños or signal to weaver birds in the Niger Delta to build their nests higher up before floods.
“You can talk to 100 scientists about this,” Yanco says, “and they’re all going to give you a different answer of what they’re interested in.”
But first, a lot still needs to go right.
Animals as sentinels
When I first spoke with Wikelski, in early 2022, ICARUS was live, tracking 46 species from the ISS 400 kilometers overhead. Wearing a pair of square-rimmed glasses and speaking in a German accent with a tone of unfailing urgency, he was excited to tell me about a tagged blackbird who made a 1,000-or-so-kilometer crossing from Belarus to Albania.
That was actually pretty routine, Wikelski said, but almost everything else he had been seeing over the past year of road-testing had been stranger than expected. White storks were crossing back and forth over the Sahara five times a season, without apparent reason. Cuckoos, which are tree-dwelling birds ill suited to long periods at sea, were making uninterrupted journeys from India to the Horn of Africa. “Now, any time you look, totally novel aspects appear, and novel connections appear across continents,” he told me.
This could have been a mystifying mess. But for Wikelski, it was “beautiful data.”
The practice of tagging animals to monitor their movements has been used for more than 100 years, though it began with a stroke of luck. In the 1820s, a hunter in a village in central Africa threw a 30-inch spear that lodged itself nonfatally in the neck of a white stork. This became what might have been the world’s first tag on a wild animal, says Yanco: the bird somehow flew back to Germany in the spring, helping settle the mystery of where storks disappeared to in the winter.
By the 1890s, scientists had started tracking wild birds with bands fitted around their legs—but 49 out of every 50 ring-tagged birds were never seen again. Starting in the 1960s, thousands of birds received very-high-frequency radio tags known as “pingers,” but these were only powerful enough to broadcast a few kilometers. To capture the data, researchers had to embark on cartoonish chase scenes, in which tagged birds were pursued by an oversize homing antenna pointed out the roof of a car, plane, or hang-glider.
More than 100 years
ago, leeches held in a
contraption called the
Tempest Prognosticator
provided signals of storms ahead by slithering out of
water in glass bottles.In the 1820s, a hunter in central Africa threw a spear that lodged itself
nonfatally in the neck
of a white stork. This
became what might have been the world’s first wild-animal tag.
NASA invented
space-based animal
tracking in 1970 when it
strapped a transmitter
collar the weight of two
bowling balls around the
neck of Monique the Space Elk, a local news celebrity at the time.Canaries warned of looming catastrophe
in coal mines until the
1980s.
Wikelski tried all three. During a stint at the University of Illinois in Urbana-Champaign in the mid-’90s, he was studying thrushes and would gun an Oldsmobile around the Midwest at over 70 miles per hour. He’d set off as the songbirds got going at around 2 a.m., which tended to draw the attention of local police. Wikelski found that contrary to the conventional wisdom, thrushes used just 29% of their energy on their overnight migrations, less than they expended hunting and sheltering during stopovers. But the hassle of his process, which also entailed capturing and recapturing birds to weigh them, convinced Wikelski that, among other things, he needed better tools.
Thinking bigger (and higher)
It was not immediately clear that the solution to Wikelski’s problems would be in space, though the idea of tracking animals via satellite had been explored decades before his Oldsmobile experiments.
In fact, NASA invented space-based animal tracking back in 1970 when it strapped a transmitter collar the weight of two bowling balls around the neck of Monique the Space Elk, a local news celebrity at the time. (Monique was actually two elks: the anointed Monique, who wore a dummy collar for testing and press photos, and another, who accidentally caught a misfired tranquilizer dart and subsequently got the satellite transmitter collar.) After the Moniques met untimely deaths—one from starvation, the other at the hands of a hunter—the project went dormant too.
But its research lived on in Argos, a weather monitoring system established in 1978 by the National Oceanic and Atmospheric Administration (NOAA) and the French space agency. It pioneered a way to track a tagged animal’s location by beaming up a short stream of analog data and measuring wave compression—the so-called Doppler shift—as a polar-orbiting satellite zoomed overhead at thousands of miles an hour. But this captured locations to only a few hundred meters, at best, and typically required a clear line of sight between tag and satellite—a challenge when working with animals below the canopy of rainforests, for instance.
Wikelski worked extensively with Argos but found that the technology didn’t enable him to capture the highly detailed whole-life data he craved. By the late ’90s, he was on an island in Panama, exploring an alternative approach that followed hundreds of animals from 38 species, including small mammals and insects.
Using six long-distance radio towers, Wikelski and Roland Kays, now the director of the Biodiversity Laboratory at the North Carolina Museum of Natural Sciences, started to develop the Automated Radio Telemetry System (ARTS), a radio collar tracking system that could penetrate thick canopy. Crucially, ARTS revealed interactions between species—for example, how predatory ocelots support the island’s palm trees by eating large quantities of rabbit-like agoutis, after the rodents bury palm seeds underground as a snack for later. The researchers also found that despite what everyone believed, many of the animal inhabitants don’t remain on the island year-round, but frequently travel to the mainland. Kays and Wikelski had demonstrated in microcosm the kinds of insights that fine-grained multispecies tracking could provide even in challenging environments.
But Wikelski was frustrated that he couldn’t follow animals off the map. “If we don’t know the fate of an animal, we will never be able to really do good biology,” he says. The only solution would be to have a map with no edge.
This was around the time that GPS trackers became small enough to be used in animal tags. While radio tags like those used by Argos estimated location by transmitting signals to receivers, GPS systems like those in cars download data from three or more satellites to triangulate location precisely.
Wikelski became a man possessed by the idea of using this technology to create a truly global animal monitoring system. He envisioned digital tags that could capture GPS data throughout the day and upload packets of data to satellites that would periodically pass overhead. This idea would generate both excitement and a lot of skepticism. Peers told Wikelski that his dream system was unrealistic and unworkable.
At the turn of the millennium, he took a position at Princeton with the notion that the institutional pedigree might earn an audience for his “crazy” idea. Not long after he arrived, the chief of NASA’s Jet Propulsion Laboratory came for a talk, and Wikelski asked whether the agency would benefit from a satellite system that could track birds. “He looked at me as if I came from a different planet,” Wikelski remembers. Still, he got a meeting with NASA—though he says he was laughed out of the building. By this time, the agency had apparently forgotten all about Monique.
Undeterred, in 2002 Wikelski launched ICARUS, a half-joke (for fans of Greek mythology) at his own immodest ambitions. It aimed to use digital GPS tags and satellites that would relay the information to a data center on Earth nearly as instantly as the ARTS system had.
Wikelski’s big ideas continued to run into big doubts. “At the time, people told us technology-wise, it will never work,” he says. Even 10 years ago, when Wikelski was making proposals to space agencies, he was told to avoid digital tech altogether in favor of tried-and-tested Argos-style communication. “Don’t go digital!” he recalls people telling him. “This is completely impossible! You have to do it analog.”
Moving away from the fringe
In the two decades since ICARUS was established, the scientific community has caught up, thanks to developments in consumer tech. The Internet of Things made two-way digital communications with small devices viable, while lithium batteries have shrunk to sizes that more animals can carry and smartphones have made low-cost GPS and accelerometers increasingly available.
“We’re going from where we couldn’t really track most vertebrate species on the planet to flipping it. We’re now able to track most things,” says Yanco, emphasizing that this is possible “to varying degrees of accuracy and resolution.”
The other key advance has been in data systems, and in particular the growth of Movebank, a central repository of animal tracking data that was developed from Wikelski’s ARTS system. Movebank brings together terrestrial-animal tracking data from various streams, including location data from the Argos system and from new high-res digital satellites, like ICARUS’s antenna on the ISS. (There are also plans to incorporate CubeSat data.) To date, it has collected 6 billion data points from more than 1,400 species, tracking animals’ full life cycles in ways that Wikelski once could only dream about. It is now a key part of the plumbing of the animal internet.
The field also had some practical successes, which in turn allowed it to marshal additional resources. In 2016 in London, for instance, where air pollution was responsible for nearly 10,000 human deaths a year, researchers from Imperial College and the tech startup Plume Labs released 10 racing pigeons equipped with sensors for nitrogen dioxide and ozone emissions from traffic. Daily updates (tweeted out by the Pigeon Air Patrol account) showed how taking a pigeon’s path through the neighborhoods revealed pollution hot spots that weather stations missed.
Diego Ellis Soto, a NASA research fellow and a Yale PhD candidate studying animal ecology, highlights an experiment from 2018: flocks of storks were outfitted with high-resolution GPS collars to monitor the air movements they encountered over the open ocean. Tagged storks were able to capture live data on turbulence, which can be notoriously hard for airlines to predict.
Among the critical roles for these animal sensors was one that was once considered eccentric: predicting weather and the world’s fast-changing climate patterns. Animals equipped with temperature and pressure sensors essentially act as free-roaming weather buoys that can beam out readings from areas underserved by weather stations, including polar regions, small islands, and much of the Global South. Satellites struggle to measure many environmental variables, including ocean temperatures, which can also be prohibitively expensive for drones to collect. “Eighty percent of all measurements in Antarctica of sea surface temperature are collected by elephant seals, and not by robots or icebreakers,” Ellis Soto says. “These seals can just swim underneath the ice and [do] stuff that robots can’t do.” The seals are now tagged yearly, and the data they collect helps refine weather models that predict El Niño and sea-level rise.
When the ICARUS antenna was installed on the ISS in August 2018, it seemed poised to unlock even more capabilities and discoveries. In the antenna’s short life, the project recorded the movements of bats, birds, and antelope in near-real time, from Alaska to the islands of Papua New Guinea, and transferred the data to Movebank. But when the experiment ground to a premature halt, Wikelski knew he’d have to do something different, and he concocted a plan by which ICARUS could continue—whether it could rely on a major space agency or not.
Another shot
Rather than a system of major satellites, the new incarnation of ICARUS will run on CubeSats: low-cost, off-the-shelf microsatellites launched into low Earth orbit (around the same height as the ISS) for around $800,000, meaning even developing nations that harbor space ambitions can be part of the project. CubeSats also offer the benefit of truly global coverage; the ISS’s orbital path means it can’t pick up signals from polar regions further north than southern Sweden or further south than the tip of Chile.
There’s currently one ICARUS CubeSat in testing, having launched into orbit last summer. If all goes well, a CubeSat funded by the Max Planck Society, in collaboration with the University of the Bundeswehr Munich, will launch next April, followed by another in winter 2025, and—they’re hoping—another in 2026. Each further addition allows the tags to upload once more per day, increasing the temporal resolution and bringing the system closer to truly real-time tracking.
Outfitting even small animals with lightweight, inexpensive GPS sensors, like the one on this blackbird, and monitoring how they move around the world could provide insights into the global effects of climate change.
Wikelski and his partners have also rededicated themselves to making even smaller tags. They’re close to the goal of getting them down to three grams, which would in theory make it possible to track more than half of mammal species and around two-fifths of birds, plus hundreds of species of crocodiles, turtles, and lizards. ICARUS’s tags are also now cheaper (costing just $150) and smarter. ICARUS developed AI-on-chip systems that can reduce the energy use by orders of magnitude to cut down on the size of batteries, Wikelski explains. There are also new tags being tested by scientists from the University of Copenhagen and Wikelski’s institute at Max Planck that harvest energy from animal movements, like a self-winding wristwatch. Finally, these new ICARUS sensors can also be reprogrammed remotely, thanks to their two-way Internet of Things–style communications. A new ecosystem of tag makers—professional and DIY—is further driving down prices, open-sourcing innovation, and allowing experimentation.
Still, not everyone has bought into ICARUS. Critics question the costs compared with those of existing terrestrial monitoring initiatives like MOTUS, a national Canadian bird conservation program that uses a network of 750 receiving towers. Others argue that researchers can make better use of the thousands of animals already tracked by Argos, which is upgrading to more accurate tags and is also set to launch a series of CubeSats. The total cost of a fully realized ICARUS system—100,000 animals at any one time, some of which die or disappear as new ones are tagged—is around $10 million to $15 million a year. “If you’re thinking about how to tag a moose or bighorn sheep, you might need to hire a helicopter and the whole team and the vet,” says Ellis Soto, who has long collaborated with Wikelski. “So the costs can be extremely, extremely limiting.”
But, proponents argue, the initiative would beget a lot more information than other Earth-imaging space missions and be significantly cheaper than sending humans or drones to collect data from remote locations like polar ice sheets. Wikelski also emphasizes that no one entity will bear the cost. He is working with local communities in Bhutan, South Africa, Thailand, China, Russia, and Nigeria and gets requests from people across the world who want to connect tags to ICARUS. With cheap satellites and cheap tags, he sees a route to scale.
Even as ICARUS explores a grassroots future, one of the biggest changes since the initial launch is the backing Internet of Animals technology has received from the biggest giant in the field: NASA. The agency is now two years into a five-year project to explore how it might get more involved in building out such a system. “We’re very much focused on developing future mission concepts that will come after the current set of ICARUS missions,” says Ryan Pavlick, a researcher in remote sensing of biodiversity at NASA’s Jet Propulsion Laboratory. In 2024, this will mean “architecture studies” that aim to understand what technical systems might meet the animal-tracking needs of stakeholders including NOAA, the US Fish and Wildlife Service, and the United States Geological Survey.
While NASA’s project aims to deliver benefits for the American people, a fully realized Internet of Animals would necessarily be global and interspecies. When we spoke in November 2023, Wikelski had just got off the phone discussing how ICARUS can help monitor the global “deal for nature” established by the UN’s COP15 biodiversity conference, whose targets include reducing extinction rates by a factor of 10.
Jill Deppe, who leads the National Audubon Society’s Migratory Bird Initiative, has boundless enthusiasm for how an Internet of Animals could affect organizations like hers. For a century, Audubon has watched migratory birds disappear on journeys to Chile or Colombia. A system that could tell us where birds are dying across the entire Western Hemisphere would allow Audubon to precisely target investments in habitat protection and efforts to address threats, she says.
“Our on-the-ground conservation work is all done on a local scale,” says Deppe. For migratory birds, ICARUS can link these isolated moments into a storyline that spans continents: “How do all of those factors and processes interact? And what does that mean for the birds’ survival?”
Movebank’s live-updating dashboard also makes more dynamic conservation action possible. Beaches can be closed as exhausted shorebirds land, wind farms can halt turbines as bats migrate through, and conservation-conscious farmers—who already aim to flood fields or drain them at times that suit migrating flocks—can do so with real knowledge.
In return, will animals really help us see the future of the planet’s climate?
No one is suggesting that animals take over from the system of satellites, weather stations, balloons, and ocean buoys that currently feed into meteorologists’ complex models. Yet technology that complements these dependable data streams, that captures the ever-changing biological signals of seals, storks, sharks, and other species, is already starting to fill in gaps in our knowledge. Once considered cryptic signs from the fates, or harbingers of doom, their behaviors are messages that have only just begun to show us ways to live on a changing planet.
Matthew Ponsford is a freelance reporter based in London.