This architect wants to build cities out of lava

Arnhildur Pálmadóttir was around three years old when she saw a red sky from her living room window. A volcano was erupting about 25 miles away from where she lived on the northeastern coast of Iceland. Though it posed no immediate threat, its ominous presence seeped into her subconscious, populating her dreams with streaks of light in the night sky.

Fifty years later, these “gloomy, strange dreams,” as Pálmadóttir now describes them, have led to a career as an architect with an extraordinary mission: to harness molten lava and build cities out of it.

Pálmadóttir today lives in Reykjavik, where she runs her own architecture studio, S.AP Arkitektar, and the Icelandic branch of the Danish architecture company Lendager, which specializes in reusing building materials.

The architect believes the lava that flows from a single eruption could yield enough building material to lay the foundations of an entire city. She has been researching this possibility for more than five years as part of a project she calls Lavaforming. Together with her son and colleague Arnar Skarphéðinsson, she has identified three potential techniques: drill straight into magma pockets and extract the lava; channel molten lava into pre-dug trenches that could form a city’s foundations; or 3D-print bricks from molten lava in a technique similar to the way objects can be printed out of molten glass.

Pálmadóttir and Skarphéðinsson first presented the concept during a talk at Reykjavik’s DesignMarch festival in 2022. This year they are producing a speculative film set in 2150, in an imaginary city called Eldborg. Their film, titled Lavaforming, follows the lives of Eldborg’s residents and looks back on how they learned to use molten lava as a building material. It will be presented at the Venice Biennale, a leading architecture festival, in May. 

lava around a structure
Set in 2150, her speculative film Lavaforming presents a fictional city built from molten lava.
COURTESY OF S.AP ARKITEKTAR

Buildings and construction materials like concrete and steel currently contribute a staggering 37% of the world’s annual carbon dioxide emissions. Many architects are advocating for the use of natural or preexisting materials, but mixing earth and water into a mold is one thing; tinkering with 2,000 °F lava is another. 

Still, Pálmadóttir is piggybacking on research already being done in Iceland, which has 30 active volcanoes. Since 2021, eruptions have intensified in the Reykjanes Peninsula, which is close to the capital and to tourist hot spots like the Blue Lagoon. In 2024 alone, there were six volcanic eruptions in that area. This frequency has given volcanologists opportunities to study how lava behaves after a volcano erupts. “We try to follow this beast,” says Gro Birkefeldt M. Pedersen, a volcanologist at the Icelandic Meteorological Office (IMO), who has consulted with Pálmadóttir on a few occasions. “There is so much going on, and we’re just trying to catch up and be prepared.”

Pálmadóttir’s concept assumes that many years from now, volcanologists will be able to forecast lava flow accurately enough for cities to plan on using it in building. They will know when and where to dig trenches so that when a volcano erupts, the lava will flow into them and solidify into either walls or foundations.

Today, forecasting lava flows is a complex science that requires remote sensing technology and tremendous amounts of computational power to run simulations on supercomputers. The IMO typically runs two simulations for every new eruption—one based on data from previous eruptions, and another based on additional data acquired shortly after the eruption (from various sources like specially outfitted planes). With every event, the team accumulates more data, which makes the simulations of lava flow more accurate. Pedersen says there is much research yet to be done, but she expects “a lot of advancement” in the next 10 years or so. 

To design the speculative city of Eldborg for their film, Pálmadóttir and Skarphéðinsson used 3D-modeling software similar to what Pedersen uses for her simulations. The city is primarily built on a network of trenches that were filled with lava over the course of several eruptions, while buildings are constructed out of lava bricks. “We’re going to let nature design the buildings that will pop up,” says Pálmadóttir. 

The aesthetic of the city they envision will be less modernist and more fantastical—a bit “like [Gaudi’s] Sagrada Familia,” says Pálmadóttir. But the aesthetic output is not really the point; the architects’ goal is to galvanize architects today and spark an urgent discussion about the impact of climate change on our cities. She stresses the value of what can only be described as moonshot thinking. “I think it is important for architects not to be only in the present,” she told me. “Because if we are only in the present, working inside the system, we won’t change anything.”

Pálmadóttir was born in 1972 in Húsavik, a town known as the whale-watching capital of Iceland. But she was more interested in space and technology and spent a lot of time flying with her father, a construction engineer who owned a small plane. She credits his job for the curiosity she developed about science and “how things were put together”—an inclination that proved useful later, when she started researching volcanoes. So was the fact that Icelanders “learn to live with volcanoes from birth.” At 21, she moved to Norway, where she spent seven years working in 3D visualization before returning to Reykjavik and enrolling in an architecture program at the Iceland University of the Arts. But things didn’t click until she moved to Barcelona for a master’s degree at the Institute for Advanced Architecture of Catalonia. “I remember being there and feeling, finally, like I was in the exact right place,” she says. 

Before, architecture had seemed like a commodity and architects like “slaves to investment companies,” she says. Now, it felt like a path with potential. 

Lava has proved to be a strong, durable building material, at least in its solid state. To explore its potential, Pálmadóttir and Skarphéðinsson envision a city built on a network of trenches that have filled with lava over the course of several eruptions, while buildings are constructed with lava bricks.

She returned to Reykjavik in 2009 and worked as an architect until she founded S.AP (for “studio Arnhildur Pálmadóttir”) Arkitektar in 2018; her son started working with her in 2019 and officially joined her as an architect this year, after graduating from the Southern California Institute of Architecture. 

In 2021, the pair witnessed their first eruption up close, near the Fagradalsfjall volcano on the Reykjanes Peninsula. It was there that Pálmadóttir became aware of the sheer quantity of material coursing through the planet’s veins, and the potential to divert it into channels. 

Lava has already proved to be a strong, long-lasting building material—at least in its solid state. When it cools, it solidifies into volcanic rock like basalt or rhyolite. The type of rock depends on the composition of the lava, but basaltic lava—like the kind found in Iceland and Hawaii—forms one of the hardest rocks on Earth, which means that structures built from this type of lava would be durable and resilient. 

For years, architects in Mexico, Iceland, and Hawaii (where lava is widely available) have built structures out of volcanic rock. But quarrying that rock is an energy-intensive process that requires heavy machines to extract, cut, and haul it, often across long distances, leaving a big carbon footprint. Harnessing lava in its molten state, however, could unlock new methods for sustainable construction. Jeffrey Karson, a professor emeritus at Syracuse University who specializes in volcanic activity and who cofounded the Syracuse University Lava Project, agrees that lava is abundant enough to warrant interest as a building material. To understand how it behaves, Karson has spent the past 15 years performing over a thousand controlled lava pours from giant furnaces. If we figure out how to build up its strength as it cools, he says, “that stuff has a lot of potential.” 

In his research, Karson found that inserting metal rods into the lava flow helps reduce the kind of uneven cooling that would lead to thermal cracking—and therefore makes the material stronger (a bit like rebar in concrete). Like glass and other molten materials, lava behaves differently depending on how fast it cools. When glass or lava cools slowly, crystals start forming, strengthening the material. Replicating this process—perhaps in a kiln—could slow down the rate of cooling and let the lava become stronger. This kind of controlled cooling is “easy to do on small things like bricks,” says Karson, so “it’s not impossible to make a wall.” 

Pálmadóttir is clear-eyed about the challenges before her. She knows the techniques she and Skarphéðinsson are exploring may not lead to anything tangible in their lifetimes, but they still believe that the ripple effect the projects could create in the architecture community is worth pursuing.

Both Karson and Pedersen caution that more experiments are necessary to study this material’s potential. For Skarphéðinsson, that potential transcends the building industry. More than 12 years ago, Icelanders voted that the island’s natural resources, like its volcanoes and fishing waters, should be declared national property. That means any city built from lava flowing out of these volcanoes would be controlled not by deep-pocketed individuals or companies, but by the nation itself. (The referendum was considered illegal almost as soon as it was approved by voters and has since stalled.) 

For Skarphéðinsson, the Lavaforming project is less about the material than about the “political implications that get brought to the surface with this material.” “That is the change I want to see in the world,” he says. “It could force us to make radical changes and be a catalyst for something”—perhaps a social megalopolis where citizens have more say in how resources are used and profits are shared more evenly.

Cynics might dismiss the idea of harnessing lava as pure folly. But the more I spoke with Pálmadóttir, the more convinced I became. It wouldn’t be the first time in modern history that a seemingly dangerous idea (for example, drilling into scalding pockets of underground hot springs) proved revolutionary. Once entirely dependent on oil, Iceland today obtains 85% of its electricity and heat from renewable sources. “[My friends] probably think I’m pretty crazy, but they think maybe we could be clever geniuses,” she told me with a laugh. Maybe she is a little bit of both.

Elissaveta M. Brandon is a regular contributor to Fast Company and Wired.

This Texas chemical plant could get its own nuclear reactors

Nuclear reactors could someday power a chemical plant in Texas, making it the first with such a facility onsite. The factory, which makes plastics and other materials, could become a model for power-hungry data centers and other industrial operations going forward.

The plans are the work of Dow Chemical and X-energy, which last week applied for a construction permit with the Nuclear Regulatory Commission, the agency in the US that governs nuclear energy.

It’ll be years before nuclear reactors will actually turn on, but this application marks a major milestone for the project, and for the potential of advanced nuclear technology to power industrial processes.

“This has been a long time coming,” says Harlan Bowers, senior vice president at X-energy. The company has been working with the NRC since 2016 and submitted its first regulatory engagement plan in 2018, he says.

In 2020, the US Department of Energy chose X-energy as one of the awardees of the Advanced Reactor Demonstration Program, which provides funding for next-generation nuclear technologies. And it’s been two years since X-energy and Dow first announced plans for a joint development agreement at Dow’s plant in Seadrift, Texas.  

The Seadrift plant produces 4 billion pounds of materials each year, including plastic used for food and pharmaceutical packaging and chemicals used in products like antifreeze, soaps, and paint. A natural-gas plant onsite currently provides both steam and electricity. That equipment is getting older, so the company was looking for alternatives.  

“Dow saw the opportunity to replace end-of-life assets with safe, reliable, lower-carbon-emissions technology,” said Edward Stones, an executive at Dow, in a written statement in response to questions from MIT Technology Review.

Advanced nuclear reactors designed by X-energy emerged as a fit for the Seadrift site in part because of their ability to deliver high-temperature steam, Stones said in the statement.

X-energy’s reactor is not only smaller than most nuclear plants coming online today but also employs different fuel and different cooling methods. The design is a high-temperature gas-cooled reactor, which flows helium over self-contained pebbles of nuclear fuel. The fuel can reach temperatures of around 1,000 °C (1,800 °F). As it flows through the reactor and around the pebbles, the helium reaches up to 750 °C (about 1,400 °F). Then that hot helium flows through a generator, making steam at a high temperature and pressure that can be piped directly to industrial equipment or converted into electricity.

The Seadrift facility will include four of X-energy’s Xe-100 reactors, each of which can produce about 200 megawatts’ worth of steam or about 80 megawatts of electricity.

A facility like Dow’s requires an extremely consistent supply of steam, Bowers says. So during normal operation, two of the modules will deliver steam, one will deliver electricity, and the final unit will sell electricity to the local grid. If any single reactor needs to shut down for some reason, there will still be enough onsite power to keep running, he explains.

The progress with the NRC is positive news for the companies involved, but it also represents an achievement for advanced reactor technology more broadly, says Erik Cothron, a senior analyst at the Nuclear Innovation Alliance, a nonprofit think tank. “It demonstrates real-world momentum toward deploying new nuclear reactors for industrial decarbonization,” Cothron says.

While there are other companies looking to bring advanced nuclear reactor technology online, this project could be the first to incorporate nuclear power onsite at a factory. It thus sets a precedent for how new nuclear energy technologies can integrate directly with industry, Cothron says—for example, showing a pathway for tech giants looking to power data centers.

It could take up to two and a half years for the NRC to review the construction permit application for this site. The site will also need to receive an operating license before it can start up. Operations are expected to begin “early next decade,” according to Dow.

Correction: A previous version of this story misspelled Erik Cothron’s name.

Tariffs are bad news for batteries

Update: Since this story was first published in The Spark, our weekly climate newsletter, the White House announced that most reciprocal tariffs would be paused for 90 days. That pause does not apply to China, which will see an increased tariff rate of 125%.

Today, new tariffs go into effect for goods imported into the US from basically every country on the planet.

Since Donald Trump announced his plans for sweeping tariffs last week, the vibes have been, in a word, chaotic. Markets have seen one of the quickest drops in the last century, and it’s widely anticipated that the global economic order may be forever changed.  

While many try not to look at the effects on their savings and retirement accounts, experts are scrambling to understand what these tariffs might mean for various industries. As my colleague James Temple wrote in a new story last week, anxieties are especially high in climate technology.

These tariffs could be particularly rough on the battery industry. China dominates the entire supply chain and is subject to monster tariff rates, and even US battery makers won’t escape the effects.   

First, in case you need it, a super-quick refresher: Tariffs are taxes charged on goods that are imported (in this case, into the US). If I’m a US company selling bracelets, and I typically buy my beads and string from another country, I’ll now be paying the US government an additional percentage of what those goods cost to import. Under Trump’s plan, that might be 10%, 20%, or upwards of 50%, depending on the country sending them to me. 

In theory, tariffs should help domestic producers, since products from competitors outside the country become more expensive. But since so many of the products we use have supply chains that stretch all over the world, even products made in the USA often have some components that would be tariffed.

In the case of batteries, we could be talking about really high tariff rates, because most batteries and their components currently come from China. As of 2023, the country made more than 75% of the world’s lithium-ion battery cells, according to data from the International Energy Agency.

Trump’s new plan adds a 34% tariff on all Chinese goods, and that stacks on top of a 20% tariff that was already in place, making the total 54%. (Then, as of Wednesday, the White House further raised the tariff on China, making the total 104%.)

But when it comes to batteries, that’s not even the whole story. There was already a 3.5% tariff on all lithium-ion batteries, for example, as well as a 7.5% tariff on batteries from China that’s set to increase to 25% next year.

If we add all those up, lithium-ion batteries from China could have a tariff of 82% in 2026. (Or 132%, with this additional retaliatory tariff.) In any case, that’ll make EVs and grid storage installations a whole lot more expensive, along with phones, laptops, and other rechargeable devices.

The economic effects could be huge. The US still imports the majority of its lithium-ion batteries, and nearly 70% of those imports are from China. The US imported $4 billion worth of lithium-ion batteries from China just during the first four months of 2024.

Although US battery makers could theoretically stand to benefit, there are a limited number of US-based factories. And most of those factories are still purchasing components from China that will be subject to the tariffs, because it’s hard to overstate just how dominant China is in battery supply chains.

While China makes roughly three-quarters of lithium-ion cells, it’s even more dominant in components: 80% of the world’s cathode materials are made in China, along with over 90% of anode materials. (For those who haven’t been subject to my battery ramblings before, the cathode and anode are two of the main components of a battery—basically, the plus and minus ends.)

Even battery makers that work in alternative chemistries don’t seem to be jumping for joy over tariffs. Lyten is a California-based company working to build lithium-sulfur batteries, and most of its components can be sourced in the US. (For more on the company’s approach, check out this story from 2024.) But tariffs could still spell trouble. Lyten has plans for a new factory, scheduled for 2027, that rely on sourcing affordable construction materials. Will that be possible? “We’re not drawing any conclusions quite yet,” Lyten’s chief sustainability officer, Keith Norman, told Heatmap News.

The battery industry in the US was already in a pretty tough spot. Billions of dollars’ worth of factories have been canceled since Trump took office.  Companies making investments that can total hundreds of millions or billions of dollars don’t love uncertainty, and tariffs are certainly adding to an already uncertain environment.

We’ll be digging deeper into what the tariffs mean for climate technology broadly, and specifically some of the industries we cover. If you have questions, or if you have thoughts to share about what this will mean for your area of research or business, I’d love to hear them at casey.crownhart@technologyreview.com. I’m also on Bluesky @caseycrownhart.bsky.social.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

We should talk more about air-conditioning

Things are starting to warm up here in the New York City area, and it’s got me thinking once again about something that people aren’t talking about enough: energy demand for air conditioners. 

I get it: Data centers are the shiny new thing to worry about. And I’m not saying we shouldn’t be thinking about the strain that gigawatt-scale computing installations put on the grid. But a little bit of perspective is important here.

According to a report from the International Energy Agency last year, data centers will make up less than 10% of the increase in energy demand between now and 2030, far less than the energy demand from space cooling (mostly air-conditioning).

I just finished up a new story that’s out today about a novel way to make heat exchangers, a crucial component in air conditioners and a whole host of other technologies that cool our buildings, food, and electronics. Let’s dig into why I’m writing about the guts of cooling technologies, and why this sector really needs innovation. 

One twisted thing about cooling and climate change: It’s all a vicious cycle. As temperatures rise, the need for cooling technologies increases. In turn, more fossil-fuel power plants are firing up to meet that demand, turning up the temperature of the planet in the process.

“Cooling degree days” are one measure of the need for additional cooling. Basically, you take a preset baseline temperature and figure out how much the temperature exceeds it. Say the baseline (above which you’d likely need to flip on a cooling device) is 21 °C (70 °F). If the average temperature for a day is 26 °C, that’s five cooling degree days on a single day. Repeat that every day for a month, and you wind up with 150 cooling degree days.

I explain this arguably weird metric because it’s a good measure of total energy demand for cooling—it lumps together both how many hot days there are and just how hot it is.  

And the number of cooling degree days is steadily ticking up globally. Global cooling degree days were 6% higher in 2024 than in 2023, and 20% higher than the long-term average for the first two decades of the century. Regions that have high cooling demand, like China, India, and the US, were particularly affected, according to the IEA report. You can see a month-by-month breakdown of this data from the IEA here.

That increase in cooling degree days is leading to more demand for air conditioners, and for energy to power them. Air-conditioning accounted for 7% of the world’s electricity demand in 2022, and it’s only going to get more important from here.

There were fewer than 2 billion AC units in the world in 2016. By 2050, that could be nearly 6 billion, according to a 2018 report from the IEA. This is a measure of progress and, in a way, something we should be happy about; the number of air conditioners tends to rise with household income. But it does present a challenge to the grid.  

Another piece of this whole thing: It’s not just about how much total electricity we need to run air conditioners but about when that demand tends to come. As we’ve covered in this newsletter before, your air-conditioning habits aren’t unique. Cooling devices tend to flip on around the same time—when it’s hot. In some parts of the US, for example, air conditioners can represent more than 70% of residential energy demand at times when the grid is most stressed.

The good news is that we’re seeing innovations in cooling technology. Some companies are building cooling systems that include an energy storage component, so they can charge up when energy is plentiful and demand is low. Then they can start cooling when it’s most needed, without sucking as much energy from the grid during peak hours.

We’ve also covered alternatives to air conditioners called desiccant cooling systems, which use special moisture-sucking materials to help cool spaces and deal with humidity more efficiently than standard options.

And in my latest story, I dug into new developments in heat exchanger technology. Heat exchangers are a crucial component of air conditioners, but you can really find them everywhere—in heat pumps, refrigerators, and, yes, the cooling systems in large buildings and large electronics installations, including data centers.

We’ve been building heat exchangers basically the same way for nearly a century. These components basically move heat around, and there are a few known ways to do so with devices that are relatively straightforward to manufacture. Now, though, one team of researchers has 3D-printed a heat exchanger that outperforms some standard designs and rivals others. This is still a long way from solving our looming air-conditioning crisis, but the details are fascinating—I hope you’ll give it a read

We need more innovation in cooling technology to help meet global demand efficiently so we don’t stay stuck in this cycle. And we’ll need policy and public support to make sure that these technologies make a difference and that everyone has access to them too. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

How 3D printing could make better cooling systems

A new 3D-printed design could make an integral part of cooling systems like air conditioners or refrigerators smaller and more efficient, according to new research.  

Heat exchangers are devices that whisk away heat, and they’re everywhere—used in data centers, ships, factories, and buildings. The aim is to pass as much heat as possible from one side of the device to the other. Most use one of a few standard designs that have historically been easiest and cheapest to make. 

“Heat exchangers are at the center of the industrial economy. They’re an essential part of every machine and every system that moves energy,” says William King, a professor at the University of Illinois Urbana-Champaign and one of the authors of the new study. Existing designs tend to favor straight lines, right angles, and round tubes, he adds.  

King and his colleagues used 3D printing to design a heat exchanger that includes features to optimize heat movement, like wavy walls and pyramid-shaped bumps, which wouldn’t be possible to make using traditional manufacturing techniques.  

The team had set out to design a system based on a common refrigerant called R-134a, which is commonly used in devices like air conditioners and refrigerators. When cold water lowers the temperature of the refrigerant, it changes from a gas to a liquid on its path through the device. That liquid refrigerant can then go on to other parts of the cooling system, where it’s used to lower the temperature of anything from a room to a rack of servers. 

The best way to cool the refrigerant tends to involve building very thin walls between the two sides of the device and maximizing the amount of contact that the water and the refrigerant make with those walls. (Think about how much colder you’d get wearing a thin T-shirt and pants and lying down on ice than simply touching it with your gloved hands.)

To design the best possible heat exchanger, researchers used simulations and developed machine-learning models to help predict the performance of different designs under different conditions. After 36,000 simulations, the researchers landed on the one they decided to develop.

Among the key components: small fins that jut out on the side of the device that touches the water, increasing the surface area to maximize heat transfer. The team also designed wavy passageways for the water to pass through—once again helping to maximize surface area. Simulations helped the researchers figure out exactly how curvy the passages should be and where precisely to place the fins.

On the side of the devices where the refrigerant passes through, the design includes small pyramid-shaped bumps along the walls. These not only maximize the area for cooling but also help mix the refrigerant as it passes through and prevent liquid from coating the wall (which would slow down the heat transfer).

After settling on a design, the researchers used a 3D-printing technique called direct metal laser sintering, in which lasers melt and fuse together a metal powder (in this case, an aluminum alloy), layer by layer.

In testing, the researchers found that the heat exchanger created with this technique was able to cool down the refrigerant more efficiently than other designs. The new device was able to achieve a power density of over six megawatts per meter cubed—outperforming one common traditional design, the shell-tube configuration, by between 30% and 50% with the same pumping power. The device’s power density was similar to that of brazed plate heat exchangers, another common design in industry.  

Overall, this device doesn’t dramatically outperform the state-of-the-art technology, but the technique of using modeling and 3D printing to produce new heat exchanger designs is promising, says Dennis Nasuta, director of research and development at Optimized Thermal Systems, a consulting firm that works with companies in the HVAC industry on design and research. “It’s worth exploring, and I don’t think that we know yet where we can push it,” Nasuta says.

One challenge is that today, additive manufacturing techniques such as laser sintering are slow and expensive compared with traditional manufacturing; they wouldn’t be economical or feasible to rely on for all our consumer cooling devices, he says. For now, this type of approach could be most useful in niche applications like aerospace and high-end automotives, which could more likely bear the cost, he adds. 

This particular study was funded by the US Office of Naval Research. Next-generation ships have more electronics aboard than ever, and there’s a growing need for compact and efficient systems to deal with all that extra heat, says Nenad Miljkovic, one of the authors of the study. 

Energy demand for cooling buildings alone is set to double between now and 2050, and new designs could help efficiently meet the massive demand forecast for the coming decades. But challenges including manufacturing costs would need to be overcome to help innovations like the one designed by King and his team make a dent in real devices.

Another barrier to adopting these new techniques, Nasuta says, is that current standards don’t demand more efficiency. Other technologies already exist that could help make our devices more efficient, but they’re not used for the same reason. 

It will take time for new manufacturing techniques, including 3D printing, to trickle into our devices, Natsua adds: “This isn’t going to be in your AC next year.”

How to save a glacier

Glaciers generally move so slowly you can’t see their progress with the naked eye. (Their pace is … glacial.) But these massive bodies of ice do march downhill, with potentially planet-altering consequences.  

There’s a lot we don’t understand about how glaciers move and how soon some of the most significant ones could collapse into the sea. That could be a problem, since melting glaciers could lead to multiple feet of sea-level rise this century, potentially displacing millions of people who live and work along the coasts.

A new group is aiming not only to further our understanding of glaciers but also to look into options to save them if things move toward a worst-case scenario, as my colleague James Temple outlined in his latest story. One idea: refreezing glaciers in place.

The whole thing can sound like science fiction. But once you consider how huge the stakes are, I think it gets easier to understand why some scientists say we should at least be exploring these radical interventions.

It’s hard to feel very optimistic about glaciers these days. (The Thwaites Glacier in West Antarctica is often called the “doomsday glacier”—not alarming at all!)

Take two studies published just in the last month, for example. The British Antarctic Survey released the most detailed map to date of Antarctica’s bedrock—the foundation under the continent’s ice. With twice as many data points as before, the study revealed that more ice than we thought is resting on bedrock that’s already below sea level. That means seawater can flow in and help melt ice faster, so Antarctica’s ice is more vulnerable than previously estimated.

Another study examined subglacial rivers—streams that flow under the ice, often from subglacial lakes. The team found that the fastest-moving glaciers have a whole lot of water moving around underneath them, which speeds melting and lubricates the ice sheet so it slides faster, in turn melting even more ice.

And those are just two of the most recent surveys. Look at any news site and it’s probably delivered the same gnarly message at some point recently: The glaciers are melting faster than previously realized. (Our site has one, too: “Greenland’s ice sheet is less stable than we thought,” from 2016.) 

The new group is joining the race to better understand glaciers. Arête Glacier Initiative, a nonprofit research organization founded by scientists at MIT and Dartmouth, has already awarded its first grants to researchers looking into how glaciers melt and plans to study the possibility of reversing those fortunes, as James exclusively reported last week.

Brent Minchew, one of the group’s cofounders and an associate professor of geophysics at MIT, was drawn to studying glaciers because of their potential impact on sea-level rise. “But over the years, I became less content with simply telling a more dramatic story about how things were going—and more open to asking the question of what can we do about it,” he says.

Minchew is among the researchers looking into potential plans to alter the future of glaciers. Strategies being proposed by groups around the world include building physical supports to prop them up and installing massive curtains to slow the flow of warm water that speeds melting. Another approach, which will be the focus of Arête, is called basal intervention. It basically involves drilling holes in glaciers, which would allow water flowing underneath the ice to be pumped out and refrozen, hopefully slowing them down.

If you have questions about how all this would work, you’re not alone. These are almost inconceivably huge engineering projects, they’d be expensive, and they’d face legal and ethical questions. Nobody really owns Antarctica, and it’s governed by a huge treaty—how could we possibly decide whether to move forward with these projects?

Then there’s the question of the potential side effects. Just look at recent news from the Arctic Ice Project, which was researching how to slow the melting of sea ice by covering it with substances designed to reflect sunlight away. (Sea ice is different from glaciers, but some of the key issues are the same.) 

One of the project’s largest field experiments involved spreading tiny silica beads, sort of like sand, over 45,000 square feet of ice in Alaska. But after new research revealed that the materials might be disrupting food chains, the organization announced that it’s concluding its research and winding down operations.

Cutting our emissions of greenhouse gases to stop climate change at the source would certainly be more straightforward than spreading beads on ice, or trying to stop a 74,000-square-mile glacier in its tracks. 

But we’re not doing so hot on cutting emissions—in fact, levels of carbon dioxide in the atmosphere rose faster than ever in 2024. And even if the world stopped polluting the atmosphere with planet-warming gases today, things may have already gone too far to save some of the most vulnerable glaciers. 

The longer I cover climate change and face the situation we’re in, the more I understand the impulse to at least consider every option out there, even if it sounds like science fiction. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Inside a new quest to save the “doomsday glacier”

The Thwaites glacier is a fortress larger than Florida, a wall of ice that reaches nearly 4,000 feet above the bedrock of West Antarctica, guarding the low-lying ice sheet behind it.

But a strong, warm ocean current is weakening its foundations and accelerating its slide into the Amundsen Sea. Scientists fear the waters could topple the walls in the coming decades, kick-starting a runaway process that would crack up the West Antarctic Ice Sheet.

That would mark the start of a global climate disaster. The glacier itself holds enough ice to raise ocean levels by more than two feet, which could flood coastlines and force tens of millions of people living in low-lying areas to abandon their homes.

The loss of the entire ice sheet—which could still take centuries to unfold—would push up sea levels by 11 feet and redraw the contours of the continents.

This is why Thwaites is known as the doomsday glacier—and why scientists are eager to understand just how likely such a collapse is, when it could happen, and if we have the power to stop it. 

Scientists at MIT and Dartmouth College founded Arête Glacier Initiative last year in the hope of providing clearer answers to these questions. The nonprofit research organization will officially unveil itself, launch its website, and post requests for research proposals today, March 21, timed to coincide with the UN’s inaugural World Day for Glaciers, MIT Technology Review can report exclusively. 

Arête will also announce it is issuing its first grants, each for around $200,000 over two years, to a pair of glacier researchers at the University of Wisconsin-Madison. 

One of the organization’s main goals is to study the possibility of preventing the loss of giant glaciers, Thwaites in particular, by refreezing them to the bedrock. It would represent a radical intervention into the natural world, requiring a massive, expensive engineering project in a remote, treacherous environment. 

But the hope is that such a mega-adaptation project could minimize the mass relocation of climate refugees, prevent much of the suffering and violence that would almost certainly accompany it, and help nations preserve trillions of dollars invested in high-rises, roads, homes, ports, and airports around the globe.

“About a million people are displaced per centimeter of sea-level rise,” says Brent Minchew, an associate professor of geophysics at MIT, who cofounded Arête Glacier Initiative and will serve as its chief scientist. “If we’re able to bring that down, even by a few centimeters, then we would safeguard the homes of millions.”

But some scientists believe the idea is an implausible, wildly expensive distraction, drawing money, expertise, time, and resources away from more essential polar research efforts. 

“Sometimes we can get a little over-optimistic about what engineering can do,” says Twila Moon, deputy lead scientist at the National Snow and Ice Data Center at the University of Colorado Boulder.

“Two possible futures”

Minchew, who earned his PhD in geophysics at Caltech, says he was drawn to studying glaciers because they are rapidly transforming as the world warms, increasing the dangers of sea-level rise. 

“But over the years, I became less content with simply telling a more dramatic story about how things were going and more open to asking the question of what can we do about it,” says Minchew, who will return to Caltech as a professor this summer.

Last March, he cofounded Arête Glacier Initiative with Colin Meyer, an assistant professor of engineering at Dartmouth, in the hope of funding and directing research to improve scientific understanding of two big questions: How big a risk does sea-level rise pose in the coming decades, and can we minimize that risk?

Brent Minchew, an MIT professor of geophysics, co-founded Arête Glacier Initiative and will serve as its chief scientist.
COURTESY: BRENT MINCHEW

“Philanthropic funding is needed to address both of these challenges, because there’s no private-sector funding for this kind of research and government funding is minuscule,” says Mike Schroepfer, the former Meta chief technology officer turned climate philanthropist, who provided funding to Arête through his new organization, Outlier Projects

The nonprofit has now raised about $5 million from Outlier and other donors, including the Navigation Fund, the Kissick Family Foundation, the Sky Foundation, the Wedner Family Foundation, and the Grantham Foundation. 

Minchew says they named the organization Arête, mainly because it’s the sharp mountain ridge between two valleys, generally left behind when a glacier carves out the cirques on either side. It directs the movement of the glacier and is shaped by it. 

It’s meant to symbolize “two possible futures,” he says. “One where we do something; one where we do nothing.”

Improving forecasts

The somewhat reassuring news is that, even with rising global temperatures, it may still take thousands of years for the West Antarctic Ice Sheet to completely melt. 

In addition, sea-level rise forecasts for this century generally range from as little as 0.28 meters (11 inches) to 1.10 meters (about three and a half feet), according to the latest UN climate panel report. The latter only occurs under a scenario with very high greenhouse gas emissions (SSP5-8.5), which significantly exceeds the pathway the world is now on.

But there’s still a “low-likelihood” that ocean levels could surge nearly two meters (about six and a half feet) by 2100 that “cannot be excluded,” given “deep uncertainty linked to ice-sheet processes,” the report adds. 

Two meters of sea-level rise could force nearly 190 million people to migrate away from the coasts, unless regions build dikes or other shoreline protections, according to some models. Many more people, mainly in the tropics, would face heightened flooding dangers.

Much of the uncertainty over what will happen this century comes down to scientists’ limited understanding of how Antarctic ice sheets will respond to growing climate pressures.

The initial goal of Arête Glacier Initiative is to help narrow the forecast ranges by improving our grasp of how Thwaites and other glaciers move, melt, and break apart.

Gravity is the driving force nudging glaciers along the bedrock and reshaping them as they flow. But many of the variables that determine how fast they slide lie at the base. That includes the type of sediment the river of ice slides along; the size of the boulders and outcroppings it contorts around; and the warmth and strength of the ocean waters that lap at its face.

In addition, heat rising from deep in the earth warms the ice closest to the ground, creating a lubricating layer of water that hastens the glacier’s slide. That acceleration, in turn, generates more frictional heat that melts still more of the ice, creating a self-reinforcing feedback effect.

Minchew and Meyer are confident that the glaciology field is at a point where it could speed up progress in sea-level rise forecasting, thanks largely to improving observational tools that are producing more and better data.

That includes a new generation of satellites orbiting the planet that can track the shifting shape of ice at the poles at far higher resolutions than in the recent past. Computer simulations of ice sheets, glaciers and sea ice are improving as well, thanks to growing computational resources and advancing machine learning techniques.

On March 21, Arête will issue a request for proposals from research teams to contribute to an effort to collect, organize, and openly publish existing observational glacier data. Much of that expensively gathered information is currently inaccessible to researchers around the world, Minchew says.

Colin Meyer, an assistant professor of engineering at Dartmouth, co-founded Arête Glacier Initiative.
ELI BURAK

By funding teams working across these areas, Arête’s founders hope to help produce more refined ice-sheet models and narrower projections of sea-level rise.

This improved understanding would help cities plan where to build new bridges, buildings, and homes, and to determine whether they’ll need to erect higher seawalls or raise their roads, Meyer says. It could also provide communities with more advance notice of the coming dangers, allowing them to relocate people and infrastructure to safer places through an organized process known as managed retreat.

A radical intervention

But the improved forecasts might also tell us that Thwaites is closer to tumbling into the ocean than we think, underscoring the importance of considering more drastic measures.

One idea is to build berms or artificial islands to prop up fragile parts of glaciers, and to block the warm waters that rise from the deep ocean and melt them from below. Some researchers have also considered erecting giant, flexible curtains anchored to the seabed to achieve the latter effect.

Others have looked at scattering highly reflective beads or other materials across ice sheets, or pumping ocean water onto them in the hopes it would freeze during the winter and reinforce the headwalls of the glaciers.

But the concept of refreezing glaciers in place, know as a basal intervention, is gaining traction in scientific circles, in part because there’s a natural analogue for it.

The glacier that stalled

About 200 years ago, the Kamb Ice Stream, another glacier in West Antarctica that had been sliding about 350 meters (1,150 feet) per year, suddenly stalled.

Glaciologists believe an adjacent ice stream intersected with the catchment area under the glacier, providing a path for the water running below it to flow out along the edge instead. That loss of fluid likely slowed down the Kamb Ice Stream, reduced the heat produced through friction, and allowed water at the surface to refreeze.

The deceleration of the glacier sparked the idea that humans might be able to bring about that same phenomenon deliberately, perhaps by drilling a series of boreholes down to the bedrock and pumping up water from the bottom.

Minchew himself has focused on a variation he believes could avoid much of the power use and heavy operating machinery hassles of that approach: slipping long tubular devices, known as thermosyphons, down nearly to the bottom of the boreholes. 

These passive heat exchangers, which are powered only by the temperature differential between two areas, are commonly used to keep permafrost cold around homes, buildings and pipelines in Arctic regions. The hope is that we could deploy extremely long ones, stretching up to two kilometers and encased in steel pipe, to draw warm temperatures away from the bottom of the glacier, allowing the water below to freeze.

Minchew says he’s in the process of producing refined calculations, but estimates that halting Thwaites could require drilling as many as 10,000 boreholes over a 100-square-kilometer area.

He readily acknowledges that would be a huge undertaking, but provides two points of comparison to put such a project into context: Melting the necessary ice to create those holes would require roughly the amount of energy all US domestic flights consume from jet fuel in about two and a half hours. Or, it would produce about the same level of greenhouse gas emissions as constructing 10 kilometers of seawalls, a small fraction of the length the world would need to build if it can’t slow down the collapse of the ice sheets, he says.

“Kick the system”

One of Arête’s initial grantees is Marianne Haseloff, an assistant professor of geoscience at the University of Wisconsin-Madison. She studies the physical processes that govern the behavior of glaciers and is striving to more faithfully represent them in ice sheet models. 

Haseloff says she will use those funds to develop mathematical methods that could more accurately determine what’s known as basal shear stress, or the resistance of the bed to sliding glaciers, based on satellite observations. That could help refine forecasts of how rapidly glaciers will slide into the ocean, in varying settings and climate conditions.

Arête’s other initial grant will go to Lucas Zoet, an associate professor in the same department as Haseloff and the principal investigator with the Surface Processes group.

He intends to use the funds to build the lab’s second “ring shear” device, the technical term for a simulated glacier.

The existing device, which is the only one operating in the world, stands about eight feet tall and fills the better part of a walk-in freezer on campus. The core of the machine is a transparent drum filled with a ring of ice, sitting under pressure and atop a layer of sediment. It slowly spins for weeks at a time as sensors and cameras capture how the ice and earth move and deform.

Lucas Zoet, an associate professor at the University of Wisconsin–Madison, stands in front of his lab’s “ring shear” device, a simulated glacier.
ETHAN PARRISH

The research team can select the sediment, topography, water pressure, temperature, and other conditions to match the environment of a real-world glacier of interest, be it Thwaites today—or Thwaites in 2100, under a high greenhouse gas emissions scenario. 

Zoet says these experiments promise to improve our understanding of how glaciers move over different types of beds, and to refine an equation known as the slip law, which represents these glacier dynamics mathematically in computer models.

The second machine will enable them to run more experiments and to conduct a specific kind that the current device can’t: a scaled-down, controlled version of the basal intervention.

Zoet says the team will be able to drill tiny holes through the ice, then pump out water or transfer heat away from the bed. They can then observe whether the simulated glacier freezes to the base at those points and experiment with how many interventions, across how much space, are required to slow down its movement.

It offers a way to test out different varieties of the basal intervention that is far easier and cheaper than using water drills to bore to the bottom of an actual glacier in Antarctica, Zoet says. The funding will allow the lab to explore a wide range of experiments, enabling them to “kick the system in a way we wouldn’t have before,” he adds.

“Virtually impossible”

The concept of glacier interventions is in its infancy. There are still considerable unknowns and uncertainties, including how much it would cost, how arduous the undertaking would be, and which approach would be most likely to work, or if any of them are feasible.

“This is mostly a theoretical idea at this point,” says Katharine Ricke, an associate professor at the University of California, San Diego, who researches the international relations implications of geoengineering, among other topics.

Conducting extensive field trials or moving forward with full-scale interventions may also require surmounting complex legal questions, she says. Antarctica isn’t owned by any nation, but it’s the subject of competing territorial claims among a number of countries and governed under a decades-old treaty to which dozens are a party.

The basal intervention—refreezing the glacier to its bed—faces numerous technical hurdles that would make it “virtually impossible to execute,” Moon and dozens of other researchers argued in a recent preprint paper, “Safeguarding the polar regions from dangerous geoengineering.”

Among other critiques, they stress that subglacial water systems are complex, dynamic, and interconnected, making it highly difficult to precisely identify and drill down to all the points that would be necessary to draw away enough water or heat to substantially slow down a massive glacier.

Further, they argue that the interventions could harm polar ecosystems by adding contaminants, producing greenhouse gases, or altering the structure of the ice in ways that may even increase sea-level rise.

“Overwhelmingly, glacial and polar geoengineering ideas do not make sense to pursue, in terms of the finances, the governance challenges, the impacts,” and the possibility of making matters worse, Moon says.

“No easy path forward”

But Douglas MacAyeal, professor emeritus of glaciology at the University of Chicago, says the basal intervention would have the lightest environmental impact among the competing ideas. He adds that nature has already provided an example of it working, and that much of the needed drilling and pumping technology is already in use in the oil industry.

“I would say it’s the strongest approach at the starting gate,” he says, “but we don’t really know anything about it yet. The research still has to be done. It’s very cutting-edge.”

A Sunday morning sunrise was enjoyed by personnel on board the research vessel Nathaniel B. Palmer as it moved into the Bellingshausen Sea. The cruise had been in the Amundsen Sea region participating in the International Thwaites Glacier Collaboration. 
The Nathaniel B. Palmer heads into the Bellinghausen sea.
CINDY DEAN/UNITED STATES ANTARCTIC PROGRAM

Minchew readily acknowledges that there are big challenges and significant unknowns—and that some of these ideas may not work.

But he says it’s well worth the effort to study the possibilities, in part because much of the research will also improve our understanding of glacier dynamics and the risks of sea-level rise—and in part because it’s only a question of when, not if, Thwaites will collapse.

Even if the world somehow halted all greenhouse gas emissions tomorrow, the forces melting that fortress of ice will continue to do so. 

So one way or another, the world will eventually need to make big, expensive, difficult interventions to protect people and infrastructure. The cost and effort of doing one project in Antarctica, he says, would be dwarfed by the global effort required to erect thousands of miles of seawalls, ratchet up homes, buildings, and roads, and relocate hundreds of millions of people.

“One thing is challenging—and the other is even more challenging,” Minchew says. “There’s no easy path forward.”

The elephant in the room for energy tech? Uncertainty.

At a conference dedicated to energy technology that I attended this week, I noticed an outward attitude of optimism and excitement. But it’s hard to miss the current of uncertainty just underneath. 

The ARPA-E Energy Innovation Summit, held this year just outside Washington, DC, gathers some of the most cutting-edge innovators working on everything from next-generation batteries to plants that can mine for metals. Researchers whose projects have received funding from ARPA-E—part of the US Department of Energy that gives money to high-risk research in energy—gather to show their results and mingle with each other, investors, and nosy journalists like yours truly. (For more on a few of the coolest things I saw, check out this story.)

This year, though, there was an elephant in the room, and it’s the current state of the US federal government. Or maybe it’s climate change? In any case, the vibes were weird. 

The last time I was at this conference, two years ago, climate change was a constant refrain on stage and in conversations. The central question was undoubtedly: How do we decarbonize, generate energy, and run our lives without relying on polluting fossil fuels? 

This time around, I didn’t hear the phrase “climate change” once during the opening session, which included speeches from US Secretary of Energy Chris Wright and acting ARPA-E director Daniel Cunningham. The focus was on American energy dominance—on how we can get our hands on more, more, more energy to meet growing demand. 

Last week, Wright spoke at an energy conference in Houston and had a lot to say about climate, calling climate change a “side effect of building the modern world” and climate policies irrational and quasi-religious, and he said that when it came to climate action, the cure had become worse than the disease

I was anticipating similar talking points at the summit, but this week, climate change hardly got a mention.

What I noticed in Wright’s speech and in the choice of programming throughout the conference is that some technologies appear to be among the favored, and others are decidedly less prominent. Nuclear power and fusion were definitely on the “in” list. There was a nuclear panel in the opening session, and in his remarks Wright called out companies like Commonwealth Fusion Systems and Zap Energy. He also praised small modular reactors

Renewables, including wind and solar, were mentioned only in the context of their inconsistency—Wright dwelled on that, rather than on other facts I’d argue are just as important, like that they are among the cheapest methods of generating electricity today. 

In any case, Wright seemed appropriately hyped about energy, given his role in the administration. “Call me biased, but I think there’s no more impactful place to work in than energy,” he said during his opening remarks on the first morning of the summit. He sang the praises of energy innovation, calling it a tool to drive progress, and outlined his long career in the field. 

This all comes after a chaotic couple of months for the federal government that are undoubtedly affecting the industry. Mass layoffs have hit federal agencies, including the Department of Energy. President Donald Trump very quickly tried to freeze spending from the Inflation Reduction Act, which includes tax credits and other support for EVs and power plants. 

As I walked around the showcase and chatted with experts over coffee, I heard a range of reactions to the opening session and feelings about this moment for the energy sector. 

People working in industries the Trump administration seems to favor, like nuclear energy, tended to be more positive. Some in academia who rely on federal grants to fund their work were particularly nervous about what comes next. One researcher refused to talk to me when I said I was a journalist. In response to my questions about why they weren’t able to discuss the technology on display at their booth, another member on the same project said only that it’s a wild time.

Making progress on energy technology doesn’t require that we all agree on exactly why we’re doing it. But in a moment when we need all the low-carbon technologies we can get to address climate change—a problem scientists overwhelmingly agree is a threat to our planet—I find it frustrating that politics can create such a chilling effect in some sectors. 

At the conference, I listened to smart researchers talk about their work. I saw fascinating products and demonstrations, and I’m still optimistic about where energy can go. But I also worry that uncertainty about the future of research and government support for emerging technologies will leave some valuable innovations in the dust. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

4 technologies that could power the future of energy

Where can you find lasers, electric guitars, and racks full of novel batteries, all in the same giant room? This week, the answer was the 2025 ARPA-E Energy Innovation Summit just outside Washington, DC.

Energy innovation can take many forms, and the variety in energy research was on display at the summit. ARPA-E, part of the US Department of Energy, provides funding for high-risk, high-reward research projects. The summit gathers projects the agency has funded, along with investors, policymakers, and journalists.

Hundreds of projects were exhibited in a massive hall during the conference, featuring demonstrations and research results. Here are four of the most interesting innovations MIT Technology Review spotted on site. 

Steel made with lasers

Startup Limelight Steel has developed a process to make iron, the main component in steel, by using lasers to heat iron ore to super-high temperatures. 

Steel production makes up roughly 8% of global greenhouse gas emissions today, in part because most steel is still made with blast furnaces, which rely on coal to hit the high temperatures that kick off the required chemical reactions. 

Limelight instead shines lasers on iron ore, heating it to temperatures over 1,600 °C. Molten iron can then be separated from impurities, and the iron can be put through existing processes to make steel. 

The company has built a small demonstration system with a laser power of about 1.5 kilowatts, which can process between 10 and 20 grams of ore. The whole system is made up of 16 laser arrays, each just a bit larger than a postage stamp.

The components in the demonstration system are commercially available; this particular type of laser is used in projectors. The startup has benefited from years of progress in the telecommunications industry that has helped bring down the cost of lasers, says Andy Zhao, the company’s cofounder and CTO. 

The next step is to build a larger-scale system that will use 150 kilowatts of laser power and could make up to 100 tons of steel over the course of a year.

Rocks that can make fuel

The hunks of rock at a booth hosted by MIT might not seem all that high-tech, but someday they could help produce fuels and chemicals. 

A major topic of conversation at the ARPA-E summit was geologic hydrogen—there’s a ton of excitement about efforts to find underground deposits of the gas, which can be used as a fuel across a wide range of industries, including transportation and heavy industry. 

Last year, ARPA-E funded a handful of projects on the topic, including one in Iwnetim Abate’s lab at MIT. Abate is among the researchers who are aiming not just to hunt for hydrogen, but to actually use underground conditions to help produce it. Earlier this year, his team published research showing that by using catalysts and conditions common in the subsurface, scientists can produce hydrogen as well as other chemicals, like ammonia. Abate cofounded a spinout company, Addis Energy, to commercialize the research, which has since also received ARPA-E funding

All the rocks on the table, from the chunk of dark, hard basalt to the softer talc, could be used to produce these chemicals. 

An electric guitar powered by iron nitride magnets

The sound of music drifted from the Niron Magnetics booth across nearby walkways. People wandering by stopped to take turns testing out the company’s magnets, in the form of an electric guitar. 

Most high-powered magnets today contain neodymium—demand for them is set to skyrocket in the coming years, especially as the world builds more electric vehicles and wind turbines. Supplies could stretch thin, and the geopolitics are complicated because most of the supply comes from China. 

Niron is making new magnets that don’t contain rare earth metals. Instead, Niron’s technology is based on more abundant materials: nitrogen and iron. 

The guitar is a demonstration product—today, magnets in electric guitars typically contain aluminum, nickel, and cobalt-based magnets that help translate the vibrations from steel strings into an electric signal that is broadcast through an amplifier. Niron made an instrument using its iron nitride magnets instead. (See photos of the guitar from an event last year here.)

Niron opened a pilot commercial facility in late 2024 that has the capacity to produce 10 tons of magnets annually. Since we last covered Niron, in early 2024, the company has announced plans for a full-scale plant, which will have an annual capacity of about 1,500 tons of magnets once it’s fully ramped up. 

Batteries for powering high-performance data centers

The increasing power demand from AI and data centers was another hot topic at the summit, with server racks dotting the showcase floor to demonstrate technologies aimed at the sector. One stuffed with batteries caught my eye, courtesy of Natron Energy. 

The company is making sodium-ion batteries to help meet power demand from data centers. 

Data centers’ energy demands can be incredibly variable—and as their total power needs get bigger, those swings can start to affect the grid. Natron’s sodium-ion batteries can be installed at these facilities to help level off the biggest peaks, allowing computing equipment to run full out without overly taxing the grid, says Natron cofounder and CTO Colin Wessells. 

Sodium-ion batteries are a cheaper alternative to lithium-based chemistries. They’re also made without lithium, cobalt, and nickel, materials that are constrained in production or processing. We’re seeing some varieties of sodium-ion batteries popping up in electric vehicles in China.

Natron opened a production line in Michigan last year, and the company plans to open a $1.4 billion factory in North Carolina

This artificial leaf makes hydrocarbons out of carbon dioxide

For many years, researchers have been working to build devices that can mimic photosynthesis—the process by which plants use sunlight and carbon dioxide to make their fuel. These artificial leaves use sunlight to separate water into oxygen and hydrogen, which could then be used to fuel cars or generate electricity. Now a research team has taken aim at creating more energy-dense fuels.

Companies have been manufacturing synthetic fuels for nearly a century by combining carbon monoxide (which can be sourced from carbon dioxide) and hydrogen under high temperatures. But the hope is that artificial leaves can eventually do a similar kind of synthesis in a more sustainable and efficient way, by tapping into the power of the sun.

The group’s device produces ethylene and ethane, proving that artificial leaves can create hydrocarbons. The development could offer a cheaper, cleaner way to make fuels, chemicals, and plastics. 

For research lead Virgil Andrei at the University of Cambridge, the ultimate goal is to use this technology to create fuels that don’t leave a harmful carbon footprint after they’re burned. If the process uses carbon dioxide captured from the air or power plants, the resulting fuels could be carbon neutral—and ease the need to keep digging up fossil fuels.

“Eventually we want to be able to source carbon dioxide to produce the fuels and chemicals that we need for industry and for everyday lives,” says Andrei, who coauthored a study published in Nature Catalysis in February. “You end up mimicking nature’s own carbon cycle, so you don’t need additional fossil resources.”

Copper nanoflowers

Like other artificial leaves, the team’s device harnesses energy from the sun to create chemical products. But producing hydrocarbons is more complicated than making hydrogen because the process requires more energy.

To accomplish this feat, the researchers introduced a few innovations. The first was to use a specialized catalyst made up of tiny flower-like copper structures, produced in the lab of coauthor Peidong Yang at the University of California, Berkeley. On one side of the device, electrons accumulated on the surfaces of these nanoflowers. These electrons were then used to convert carbon dioxide and water into a range of molecules including ethylene and ethane, hydrocarbons that each contain two carbon atoms. 

An image showing top views of the copper nanoflowers at different magnifications.
Microscope images of the device’s copper nanoflowers.
ANDREI, V., ROH, I., LIN, JA. ET AL. / NAT CATAL (2025)

These nanoflower structures are tunable and could be adjusted to produce a wide range of molecules, says Andrei: “Depending on the nanostructure of the copper catalyst you can get wildly different products.” 

On the other side of the device, the team also developed a more energy-efficient way to source electrons by using light-absorbing silicon nanowires to process glycerol rather than water, which is more commonly used. An added benefit is that the glycerol-based process can produce useful compounds like glycerate, lactate, and acetate, which could be harvested for use in the cosmetic and pharmaceutical industries. 

Scaling up

Even though the trial system worked, the advance is only a stepping stone toward creating a commercially viable source of fuel. “This research shows this concept can work,” says Yanwei Lum, a chemical and biomolecular engineering assistant professor at the National University of Singapore. But, he adds, “the performance is still not sufficient for practical applications. It’s still not there yet.”

Andrei says the device needs to be significantly more durable and efficient in order to be adopted for fuel production. But the work is moving in the right direction. 

“We have been making this progress because we looked at more unconventional concepts and state-of-the-art techniques that were not really available,” he says. “I’m quite optimistic that this technology could take off in the next five to 10 years.”