Purpose-built AI builds better customer experiences

In the bygone era of contact centers, the customer experience was tethered to a singular channel—the phone call. The journey began with a pre-recorded message prompting the customer to press a number corresponding to their query. Today’s contact centers have evolved from the confines of just traditional phone calls to multiple channels from emails to social media to chatbots.

Customers have access to more business information than ever. But improving the quality of customer experiences means becoming more customer-centric and data-driven and scaling available human representatives for round-the-clock assistance.

Enabling these improvements is no small feat for enterprises, though, says senior product marketing manager at NICE, Michele Carlson. With large data streams and the demand for personalized experiences, artificial intelligence has become the key enabler in fostering these better customer experiences.

“There’s such an enormous amount of data available that without artificial intelligence as this driving force for better customer experiences, it would be impossible to meet customer’s expectations today.”

Amid the many moving parts in a contact center from managing multiple incoming calls to taking accurate notes of each interaction to measuring success metrics, AI can help smooth friction. Sentiment analysis can help supervisors identify in real-time which calls require escalation or further support and AI tools can summarize calls and automate note-taking to free up agents to focus more closely on customer needs. These use cases not only improve customer and employee experiences but also save time and money.

While the promises of AI have many enterprises making swift investments, Carlson cautions leaders to be goal-oriented first. Rather than deploy AI because it’s popular, AI-driven solutions need to be purpose-built to support and align with goals. 

“There are so many available artificial intelligence solutions right now, but it’s really critical to choose AI that is designed and built on data that is specific to your organization,” says Carlson.

Looking ahead, Carlson sees the evolution toward AI-enabled customer centricity as a signal of a customer experience paradigm shift where AI will augment not just operational details but offer insights into high-level business strategy.

“As everyone gets introduced to this technology,” says Carlson, “it’s going to be those that are open to using new things and open to using AI, but also the ones that are selecting the right types of artificial intelligence to compliment their business that are going to be the most successful in using it, and gaining the efficiency and optimizing the customer experiences.”


This episode of Business Lab is produced in partnership with NICE.

Full Transcript

Laurel Ruma: From MIT Technology Review, I’m Laurel Ruma, and this is Business Lab, the show that helps business leaders make sense of new technologies coming out of the lab and into the marketplace.

Our topic is deploying customer service with AI to maximize results. As artificial intelligence evolves in the call center, it can provide real-time guidance. But measuring success remains key to operational efficiency and customer satisfaction.

Two words for you: better service.

My guest is Michele Carlson, senior product marketing manager at NICE.

This podcast is produced in partnership with NICE.

Welcome, Michele.

Michele: Thank you so much, Laurel. I’m so excited to be here.

Laurel: Well, welcome. And let’s begin by setting some context for our conversation. Long ago, in technology years, one would talk to a live person when calling a customer service number, and then we moved on to automated menu choices and beyond. So how have call centers evolved to better serve customers? And to bring us up to the present day, how is AI an enabler of that evolution?

Michele: The really good place to get started is, how did this all begin? So right now, contact centers are more customer-focused than they’ve ever been. Like you mentioned, they first started with a call, or maybe what we call an IVR, or an internal voice recording, where you would put in a phone number, or put in a number if you wanted to go to a certain queue to answer a certain type of question. And now we’ve advanced far beyond that.

So there still are things like IVRs in the market, but there are more channels than ever now that customers are interacting with. So it’s not just the phone calls, it’s email, it’s social, it’s the chatbots on their website. It’s the more sophisticated website. So there’s more places that customers can get information about a business than ever before. So that’s something that’s really changed for contact centers.

So the way that they’re really handling that to give better customer experience, and to engage more with their customers, is focusing more on becoming customer-centric. Which are things like more personalization, being more data-driven, having greater availability for their agents. And all of these options that, for us as consumers, are really exciting because we can reach out to a business in many different ways at many different hours of the day, 24/7 access to get our questions answered.

While this is exciting for customers, it also creates a challenge for contact centers. Because, yes, it’s a way that they can evolve to serve their customers in all these places, but it’s a challenge for them. And you asked about artificial intelligence or AI, how is AI supporting that?

And that’s a big enabler for contact centers to be able to deliver these better experiences to customers, because there are so many channels, there’s so much need and expectation for personalization. There is a need to be more data-driven. And artificial intelligence allows businesses, allows contact centers, to evaluate and see what their customers are calling about, when their customers are going to call, what channels their customers are interacting with, and even the questions that customers are asking on different channels.

Using all of that data is a way that they can personalize and deliver better experiences. And artificial intelligence allows them to look at all that data. There’s such an enormous amount of data available that without artificial intelligence as this driving force for better customer experiences, it would be impossible to meet customer’s expectations today.

And so it’s really exciting to think … As you mentioned, it’s a long time ago in technology years, which is really a very short time. We’ve seen this evolution really pick up pace in the last few years with the integration of things like conversational AI and generative AI into that contact center space. And we’ll talk more about those in the course of our conversation, too.

Laurel: So yeah, speaking of data, it’s such a central role to most technology deployments and digital transformations. So then, what is the role of data in this context? And how can organizations best manage and use the data, since it is coming from so many different places as well as where it needs to be saved, to ensure a more efficient experience with contact centers?

Michele: Yeah, so the role data plays in our world today is a substantial one. “Data is the new oil.” It’s not my quote, but I’ll borrow it.

And data, there is so much of it. And the idea is it’s so very valuable, and it’s really critical to have all this data gathered together to be able to use it and be able to understand it.

So what contact centers are doing, the ones that are really successful in this, is they’re benefiting by aligning their data and building what we’re calling an interaction-centric approach.

Rather than saying I’m just going to look at my customers in a web version, or I’m just going to look at my customers through voice, being able to look at data from all over and all these different places makes this interaction-centric approach really crucial to getting started and using the data in a way that makes sense for the business.

So this is allowing them to move from things like voice and digital messaging to chatbots and social media, just on one platform. So if you or me, if we were to call into a contact center, they would know where our journey has gone. If we went to the website, if we went to the chatbot, if we called, how our call went, who we spoke with, what the outcome of that interaction was.

And that lens, in having the data, is more powerful in keeping this customer-centric approach, or this customer-centric mindset. Because it brings together all of these touch points on one channel, so that you can move interactions into one platform, which allows all these organizations to then look at different types of applications and solutions to solve different problems within their contact centers and their customer experience groups.

Laurel: So could you share some of those specific examples of how AI-driven solutions can address these unique challenges in contact centers, and also provide improvements in both customer and employee experiences?

Michele: Yes, of course. And I really like how you frame that question. Because it’s about both the customer experience and the employee experience. Without helping your employees and supporting your employees, it would be very difficult to provide, in turn, that great customer experience. And artificial intelligence-driven, AI-driven types of solutions, just to go back to that previous question around data, the AI solutions are only as good as the data that’s available to them.

So in a contact center where customer experience is the goal, you want your artificial intelligence and the data to be driven off of interactions with your customers, and that’s a very crucial foundational element across the board in choosing and using an artificially intelligent solution. One of the ways that organizations are doing this, they’re thinking about, we started with that IVR [interactive voice response]. By the time I get to item nine in the menu, I’ve usually forgotten what the previous items are.

But rather than using an IVR, you can use artificially intelligent routing. So you can predict why a customer is calling, who and which agent they might best interact with. And you can use data kind of on both sides to understand the customer’s needs, and the agents, to direct the call so it has the best outcome.

Once the interaction begins, we can use data, artificial intelligence, to measure sentiment, customer sentiment. And in the course of the interaction, an agent can get a notification from their supervisor that says, “Here’s a couple different things that you can do to help improve this call.” Or, “Hey, in our coaching session, we talked about being more empathetic, and that’s what this means for this customer.” So, giving specific prompts to make the interaction move better in real-time.

Another example supervisors are also burdened with; they usually have a large team of somewhere up to 20, sometimes 25 different agents who all have calls going at the same time.

And it’s difficult for supervisors to keep a pulse on, who is on which interaction with what customer? And is this escalation important, or which is the most important place? Because we can only be one place at one time. As much as we try with modern technology to do many things, we can only do one really well at once.

So for supervisors, they can get a notification about which calls are in need of escalation, and where they can best support their agent. And they can see how their teams are performing at one time as well.

Once the call is over, artificial intelligence can do things like summarize the interaction. During a context interaction, agents take in a lot of information. And it is difficult to then decipher that, and their next call is going to be coming in very quickly. So artificial intelligence can generate a summary of that interaction, instead of the agent having to write notes.

And this is a huge improvement because it improves the experience for customers. That next time they call, they know those notes are going to go over to the agent, the agent can use them. Agents also really appreciate this, because it’s difficult for them in shorthand to recreate very complicated, in healthcare for example, all of the different coding numbers for different types of procedures, or are the provider, or multiple providers, or explanations of benefits to summarize all of that concisely before they take their next call.

So an auto-summarization tool does that automatically based off of the conversation, saving the agents up to a minute of post-call notes, but also saving businesses upwards of $14 million a year for 1,000 agents. Which is great, but agents appreciate it because 85% of them don’t really like all of their desktop applications. They have a lot of applications that they manage. So artificial intelligence is helping with these call summaries.

It can also help with reporting after the fact, to see how all of the calls are trending, is there high sentiment or low sentiment? And also in the quality management aspect of managing a contact center, every single call is evaluated for compliance, for greeting, for how the agent resolved the call. And one of the big challenges in quality management without artificial intelligence is that it’s very subjective.

So you and I could listen to the same call, and we could have very different viewpoints of how the call went. And agents, it’s difficult for them to get conflicting feedback on their performance. And so artificial intelligence can listen to the call, extract data points baseline, and consistently evaluate every single interaction that’s coming into a contact center.

They get better feedback and then they grow, they learn, they have a better overall experience because of this consistency in the evaluations.

So to answer your question, there are a lot of different ways artificial intelligence can support these contact center needs. And if you’re a business and customer satisfaction is your main goal, it’s really critical to think about not just one point of an interaction you have with a customer, but really before, during, and after every interaction, there’s all these opportunities to bring in data for greater consistency, and that’s something that is gained through using artificial intelligence.

Laurel: Yeah, that’s certainly quite a bit there. So when a company is thinking about integrating AI into their customer experiences, what are some common pitfalls they need to look out for, and how can those be mitigated or avoided?

Michele: Yeah, I think one of the most common pitfalls, and we’re all attracted to what’s new and exciting, and artificial intelligence is definitely on that list. And one of the reasons, or one of the pitfalls I’ve seen as organizations are getting started, they focus on too much on using AI.

Somebody said they read a cool article, “We’ve got to use AI for that.” And yeah, you could use AI for that. But really you’re choosing a type of technology, or you’re choosing artificial intelligence, to solve a specific problem. So what I would encourage everyone to do is, think about what is your goal? And then choose AI-driven solutions to then support and align with your goals.

So for typical goals in the contact center, these might be around measuring customer experience like CSAT, sentiment, first call resolution, average handle time, a digital resolution rate, digital containment rate. These are all different types of metrics or goals an organization could have.

But among the chief dos and don’ts is, make sure you’re choosing AI that is specific to what your goals are. I would say very close second is making sure you’re choosing AI that is purpose-built for customer experience. Or purpose-built for, if you’re not in a contact center, whatever your specific type of organization does.

There are so many available artificial intelligence solutions right now, but it’s really critical to choose AI that is designed and built on data that is specific to your organization. So in this instance, customer experience.

And that allows you to benefit from how those models and how that AI is built so that you can use something out of the box. You don’t have to build everything on your own, because that could be very time-consuming. And also creates some ethical dilemmas if you don’t have a large enough data set because your AI is only going to be as good as the data that it’s trained upon. So you want to make sure it has as much data, and relevant data, for your use case as possible.

Laurel: So you did touch on this a little bit. Which is, how can AI and automation enhance the day-to-day work of contact center agents without creating additional challenges? How can it actually continuously improve both the employee and customer experience?

Michele: Yeah, of course. So I’ll give a couple more examples. I think there is a few I gave earlier. So the first I think is just being objective about how a call has been handled, I think that’s one of the most critical use cases.

And so at NICE, we have AI models that learn these different agent soft skills. So everything from how to ask good probing questions, to being empathetic, to taking ownership and resolving an issue efficiently. These models are looking at how to do that. And I think that’s one of the pieces that helps in the day-to-day work for contact center agents. Because they are getting consistent feedback on how they’re performing, but also the models continue to improve over time as well because you’re giving the models new data to work from, new calls, new interactions. And then that is improving both the evaluations for the agents, but it’s improving the customer experience as well.

Because if your baseline is that your sentiment level was at a five, and now you’ve expanded the baseline and you’ve increased your baseline and now you’re at an eight, you’re consistently improving in that way where you’ve now, one, measured what you want to do, which is improve customer experience. You’ve given your agents a measurement, a consistent measurement to deliver on your goal. And then three, you’re continuing to measure over time as you have more different interactions.

So not only are your agents getting better, but your models become more finely-tuned for your organization as well.

Laurel: So as we’re discussing this, in terms of coaching and training agents, how can AI-driven tools effectively provide that kind of real-time guidance without being intrusive? But then also, strike that balance between support and autonomy for the agents?

Michele: Yeah, and I think that’s a great place to be thinking about. If you are a contact center agent, you are on the phone, and then you’re also multitasking on your screen. You’re looking for data, you’re looking for information, you have the customer’s card and hopefully information up from their previous interaction. You have maybe an IM message with your supervisor, you have a lot going on at one time.

So I think when you’re thinking about things like real-time guidance, and coaching and training, this is where it becomes really crucial. I mentioned this being interaction-centric and having everything on one platform, but having the ability to use that sentiment data or customer satisfaction data in multiple places can be very powerful. Because then you’re not introducing new information in real time.

I think that’s the biggest piece to be aware of. Is that in real time, that is not the first time agents are seeing this information about how they could become more empathetic, or how they can deliver on their coaching that they had with their supervisor in a previous interaction.

So by putting everything, anchoring in on this interaction-centric piece and then converging everything on one type of a data platform. In the industry we call it CCaaS, contact center as a service. By delivering on one platform, you enable your organization to use the same data point in multiple places.

So the agent is using this data, they get a popup in real time. But they’ve also had conversations with their supervisor about these skill sets after their previous interactions. And it’s that cycle, and it’s that consistency, that makes agents better aware of and more adaptable for this environment. So that you’re not going to them and giving them yet another thing that they need to resolve, but you’re providing them with information that is relevant and real-time for that particular interaction that they’re on.

Laurel: So you’ve touched on this here and there, but a key element of deploying any kind of new tool or technology is measuring its success. What metrics should organizations then prioritize to measure both customer satisfaction and operational efficiency?

Michele: Some of the key metrics that organizations most focus on in the contact center are net promoter score, so NPS score, or a customer satisfaction score. Those are key measurements of how a customer perceives the interaction. You’ll also see things like customer sentiment, how a customer is feeling about the interaction, included in those measurements.

And then you get into some measurements that are more around the length of the call or efficiency-driven, like an average handle time or an average talk time. And I would say between the CSAT-type measurements and efficiency-type measurements, those make up the measurements for many of the voice types of interactions. So, how long a call is correlates directly to the cost of the call.

Then what’s kind of exciting in this new space is, there’s a lot more organizations that are moving into digital interactions as well. And organizations are looking at things like digital containment, or the number of digital resolutions. How many customer questions was my website or my chatbot able to resolve?

Those then translate into what could be cost savings for a voice interaction. Voice interactions are about a hundred times more expensive than a web or chatbot interaction. So by building effective chatbots, by building effective IVAs, they are also, in turn, improving their overall cost goals for their organization.

I’d say the other metric that everyone is focused on as well is agent retention. So are you giving your tools to your agents to support them in the coaching process and the quality process, in their interactions so that they have a better experience with your organization in answering questions, and that you’re giving them tools to grow as well?

Being a contact center agent is probably one of the hardest and most difficult jobs in that business space. And they are on the phone, they’re inundated with information. So any tools that you can provide them with to help them access information more quickly is hugely beneficial.

Laurel: So it’s clear that there’s lots of opportunities for greater efficiencies and optimizing customer experiences. But looking into the future, how do you see AI and customer experience evolving?

Michele: I think there’s definitely going to be more use cases where we see … And here at NICE, we’re already integrating generative AI and conversational AI into our solutions. And as you adapt these new technologies, it’s only going to build upon itself, where there’s going to be more evolutions in this space.

I think one of the most exciting things that we’ve introduced recently is this idea of using generative AI. So we’ve put guardrails around it, and the guardrails are really crucial when you’re working with artificial intelligence and the large language models, LLMs. We’ve all played with ChatGPT or Claude, and you can interact with those.

And what is really exciting that we’ve done is, we’ve used that type of technology to generate conversations and answers and information. But we’ve put guardrails on it so that organizations can better interact with just their customer experience specific data.

And what this means is, when you are in leadership in an organization, for example, if you were looking for a report, it may take you 12 emails multiple times back and forth saying what you’d like to see in that report. But if you have, again, all of these interactions on one platform, you’ve made it interaction-centric, you’re using all these solutions that kind of compliment each other for every part of the interaction.

What you can do is, instead of emailing a data analyst back and forth for a report, you could interact with generative AI. You could type a question to say, “Hey, who are my top 10 performing agents by sentiment, and what are their key skills that they are using in those interactions?” Then you can generate a report based off of that.

What we’re seeing is that all of these solutions are not necessarily replacing people, but we’re seeing a lot of AI-adjacent or AI-augmented interactions in this contact center space that are coming into play.

And what this is doing is, it’s allowing decision-makers to focus more on their overall strategy and the overall experience that they’re delivering to customers. Rather than being very specific in emailing about a report, or even for agents to be able to type into a conversational AI interface that they can look for specific types of information, rather than searching everywhere for it.

So we are seeing a lot more AI augmented users. And so as everyone gets introduced to this technology, it’s going to be those that are open to using new things and open to using AI, but also the ones that are selecting the right types of artificial intelligence to compliment their business that are going to be the most successful in using it, and gaining the efficiency and optimizing the customer experiences.

Laurel: That’s great insight, Michele. Thank you so much for being on the Business Lab today.

Michele: Thanks so much, Laurel. It was great to be here.

Laurel: That was Michele Carlson, who is the senior product marketing manager at Nice, who I spoke with from Cambridge, Massachusetts, the home of MIT and MIT Technology Review.

That’s it for this episode of Business Lab. I’m your host, Laurel Ruma. I’m the global director of Insights, the custom publishing division of MIT Technology Review. We were founded in 1899 at the Massachusetts Institute of Technology, and you can find us in print, on the web, and at events each year around the world.

For more information about us and the show, please check out our website at technologyreview.com. This show is available wherever you get your podcasts. If you enjoyed this episode, we hope you’ll take a moment to rate and review us. Business Lab is a production of MIT Technology Review. This episode was produced by Giro Studio. Thanks for listening.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Scaling customer experiences with data and AI

Today, interactions matter more than ever. According to data compiled by NICE, once a consumer makes a buying decision for a product or service, 80% of their decision to keep doing business with that brand hinges on the quality of their customer service experience, according to NICE research. Enter AI.

“I think AI is becoming a really integral part of every business today because it is finding that sweet spot in allowing businesses to grow while finding key efficiencies to manage that bottom line and really do that at scale,” says vice president of product marketing at NICE, Andy Traba.

When many think of AI and customer experiences, chatbots that give customers more headaches than help often come to mind. However, emerging AI use cases are enabling greater efficiencies than ever. From sentiment analysis to co-pilots to integration throughout the entire customer journey, the evolving era of AI is reducing friction and building better relationships between enterprises and both their employees and customers.

“When we think about bolstering AI capabilities, it’s really about getting the right data to train my models on so that they have those best outcomes.”

Deploying any technology requires a delicate balance between delivering quality solutions without compromising the bottom line. AI integration offers investment returns by scaling customer and employee capabilities, automating tedious and redundant tasks, and offering consistent experiences based on collected and specialized data.

“I think as you’re hopefully venturing into leveraging AI more to improve your business, the key recommendation I would provide is just to focus on those crystal clear high-probability use cases and get those early wins and then reinvest back into the business,” says Traba.

While artificial intelligence has increasingly grabbed headlines in recent years, augmented intelligence—where AI tools are used to enhance human capabilities rather than automate them—is worthy of similar buzz for its potential in the customer experience space, says Traba.

Currently, the customer experience landscape is highly reactive. Looking ahead, Traba foresees a shift to proactive and predictive customer experiences that blend both AI and augmented intelligence. Say a customer’s device is reaching its end-of-life state. Rather than the customer reaching out to a chatbot or contact center, AI tools would flag the device’s issue early and direct the customer to a live chat with a representative, offering both the efficiency of automation and personalized help from a human representative.

“Where I see the future evolving in terms of customer experiences, is being much more proactive with the convergence of data, these advancements of technology, and certainly generative AI,” says Traba.

This episode of Business Lab is produced in partnership with NICE.

Full Transcript

Laurel Ruma: From MIT Technology Review, I’m Laurel Ruma and this is Business Lab, the show that helps business leaders make sense of new technologies coming out of the lab and into the marketplace.

Our topic is building better customer and employee experiences with artificial intelligence. Integrating data and AI solutions into everyday business can help provide insights, create efficiencies, and free up time for employees to work on more complicated issues. And all of this builds a better experience for customers.

Two words for you: augmented intelligence.

My guest is Andy Traba, vice president of product marketing at NICE.

This podcast is produced in partnership with NICE.

Welcome Andy.

Andy Traba: Hi Laurel. Thanks for having me.

Laurel: Well, thanks for being here. So to set some context, could you describe the current state of AI within customer experience? Common use cases that come to mind are chatbots, but what are some other applications for AI in this space?

Andy: Thank you. I think it’s a great question to get started, and I think first and foremost, the use of AI is growing everywhere. Certainly, we had this big boom last year where everybody started talking about AI thanks to ChatGPT and a lot of the advancements with generative AI, and we’re certainly seeing a lot more doing now, moving beyond just talking. So just growing a use case of trying to apply AI everywhere to improve experiences. One of the more popular ones, and this technology has been around for some time, is sentiment analysis. So instead of just proactively surveying customers to ask how are they doing, what was their experience like, using AI models to analyze the conversations they’re having with brands and automatically determine that. And it’s also a good use case, I think, to emphasize the importance of data that goes into the training of AI models.

As you think about sentiment analysis, you want to train those models based on the actual customer experience conversations, maybe past records or even surveys. What you want to avoid is training a sentiment model maybe based on movie reviews or Amazon reviews, something that’s not really well connected. So certainly sentiment analysis is a very popular use case that goes beyond just chatbots.

Two other ones I’ll bring up are co-pilots. We’ve seen, certainly, a lot of recent news with the launch of Microsoft Copilot and other forms for copilots within the contact center and certainly helping customer service agents. It’s a very popular use case that we see. The reason driving that demand is the types of conversations that are getting to agents today are much more complex. AI has done a good job of taking away the easy stuff. We no longer have to call into a contact center to reset our passwords, so what’s left over for the agents is much more difficult types of interactions.So being able to assist them in real time with prompts and guidance and recommending knowledge articles to make their job easier and more effective is really popular.

And then the third and final one just on this question is the really kind of rise of AI-driven journeys. Many, many years ago, you and I would call into a contact center, and the only channel we could use was voice. Today, those channels have exploded. There’s social media, there’s messaging, there’s voice, there’s AI assistance that we can chat with. So being able to orchestrate or navigate a customer effectively through that journey and recommend the next best action or the next best channel for them to reduce that complexity is really in demand as well. And how can I even get to a point where I can proactively engage with them on the channel of their choice at the time of day that we’re likely to get a response is certainly an area that we see AI playing an important role today, but even more so in the future those three really sentiment analysis, the rise of co-pilots and then using AI across the entire customer journey.

Laurel: So as AI becomes more popular across enterprises and across industries, why is integrating AI and customer experience then so crucial for today’s business landscape?

Andy: I think it’s so crucial today because it’s finding this sweet spot in terms of business decision-making. When we think of business decision-making, we are often challenged with, am I going to focus on revenue or cost cutting? Am I going to focus on building new products or perfecting my existing products? And rarely has there been a technology that has allowed a business to achieve all of those at once. But we’re seeing that today with AI finding a sweet spot where I can improve revenue and keep customers happy and renewing or even gain new ones without having to spend additional money. I could even do that in a more efficient way with AI. Within AI, I can take a very innovative approach and produce new products that my customers demand and save time and money through efficiencies in making my current products better. I think AI is becoming a really integral part of every business today because it is finding that sweet spot in allowing businesses to grow while finding key efficiencies to manage that bottom line and really do that at scale.

Laurel: And speaking of those efficiencies, employee experience lays that foundation for the customer. But based on your time at NICE and within business operations, how does employee experience affect the overall experience then for customers?

Andy: I think what we’ve seen at NICE is really that customer experience and employee experience are hand in glove. They’re one and the same. They have tremendous correlation between each other. Some examples, just to give some anecdotes, and this is customer experience really happening everywhere. If you go into a car dealership for a Tesla or a BMW, a high-end product, but you are interacting with a salesperson who’s a little pushy or maybe just having a bad day, it’s going to deteriorate the overall customer experience, so that bad employee experience causes a negative effect. Same thing if you go to your favorite local restaurant, but you maybe have a new server who’s not really well-trained or is still figuring out the menu and the logistics that’s going to have a negative spillover effect. And then even on the flip side of that, you can see employee experience having a positive effect on their overall customer experience.

If employees are engaged and they have the right information and the right tools, they can turn a negative into a positive. Think of airlines, a very commoditized industry right now, but if you have a problem with your flight and it got canceled and you have a critical moment of need, that employee from that airline could really turn that experience around by finding a new flight, booking you, making sure that you are on your trip and meeting your destination on time or without very little delay. So I think when we think about experiences at large and the employee and the customer outcomes are very much tied together, we’ve done research here at NICE on this exact topic, and what we found was once a consumer makes a buying decision for a particular product or service, after that point, 80% of that consumer’s decision to continue doing business with that brand is based on the quality of their interactions.

So how those conversations play out, plays a very, very important part of whether or not they will continue doing business with that brand. Today, interactions matter more than ever. To conclude on this question, one of my favorite quotes, customer experience today isn’t just part of the business, it is the business. And I think employees play a really important front role in achieving that.

Laurel: That certainly makes sense. 80% is a huge number, and I think of that in my own experiences, but could you explain the difference between artificial intelligence and augmented intelligence and also how they overlap?

Andy: Yeah, it’s a great question. I think today artificial intelligence is certainly capturing all of the buzz, but what I think is just as buzzworthy is augmented intelligence. So let’s start by defining the two. So artificial intelligence refers to machines mimicking human cognition. And when we think about customer experience, there’s really no better example of that than chatbots or virtual assistants. Technology that allows you to interact with the brand 365 24/7 at any time that you need, and it’s mimicking the conversations that you would normally have with a live human customer service representative. Augmented intelligence on the other hand, is really about AI enhancing human capabilities, increasing the cognitive load of an individual, allowing them to do more with less, saving them time. I think in the domain of customer experience, co-pilots are becoming a very popular example here. How can co-pilots make recommendations, generate responses, automate a lot of the mundane tasks that humans just don’t like to do and frankly aren’t good at?

So I think there’s a clear distinction then between artificial intelligence, really those machines taking on the human capabilities 100% versus augmented, not replacing humans, but lifting them up, allowing them to do more. And where there’s overlap, and I think we’re going to see this trend really start accelerating in the years to come in customer experiences is the blend between those two as we’re interacting with a brand. And what I mean by that is maybe starting out by having a conversation with an intelligent virtual agent, a chatbot, and then seamlessly blending into a human live customer representative to play a specialized role. So maybe as I’m researching a new product to buy such as a cell phone online, I can be able to ask the chatbot some questions and it’s referring to its knowledge base and its past interactions to answer those. But when it’s time to ask a very specific question, I might be elevated to a customer service representative for that brand, just might choose to say, “Hey, when it’s time to buy, I want to ensure you’re speaking to a live individual.” So I think there’s going to be a blend or a continuum, if you will, of these types of interactions you have. And I think we’re going to get to a point where very soon we might not even know is it a human on the other end of that digital interaction or just a machine chatting back and forth? But I think those two concepts, artificial intelligence and augmented intelligence are certainly here to stay and driving improvements in customer experience at scale with brands.

Laurel: Well, there’s the customer journey, but then there’s also the AI journey, and most of those journeys start with data. So internally, what is the process of bolstering AI capabilities in terms of data, and how does data play a role in enhancing both employee and customer experiences?

Andy: I think in today’s age, it’s common understanding really that AI is only as good as the data it’s trained on. Quick anecdote, if I’m an AI engineer and I’m trying to predict what movies people will watch, so I can drive engagement into my movie app, I’m going to want data. What movies have people watched in the past and what did they like? Similarly in customer experience, if I’m trying to predict the best outcome of that interaction, I want CX data. I want to know what’s gone well in the past on these interactions, what’s gone poorly or wrong? I don’t want data that’s just available on the public internet. I need specialized CX data for my AI models. When we think about bolstering AI capabilities, it’s really about getting the right data to train my models on so that they have those best outcomes.

And going back to the example I brought in around sentiment, I think that reinforces the need to ensure that when we’re training AI models for customer experience, it’s done off of rich CX datasets and not just publicly available information like some of the more popular large language models are using.

And I think about how data plays a role in enhancing employee and customer experiences. There’s a strategy that’s important to derive new information or derive new data from those unstructured data sets that often these contact centers and experience centers have. So when we think about a conversation, it’s very open-ended, right? It could go many ways. It is not often predictable and it’s very hard to understand it at the surface where AI and advanced machine learning techniques can help though is deriving new information from those conversations such as what was the consumer’s sentiment level at the beginning of the conversation versus the end. What actions did the agent take that either drove positive trends in that sentiment or negative trends? How did all of these elements play out? And very quickly you can go from taking large unstructured data sets that might not have a lot of information or signals in them to very large data sets that are rich and contain a lot of signals and deriving that new information or understanding, how I like to think of it, the chemistry of that conversation is playing a very critical role I think in AI powering customer experiences today to ensure that those experiences are trusted, they’re done right, and they’re built on consumer data that can be trusted, not public information that doesn’t really help drive a positive customer experience.

Laurel: Getting back to your idea of customer experience is the business. One of the major questions that most organizations face with technology deployment is how to deliver quality customer experiences without compromising the bottom line. So how can AI move the needle in this way in that positive territory?

Andy: Yeah, I think if there’s one word to think about when it comes to AI moving the bottom line, it’s scale. I think how we think of things is really all about scale, allowing humans or employees to do more, whether that’s by increasing their cognitive load, saving them time, allowing things to be more efficient. Again, that’s referring back to that augmented intelligence. And then when we go through artificial intelligence thinking all about automation. So how can we offer customer experience 365 24/7? How can allowing consumers to reach out to a brand at any time that’s convenient boost that customer experience? So doing both of those tactics in a way that moves the bottom line and drives results is important. I think there’s a third one though that isn’t receiving enough attention, and that’s consistency. So we can allow employees to do more. We can automate their tasks to provide more capacity, but we also have to provide consistent, positive experiences.

And where AI and machine learning really help here is finding areas of variability, finding not only the areas of variability but then also the root cause or the driver of those variabilities to close those gaps. And a brand I’ll give a shout out to who I think does this incredibly well is Starbucks. I can go to a Starbucks in any location around the world and order an iced caramel macchiato, and I’m going to get that same drink experience regardless of the thousands of Starbucks locations. And I think that consistency plays a really powerful role in the overall customer experience of Starbucks’ brand. And when you think about the logistics of doing that at scale, it’s incredibly complex and challenging. If you have the data and you have the right tools and the AI, finding those gaps and offering more consistent experiences is incredibly powerful.

Laurel: So could you share some practical strategies and best practices for organizations to leverage AI to empower employees, foster positive and productive work environments, and then also all of this would ultimately improve customer interactions?

Andy: Yeah, I think the overall positive, going back to earlier in our conversation is there are many use cases. AI has a tremendous opportunity in this space. The recommendation I would provide is to focus first on a crystal clear, high-probability use case for your business. Auto summary or the automated note-taking of agents after call work is becoming an increasingly popular one that we’re seeing in the space. And I think the reasons for it are really clear. It’s a win-win-win for the employee, the customer, and the business. It’s a win for the employee because AI is going to automate something that is mundane for them or very procedural. If you think of a customer service representative, they’re taking 40, 50 maybe in upwards of 60 conversations a day during their job, taking notes of what was talked about. What are action items? Very complicated, mundane, tiresome even. They don’t like doing it.

So AI can offload that activity from them, which is a win for the employee. It’s a win for the customer as a lot of times the agents are great at note-taking, especially when they’re doing that so often, which can lead to that unfortunate experience where you have to call back as a consumer and repeat yourself because the agent you’re now talking to can’t understand or doesn’t have good information about what you called or interacted with previously. So from a consumer experience, it helps them because they have to repeat themselves less often. The agent that they’re currently speaking with can offer a more personalized service because they have better notes or history of past interactions.

And then finally, the third win, it’s really good for the business because you’re saving time and money that the agents no longer have to manually do something. We see that 30 to 60 seconds of note-taking at a business with 1,000 employees adds up to be millions of dollars every year. So there’s a clear-cut business case for the business to achieve results, improve customer experience, and improve employee experience at the same time. I think as you’re hopefully venturing into leveraging AI more to improve your business, the key recommendation I would provide is just to focus on those crystal clear high-probability use cases and get those early wins and then reinvest back into the business.

Laurel: Yeah, I think those are the positive aspects of that, but concerns about job loss due to automation tend to crop up with AI deployment. So what are the opportunities that AI integration can provide for organizations and their employees so it’s a win-win for everybody?

Andy: And certainly empathetic to this topic. As with all new technologies, whenever there’s excitement around them, there’s also this uncertainty of what will those long-term outcomes be? But I think when we historically look back, all transformative technologies have boosted GDP and they’ve created more jobs. And so I see no reason to believe this time around will be different. Now those jobs might be different and new roles will emerge. When it comes to customer experience and the employee experience one interesting theory I’m following is, if you think about Apple, they had a really revolutionary model where they branded their employees geniuses. So you’d go into an Apple store and you would speak to a genius, and that model carried through all of their physical flagship stores. A very positive model. Back in the day, people would actually pay money to go speak to a genius or get a priority customer service slot but a model that’s really hard to scale and a model that hasn’t been successful in a virtual environment.

I think when we see AI and a lot of these new technology advancements though, that’s a prime example of maybe a new job that does emerge where if AI is offloading a lot of the interactions to chatbots, what do customer service agents do? Maybe they become geniuses where they’re playing a more proactive, high-value add back to consumers and overall improving the service and the experience there. So I do think that AI will have job shifts, but overall there’ll be a net positive just like there has been with all past transformative technologies.

Laurel: Continuing that look ahead, how do you see the era of AI evolving in terms of customer and employee experience? What excites you about the future in this space?

Andy: This is actually what I’m most excited about is when we think about customer experience today, it’s highly reactive. As a consumer, if I have a problem, I search your website, I interact with your chatbot, I end up talking to a live customer service representative. The consumer is the driving force of everything and the business or the brand is having to be reactive to them. Where I see the future evolving in terms of customer experiences, is being much more proactive with the convergence of data, these advancements of technology, and certainly generative AI. I do see AI becoming smarter and being more predictive and proactive to alert that there is going to be a problem before the consumer actually is experiencing it and to take action on that proactively before that problem manifests itself.

And just a quick example of maybe there’s a media or a cable company where a device is reaching its end-of-life state, so rather than it have it go on the fritz the day of the Super Bowl, reach out, be proactive, contact that individual, give them specific instructions to follow. And I think that’s really where we see the advancements of not only big data, AI, but just the abundance of the ability to reach out in preferred channels, whether that’s a simple SMS or a high-touch service representative reaching out really where the future of customer experience moves to a much more proactive state from its reactive state today.

Laurel: Well, thank you so much, Andy. I appreciate your time, and thank you for joining us on the Business Lab today.

Andy: Thanks. This was an excellent conversation, Laurel, and thanks again for having me.

Laurel: That was Andy Traba, who is the vice president of product marketing at NICE, who I spoke with from Cambridge Massachusetts, the home of MIT and MIT Technology Review.

That’s it for this episode of Business Lab. I’m your host, Laurel Ruma. I’m the global director of Insights, the custom publishing division of MIT Technology Review. We were founded in 1899 at the Massachusetts Institute of Technology, and you can find us in print on the web and at events each year around the world. For more information about us and the show, please check out our website at technologyreview.com.

This show is available wherever you get your podcasts. If you enjoyed this episode, we hope you’ll take a moment to rate and review us. Business Lab is a production of MIT Technology Review. This episode was produced by Giro Studios. Thanks for listening.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Building a more reliable supply chain

In 2021, when a massive container ship became wedged in the Suez Canal, you could almost hear the collective sigh of frustration around the globe. It was a here-we-go-again moment in a year full of supply chain hiccups. Every minute the ship remained stuck represented about $6.7 million in paralyzed global trade.

The 12 months leading up to the debacle had seen countless manufacturing, production, and shipping snags, thanks to the covid-19 pandemic. The upheaval illuminated the critical role of supply chains in consumers’ everyday lives—nothing, from baby formula to fresh produce to ergonomic office chairs, seemed safe.

For companies producing just about any physical product, the many “black swan” events (catastrophic incidents that are nearly impossible to predict) of the last four years illustrate the importance of supply chain resilience—businesses’ ability to anticipate, respond, and bounce back. Yet many organizations still don’t have robust measures in place for future setbacks.

In a poll of 250 business leaders conducted by MIT Technology Review Insights in partnership with Infosys Cobalt, just 12% say their supply chains are in a “fully modern, integrated” state. Almost half of respondents’ firms (47%) regularly experience some supply chain disruptions—nearly one in five (19%) say they feel “constant pressure,” and 28% experience
“occasional disruptions.” A mere 6% say disruptions aren’t an issue. But there’s hope on the horizon. In 2024, rapidly advancing technologies are making transparent, collaborative, and data-driven supply chains more realistic.

“Emerging technologies can play a vital role in creating more sustainable and circular supply chains,” says Dinesh Rao, executive vice president and co-head of delivery at digital services and consulting company Infosys. “Recent strides in artificial intelligence and machine learning, blockchain, and other systems will help build the ability to deliver future-ready, resilient supply chains.”

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Decarbonizing production of energy is a quick win 

Debate around the pace and nature of decarbonization continues to dominate the global news agenda, from the European Scientific Advisory Board on Climate Change warning that the EU must double annual emissions cuts, to forecasts that it could cost more than $1 trillion to decarbonize the global shipping industry. Despite differing opinions on the right path to net zero, all agree that every sector needs to reduce emissions to avoid the worst effects of climate change.

Oil and gas production accounts for 15% of the world’s emissions, according to the International Energy Agency. Some of the largest global companies have embarked on bold plans to cut to zero by 2050 the carbon and methane associated with their production. One player with an ambition to get there five years ahead of the rest is the UAE’s ADNOC, having announced in January 2024 it will lift spending on decarbonization projects to $23 billion from $15 billion.  

In an exclusive interview, Musabbeh Al Kaabi, ADNOC’s Executive Director for Low Carbon Solutions and International Growth, says he is hopeful the industry can make a meaningful contribution while supplying the secure and affordable energy needed to meet growing global demand.

Q: Mr. Al Kaabi, how do you plan to spend the extra $8 billion ADNOC has allocated to decarbonization?

Mr. Mussabeh Al Kaabi: Much of our investment focus is on the technologies and systems that will deliver tangible action in eliminating the emissions from our energy production. At 7 kilograms of CO2 per barrel of oil equivalent, the energy we provide is among the least carbon-intensive in our industry, yet we continue to explore every opportunity for further reductions. For example, we are using clean grid power—from renewable and nuclear sources—to meet the needs of our onshore operations. Meanwhile, we are investing almost $4 billion to electrify our offshore production in order to cut our carbon footprint from those operations by up to 50%.

We also see great potential in carbon capture utilization and sequestration (CCUS), especially where emissions are hard to abate. Last year, we doubled our capacity target to 10 million tonnes per annum by 2030. We currently have close to 4 million tonnes in capacity in development or operation and are working with key players in our industry to create a world-leading carbon management platform.

Additionally, we’re developing nature-based solutions to support our target for net zero by 2045. One of our initiatives is to plant 10 million mangroves, which serve as powerful carbon sinks, along our coastline by 2030. We used drone technology to plant 2.5 million mangrove seeds in 2023.

Q: What about renewables?

Mr. Mussabeh Al Kaabi: It’s in everyone’s interests that we invest in the growth of renewables and low-carbon fuels like hydrogen. Through our shareholding in Masdar and Masdar Green Hydrogen, we are tripling our renewable capacity by supporting a growth target of 100 gigawatts by 2030.

Q: We have been talking about hydrogen and carbon capture and storage (CCS) as the energies and solutions of tomorrow for decades. Why haven’t they broken through yet?

Mr. Mussabeh Al Kaabi: Hydrogen and CCS offer great promise, but, like any other transformative technology, they require R&D attention, investment, and scale-up opportunities.

Hydrogen is an abundant and portable fuel that could help reduce emissions from many sectors, including transport and power. Meanwhile, CCS could abate emissions from heavy, energy-intensive industries like steel and cement.

These technologies are proven, and we expect more improvements to allow wider consumer use. We will continue to develop and invest in them, while continuing to responsibly provide our traditional portfolio of low-carbon energy products that the world needs.

Q: Is there any evidence the costs can come down?

Mr. Mussabeh Al Kaabi: Yes, absolutely. The dramatic fall in the price of solar over recent years—an 89% reduction from 2010 to 2022 according to the International Renewable Energy Agency—just goes to show that clean technologies can become viable, mainstream sources of energy if the right policy and investment mechanisms are in place.

Q: Do you favor a particular decarbonization technology?

Mr. Mussabeh Al Kaabi: We don’t have the luxury of picking winners and losers. The scale of the challenge is too great. World economies consume the equivalent of around 250 million barrels of oil, gas, and coal every single day. We are going to need to invest in every viable clean energy and decarbonization technology. If CCS can do it, let’s do it. If renewables can do it, let’s invest in it.

That said, I am especially optimistic about the role artificial intelligence will play in our decarbonization drive. We’ve been implementing AI and machine learning tools across our value chain for many years; they’ve helped us eliminate around a million tonnes of CO2 emissions over the past two years. As AI technology grows at an exponential rate, we will continue to invest in the latest innovations to ensure we provide maximum energy with minimum emissions.

Q: Can traditional energy companies be part of the solution?

Mr. Mussabeh Al Kaabi: They can and they must be part of the solution. Energy companies have the technical capabilities, the project management experience and, crucially, the financial strength to advance solutions. For example, we’re investing in one of the largest integrated carbon capture projects in the Middle East and North Africa, at our gas processing facility in Habshan. Once complete, it will add 1.5 million tonnes of CCUS capacity. We’ve also just announced an investment into Storegga, the lead developer of the UK’s Acorn CCS project in Scotland, marking our first overseas investment of its kind.

Q: What’s your approach to decarbonization investment?

Mr. Mussabeh Al Kaabi: Our approach is to partner with successful developers of economic technologies and to incubate promising climate solutions so ADNOC and other players can use them to accelerate the path to net zero. There are numerous examples.

Last year, we launched the ADNOC Decarbonization Technology Challenge, a global competition that attracted 650 climate tech startups vying for a million-dollar piloting opportunity with us. The winner was Revterra, a Houston-based startup that will pilot its kinetic battery technology with us over the coming months.  

We’re also working to deploy another cutting-edge battery technology that involves taking used electric vehicle batteries and upcycling them into a battery energy storage system, which we’ll use to help decarbonize our remote production activity by up to 25%.

In the northern regions of the UAE, we’re working closely with another startup company to pilot carbon dioxide mineralization technology. It is a project we are all excited about because it presents opportunities for CO2 removal at a significant scale.

Additionally, we are working with leading industry service providers to explore new ways of producing graphene and low-carbon hydrogen.

Q: Finally, how confident are you that transformation will happen?

Mr. Mussabeh Al Kaabi: I am confident.It can be done. Transformation is happening. It won’t happen overnight, and it needs to be just and equitable for the poorest among us, but I am optimistic.We must focus on taking tangible action and not underestimate the power of human innovation. History has shown that, when we come together, we can innovate and act. I am positive that, over time, we will continue to see progress towards our common goal.

This content was produced by ADNOC. It was not written by MIT Technology Review’s editorial staff.


Advancing AI innovation with cutting-edge solutions  

AI is helping organizations in nearly every industry increase productivity, engage customers, realize operational efficiencies, and gain a competitive edge. Advances in supercomputing in the cloud and the ability to achieve processing at an exascale level are major catalysts for this new era of AI innovation.

Common AI use cases today include personalized healthcare and targeted therapies, virtual assistants and chatbots, financial fraud detection, predictive maintenance, autonomous cars and machinery, energy management, and accelerated scientific discoveries.

Some companies are deep into their AI journey, delivering advanced AI-enabled products and services, but many businesses are at the early stages and are struggling with where and how to best apply AI in their business. AI is complex, requiring new skills, tools, and technologies.

To accelerate AI development and integration, organizations can benefit from a trusted partner that has AI expertise across the complete technology stack. The right AI solution provider can help determine the best AI strategy for a company’s specific business model and provide comprehensive, unified services, advanced infrastructure, and tools specifically designed for AI.


Discover the latest AI technologies. Join Microsoft at the NVIDIA GTC AI Conference March 18–21. Learn more.   


Companies across the world are turning to Microsoft to help them transform their business with innovative, secure, and responsible AI. At the forefront of artificial intelligence, Microsoft has delivered cutting-edge advances in vision, speech, language, decision-making, machine learning, and supercomputing infrastructure for more than 30 years. Hear how Microsoft AI solutions are helping organizations around the world achieve more in the video below.

Accelerating AI application development

Microsoft recently unveiled yet another round of AI services that can help businesses accelerate AI production, whether by adding intelligence to existing applications and processes or creating new ones from scratch. These new services include the following:

  • Azure AI Studio, now in preview, empowers organizations and developers to innovate with AI. The platform, accessibly and responsibly designed, provides a one-stop shop for developers to seamlessly explore, build, test, and deploy AI solutions using state-of-the-art AI tools and machine learning models, all grounded in responsible AI practices. Developers can build generative AI applications, including copilot experiences, using out-of-the-box and customizable tooling and models with built-in security and compliance.
  • Azure OpenAI Service offers industry-leading coding and language AI models and the latest advancements in generative AI for content creation, conversational AI, and data grounding.
  • New GPT-4 Turbo in Azure OpenAI provides a leap forward with lower pricing, extended prompt length, and structured JSON formatting, delivering improved efficiency and control.
  • GPT-4 Turbo with Vision is a new large multimodal model (LMM) developed by OpenAI that can analyze images and videos and provide textual responses to questions about them.
  • DALL·E 3 is the latest image generation model from OpenAI, featuring enhanced image quality, more complex scenes, improved performance when rendering text in images, and more aspect ratio options.

Powering AI workloads

Microsoft is also reimagining every aspect of their data centers to deliver the agility, power, scalability, and efficiencies AI workloads demand. Microsoft’s pioneering performance for AI has ranked them as the number-one cloud in the Top500 List of the world’s supercomputers and powered innovations like a new battery material. AI trailblazers are building and training the most sophisticated models in the world on Microsoft Azure AI infrastructure.

Here are some of Microsoft’s latest infrastructure advancements:

  • Custom-built silicon tailored for the Microsoft cloud offers optimized performance for AI and enterprise workloads. Azure Maia, an AI accelerator chip, is specifically designed to run cloud-based training and inferencing for AI workloads, such as OpenAI models, Bing, GitHub Copilot, and ChatGPT. Azure Cobalt is a cloud-native chip optimized for performance, power efficiency, and cost-effectiveness.
  • New Azure Boost enables greater network and storage performance at scale, improves security, and reduces servicing impact for specialized AI clusters or  general-purpose compute workloads.
  • Microsoft copilot for Azure simplifies operations and management with an AI companion that can help users design, operate, optimize, and troubleshoot infrastructure from cloud to edge.
  • New Azure NC H100 v5 virtual machine series built with NVIDIA H100 Tensor Core GPUs provide greater memory per GPU, increasing performance for mid-range AI training and generative AI inferencing. Microsoft will also add the latest NVIDIA H200 Tensor Core GPU to its fleet to support larger model inferencing with no increase in latency.
  • NVIDIA AI foundry service supercharges the development and tuning of custom generative AI applications for enterprises and startups deploying on Microsoft Azure.

Experience these advancements at NVIDIA GTC

Companies can experience Microsoft’s latest AI services and technologies and learn how to power their AI transformation at the NVIDIA GTC AI Conference March 18 to 21 in San Jose, California (and virtually). Through in-person and on-demand sessions, live discussions, and hands-on training, attendees will

  • Get to know the core Azure AI services and technologies that power some of the world’s largest and most complex AI models and applications.
  • Discover how to accelerate the delivery of generative AI and large language models (LLMs).
  • Explore how Azure AI studio and purpose-built cloud infrastructure can accelerate AI development and deployment.
  • Learn from best practices and customer experiences to speed AI production.

Featured sessions

  • S63275 Power Your AI Transformation with the Microsoft Cloud
  • S63277 Unlocking Generative AI in the Enterprise with NVIDIA on Azure
  • S63274 The Next Level of GenAI with Azure OpenAI Service and Copilot 
  • S63273 Deep Dive into Training and Inferencing Large Language Models on Azure
  • S63276 Behind the Scenes with Azure AI Infrastructure

Visit the conference schedule to view the full list of Microsoft sessions at NVIDIA GTC.

This content was produced by Microsoft Azure and NVIDIA. It was not written by MIT Technology Review’s editorial staff.

Register for NVIDIA GTC today and learn more about Azure AI and NVIDIA | Accelerated Computing in Microsoft Azure.


Generative AI: Differentiating disruptors from the disrupted

Generative AI, though still an emergent technology, has been in the headlines since OpenAI’s ChatGPT sparked a global frenzy in 2023. The technology has rapidly advanced far beyond its early, human-like capacity to enhance chat functions. It shows extensive promise across a range of use cases, including content creation, translation, image processing, and code writing. Generative AI has the potential not only to reshape key business operations, but also to shift the competitive landscape across most industries.

The technology has already started to affect various business functions, such as product innovation, supply chain logistics, and sales and customer experience. Companies are also beginning to see positive return on investment (ROI) from deployment of generative-AI powered platforms and tools.

While any assessment of the technology’s likely business impact remains more forecast than empirical, it is necessary to look beyond the inevitable hype. To examine enterprises’ technological and business needs for effective implementation of generative AI, 300 senior executives across a range of regions and industries were surveyed. Respondents were asked about the extent of their corporate rollouts, implementation plans, and the barriers to deployment. Combined with insights from an expert interview panel, this global survey sheds light on how companies may or may not be ready to tackle the challenges to effective adoption of generative AI.

The overarching message from this research is that plans among corporate leaders to disrupt competition using the new technology—rather than being disrupted–—may founder on a host of challenges that many executives appear to underestimate.  

Executives expect generative AI to disrupt industries across economies. Overall, six out of 10 respondents agree that “generative AI technology will substantially disrupt our industry over the next five years.” Respondents that foresee disruption exceed those that do not across every industry.

A majority of respondents do not envision AI disruption as a risk; instead, they hope to be disruptors. Rather than being concerned about risk, 78% see generative AI as a competitive opportunity. Just 8% regard it as a threat. Most respondents hope to be disruptors: 65% say their businesses are “actively considering new and innovative ways to use generative AI to unlock hidden opportunities from our data.”

Despite expectations of change, few companies went beyond experimentation with, or limited adoption of, generative AI in 2023. Although most (76%) companies surveyed had worked with generative AI in some way in 2023, few (9%) adopted the technology widely. Those that used the technology experimented with or deployed it in only one or a few limited areas.

Companies have ambitious plans to increase adoption in 2024. Respondents expect the number of functions where they aim to deploy generative AI to more than double in 2024. This will involve frequent application of the technology in customer experience, strategic analysis, and product innovation.

Companies need to address IT deficiencies, or risk falling short of their ambitions to deploy generative AI, leaving them open to disruption. Fewer than 30% of respondents rank each of eight IT attributes at their companies as conducive to rapid adoption of generative AI. Those with the most experience of deploying generative AI have less confidence in their IT than their peers.

Non-IT factors also undermine the successful use of generative AI. Survey respondents also report non-IT impediments to the extensive use of generative AI. These factors include regulatory risk, budgets, the competitive environment, culture, and skills.

Executives expect generative AI to provoke a wave of disruption. In many cases, however, their hopes to be on the right side of this innovation are endangered by impediments that their companies do not fully appreciate.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Conversational AI revolutionizes the customer experience landscape

In the ever-evolving landscape of customer experiences, AI has become a beacon guiding businesses toward seamless interactions. While AI has been transforming businesses long before the latest wave of viral chatbots, the emergence of generative AI and large language models represents a paradigm shift in how enterprises engage with customers and manage internal workflows.

“We know that consumers and employees today want to have more tools to get the answers that they need, get things done more effectively, more efficiently on their own terms,” says Elizabeth Tobey, head of marketing, digital & AI at NICE.

Breaking down silos and reducing friction for both customers and employees is key to facilitating more seamless experiences. Just as much as customers loathe an unhelpful automated chatbot directing them to the same links or FAQ page, employees similarly want their digital solutions to direct them to the best knowledge bases without excessive alt-tabbing or listless searching.

“We’re seeing AI being able to help uplift that to make all of those struggles and hurdles that we are seeing in this more complex landscape to be more effective, to be more oriented towards actually serving those needs and wants of both employees and customers,” says Tobey.

The capacity for AI tools to understand sentiment and create personalized answers is where most automated chatbots today fail. Enter conversational AI. Its recent progression holds the potential to deliver human-readable and context-aware responses that surpass traditional chatbots, says Tobey.

“We’re seeing even more gains that no matter how I ask a question or you ask a question, the answer coming back from self-service or from that bot is going to understand not just what we said but the intent behind what we said and it’s going to be able to draw on the data behind us,” she says.

Creating the most optimized customer experiences takes walking the fine line between the automation that enables convenience and the human touch that builds relationships. Tobey stresses the importance of identifying gaps and optimal outcomes and using that knowledge to create purpose-built AI tools that can help smooth processes and break down barriers.

Looking to the future, Tobey points to knowledge management—the process of storing and disseminating information within an enterprise—as the secret behind what will push AI in customer experience from novel to new wave.

“I think that for me, one of the exciting things and the challenging things is to explain how all of this is connected,” says Tobey.

This episode of Business Lab is produced in partnership with NICE.

Full Transcript

Laurel Ruma: From MIT Technology Review, I’m Laurel Ruma and this is Business Lab. The show that helps business leaders make sense of new technologies coming out of the lab and into the marketplace.

Our topic is creating great customer experiences with AI, from the call center to online, to in-person. Building relationships with customers and creating data-driven but people-based support teams is critical for enterprises. And although the technology landscape is ever-changing, embracing what comes next doesn’t have to be a struggle.

Two words for you: foundational AI.

My guest is Elizabeth Tobey, head of marketing, digital and AI at NICE.

This podcast is produced in partnership with NICE.

Welcome Elizabeth.

Elizabeth Tobey: Happy to be here. Really excited to talk about this today.

Laurel: Great. Well, let’s go ahead and start. To set some context for our conversation, what is the customer experience landscape like now? And how has it and will it continue to change with AI?

Elizabeth: Well, to start, I think it’s important to note that AI isn’t a new technology, especially not in the customer experience (CX) era. One of the things that is quite new though is generative AI and the way we are using and able to use large language models in the CX paradigm. So we know that consumers and employees today want to have more tools to get the answers that they need, get things done more effectively, more efficiently on their own terms. So for consumers, we often hear that they want to use digital solutions or channels of their choice to help find answers and solve problems on their own time, on their own terms.

I think the same applies when we talk about either agents or employees or supervisors. They don’t necessarily want to be alt-tabbing or searching multiple different solutions, knowledge bases, different pieces of technology to get their work done or answering the same questions over and over again. They want to be doing meaningful work that really engages them, that helps them feel like they’re making an impact. And in this way we are seeing the contact center and customer experience in general evolve to be able to meet those changing needs of both the [employee experience] EX and the CX of everything within a contact center and customer experience.

And we’re also seeing AI being able to help uplift that to make all of those struggles and hurdles that we are seeing in this more complex landscape to be more effective, to be more oriented towards actually serving those needs and wants of both employees and customers.

Laurel: A critical element of great customer experience is building that relationship with your customer base. So then how can technologies, like you’ve been saying, AI in general, help with this relationship building? And then what are some of the best practices that you’ve discovered?

Elizabeth: That’s a really complicated one, and I think again, it goes back to the idea of being able to use technology to facilitate those effective solutions or those impactful resolutions. And what that means depends on the use case.

So I think this is where generative AI and AI in general can help us break down silos between the different technologies that we are using in an organization to facilitate CX, which can also lead to a Franken-stack of nature that can silo and fracture and create friction within that experience.

Another is to really be flexible and personalize to create an experience that makes sense for the person who’s seeking an answer or a solution. I think all of us have been consumers where we’ve asked a question of a chatbot or on a website and received an answer that either says they don’t understand what we’re asking or a list of links that maybe are generally related to one keyword we have typed into the bot. And those are, I would say, the infant notions of what we’re trying to achieve now. And now with generative AI and with this technology, we’re able to say something like, “Can I get a direct flight from X to Y at this time with these parameters?” And the self-service in question can respond back in a human-readable, fully formed answer that’s targeting only what I’ve asked and nothing else without having me to click into lots of different links, sort for myself and really make me feel like the interface that I’ve been using isn’t actually meeting my need. So I think that’s what we’re driving for.

And even though I gave a use case there as a consumer, you can see how that applies in the employee experience as well. Because the employee is dealing with multiple interactions, maybe voice, maybe text, maybe both. They’re trying to do more with less. They have many technologies at their fingertips that may or may not be making things more complicated while they’re supposed to make things simpler. And so being able to interface with AI in this way to help them get answers, get solutions, get troubleshooting to support their work and make their customer’s lives easier is a huge game changer for the employee experience. And so I think that’s really what we want to look at. And at its core that is how artificial intelligence is interfacing with our data to actually facilitate these better and more optimal and effective outcomes.

Laurel: And you mentioned how people are familiar with chatbots and virtual assistants, but can you explain the recent progression of conversational AI and its emerging use cases for customer experience in the call centers?

Elizabeth: Yes, and I think it’s important to note that so often in the Venn diagram of conversational AI and generative AI, we see an overlap because we are generally talking about text-based interactions. And conversational AI is that, and I’m being sort of high level here as I make our definitions for this purpose of the conversation, is about that human-readable output that’s tailored to the question being asked. Generative AI is creating that new and novel content. It’s not just limited to text, it can be video, it can be music, it can be an image. For our purposes, it is generally all text.

I think that’s where we’re seeing those gains in conversational AI being able to be even more flexible and adaptable to create that new content that is endlessly adaptable to the situation at hand. And that means in many ways, we’re seeing even more gains that no matter how I ask a question or you ask a question, the answer coming back from self-service or from that bot is going to understand not just what we said but the intent behind what we said and it’s going to be able to draw on the data behind us.

This is where the AI solutions are, again, more than just one piece of technology, but all of the pieces working in tandem behind the scenes to make them really effective. That data will also drive understanding my sentiment, my history with the company, if I’ve had positive or negative or similar interactions in the past. Knowing someone’s a new customer versus a returning customer, knowing someone is coming in because they’ve had a number of different issues or questions or concerns versus just coming in for upsell or additive opportunities.

That’s going to change the tone and the trajectory of the interaction. And that’s where I think conversational AI with all of these other CX purpose-built AI models really do work in tandem to make a better experience because it is more than just a very elegant and personalized answer. It’s one that also gets me to the resolution or the outcome that I’m looking for to begin with. That’s where I feel like conversational AI has fallen down in the past because without understanding that intent and that intended and best outcome, it’s very hard to build towards that optimal trajectory.

Laurel: And speaking of that kind of optimal balance between everything, trying to balance AI and the human touch that many customers actually want to get out of their experiences with companies like retail shopping or customer service interactions, when they lodge complaints, refunds, returns, all of these reasons. That’s a fine line to walk. So how do you strike the balance to ensure that customers enjoy the benefits of AI, automation, convenience, and availability, but without losing that human aspect to it?

Elizabeth: I think there’s many different ways to go about this, but I think it is again about connecting a lot of those touch points that historically companies have kept siloed or separate. The notion of a web presence and a marketing presence and a sales presence and a support presence or even an operations’ presence feels outdated to me. Those areas of expertise and even those organizations and the people working there do need to be connected. I feel in many ways we’ve gone down this rabbit hole where technology has advanced and we’ve added it on top of our old processes that sometimes date years or decades back that are no longer applicable.

And until we get to the root of rethinking all of those, and in some cases this means adding empathy into our processes, in some it means breaking down those walls between those silos and rethinking how we do the work at large. I think all of these things are necessary to really build up a new paradigm and a new way of approaching customer experience to really suit the needs of where we are right now in 2024. And I think that’s one of the big blockers and one of the things that AI can help us with.

Because some of the solutions and benefits we’ve been seeing are really about identifying gaps, identifying optimal flows or outcomes or employees who are generating great outcomes, and then finding a way to utilize that information to take action to better the business and better the flow. And I think that that’s something that we really want to hone in on because in so many ways we’re still talking about this technology and AI in general, in a very high level. And we’ve gotten most folks bought in saying, “I know I need this, I want to implement it.”

But they do need to take a step back and think about what are they looking for as a success metric when they do implement it, and how are they going to vet all of the different technologies and vendors and use cases to choose which one to go after first and how to implement it and how even to choose a partner. Because even if we say all solutions and technologies are created equal, which is a very generous statement to start with, that doesn’t mean they’re all equally applicable to every single business in every single use case. So they really have to understand what they’re looking for as a goal first before they can make sure whatever they purchase or build or partner with is a success.

Laurel: So how can companies take advantage of AI to tailor customer experiences on that individual level? And then what kind of major challenges are you advising that they may come across while creating these holistic experiences?

Elizabeth: I do think that change management within an organization, understanding that we’re going to have to change those muscles and those workflows is one of the biggest things you’ll see organizations grapple with. And that’s going to happen no matter what partner or vendor you choose. That’s something you’ll just have to embrace and run with and understand it’s going to happen. And I think also being able to take a step back and not assume you know the best use case, but let AI almost guide you in what will be the most impactful use case.

Some of the technologies and solutions we have can go in and find areas that are best for automation. Again, when I say best, I’m very vague there because for different companies that will mean different things. It really depends on how things are set up, what the data says and what they are doing in the real world in real time right now, what our solutions will end up finding and recommending. But being able to actually use this information to even have a more solid base of what to do next and to be able to fundamentally and structurally change how human beings can interface, access, analyze, and then take action on data. That’s I think one of the huge aha moments we are seeing with CX AI right now, that has been previously not available. And the only way you can truly utilize that is to have AI that is fully connected within all of your CX workflows, tools, applications and data, which means having that unified platform that’s connecting all of these pieces across all interactions across the entire customer journey.

And I think that’s one of the big areas that is possibly going to be the biggest hurdle to get your head wrapped around because it sounds enormous. But it’s actually a very fundamental and base level change that will then cascade out to make every action you take next far simpler and faster and will start to speed up the pace of the innovation and the change management within the organization.

Laurel: Since AI has become this critical tool across industries for customer interactions and experiences, how does generative AI now factor into a customer experience strategy? What are the opportunities here?

Elizabeth: We always go immediately to those chatbots and that self-service. And I think the applications there are wide and broad and probably fairly easy for us to conjure up. That idea of being able to on your own time in the channel of your choice, have a conversation in the future state, not know and not care if you are speaking to an artificial intelligence or a human led interaction because both are just as quick and just as flexible and just as effective for you. I think the ways that are more interesting to talk about now that maybe aren’t top of mind to everyone right now are around how we help agents and supervisors.

We hear a lot about AI co-pilots helping out agents, that by your side assistant that is prompting you with the next best action, that is helping you with answers. I think those are really great applications for generative AI, and I really want to highlight how that can take a lot of cognitive load off those employees that right now, as I said, are overworked. So that they can focus on the next step that is more complex, that needs a human mind and a human touch.

And they are more the orchestrator and the conductor of the conversation where a lot of those lower level and rote tasks are being offloaded to their co-pilot, which is a collaborator in this instance. And so they’re still in control of editing and deciding what happens next. But the co-pilot can even in a moment explain where a very operational task can happen and take the lead or something more empathetic needs to be said in the moment. And again, all of this information if you have this connected system on a unified platform can then be fed into a supervisor.

And we do now have a co-pilot in our ecosystem for supervisors who can then help them change from being more of a taskmaster of coming in and saying, “What do I need to do today? Who do I need to focus on?” Answer that question for the supervisors so they can become far more strategic and impactful into not diverting crises as they appear. But understanding the full context of what’s happening within their organization and with their teams to be able to build them up and better them and be far more strategic, proactive, and personalized in giving guidance or coaching or even figuring out how to raise information to leadership on what is going well.

So that again, they’re helping improve the pace of business, improve the quality of their employees’ lives and their consumers’ lives. Instead of feeling like they are almost triaging and trying to figure out even where to spend their energy. Their co-pilot can actually offload a lot of that for themselves. And this is always happening through generative AI because it is that conversational interface that you have, whether you’re pulling up data or actions of any sort that you want to automate or personalized dashboards.

All of this can be done without needing to know how to code, to have to write a SQL query, anything like that, that used to be a barrier to entry in the past.

Laurel: So this is sort of a follow-on to that, which is how can companies invest in generative AI as a way to support employees internally? There’s a learning curve there, as well as customers externally. And I know it’s early days, but what other benefits are possible?

Elizabeth: I think one of the “a-ha” moments for some of the technology we’re working on is really around, as I said, that conversational interface to tap into unstructured data. With the right knowledge management and with the right purpose-built AI, you’re going to be able to take a person like me. It’s been decades since I’ve written any code or done anything that complex, and you’re going to be able to have me be able to interface with the entirety of our CX data. Be able to pull it, ask questions of it through a conversational interface that looks a lot like a search engine we know and love today, and get back personalized reports or dashboards that will help inform me.

And then again, after seeing all of that information, I can continue the conversation that same way to drill down into that information and then maybe even take action to automate. And again, this goes back to that idea of having things integrated across the tech stack to be involved in all of the data and all of the different areas of customer interactions across that entire journey to make this possible. I think that’s a really huge moment for us. And I think that that’s where… At least I am still trying to help people understand how that applies in very tangible, impactful, immediate use cases to their business. Because it still feels like a big project that’ll take a long time and take a lot of money.

But actually this is just really new technology that is opening up an entirely new world of possibility for us about how to interact with data. That we just haven’t had the ability to have in the past before. And so again, I say this isn’t eliminating any data scientists or engineers or analysts out there. We already know that no matter how many you contract or hire, they’re already fully utilized by the time they walk in on their first day. This is really taking their expertise and being able to tune it so that they are more impactful, and then give this kind of insight and outcome-focused work and interfacing with data to more people.

So that they can all make better use of this information that before was just not able to be accessed and analyzed.

Laurel: So when you think about the future, Elizabeth, what innovations or developments in AI and customer experience are you most excited about and how do you anticipate these trends emerging?

Elizabeth: I think you’re going to hear from me and folks within our organization talking a lot about how knowledge management is at the core of artificial intelligence. Because your AI is only as good as the data that it is trained on and how your data is presented and accessible to AI is a huge game changer in whether your AI projects are going to really work for you or falter and not meet your goals. And so I think that for me, one of the exciting things and the challenging things is to explain how all of this is connected.

And that while in many ways we’re talking a lot about large language models and artificial intelligence at large. That sometimes some of the things that we’ve been discussing for a long time in CX, knowledge management is the secret behind all of this that’s going to take us from novel and interesting and a fun thing to demo to something that’s actually really impactful and revenue generating for your business.

Laurel: Thank you so much Elizabeth for joining us today on the Business Lab.

Elizabeth: Thank you for having me. This was a great conversation.

Laurel: That was Elizabeth Tobey, who is the head of marketing, digital and AI at NICE, who I spoke with from Cambridge Massachusetts, the home of MIT and MIT Technology Review.

That’s it for this episode of Business Lab. I’m your host, Laurel Ruma. I’m the Global Director of Insights, the custom publishing division of MIT Technology Review. We were founded in 1899 at the Massachusetts Institute of Technology, and you can find us in print on the web and at events each year around the world. For more information about us and the show, please check out our website at technologyreview.com.

This show is available wherever you get your podcasts. If you enjoyed this episode, we hope you’ll take a moment to rate and review us. Business Lab is a production of MIT Technology Review. This episode was produced by Giro Studios. Thanks for listening.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Data at the center of business

With more than 5,000 branches across 48 states and 80 million customers, each with its own unique requirements to satisfy its customers’ financial needs, a clear data strategy is key for JPMorgan Chase. According to Mark Birkhead, firm-wide chief data officer at JPMorgan Chase, data analytics is the oxygen that breathes life into the firm to deliver growth and improve the customer experience.

Providing first-class business in a first-class way for clients and customers applies to every part of the firm, including its heavy investments in data analytics, machine learning, and AI. Using these advanced technologies, JPMorgan Chase can gain a deeper understanding of the breadth and specificity of the needs of the customers and communities it serves.

“It means using our data to drive positive outcomes for our customers and our clients and our business partners. And it means using this to actually help our customers and clients manage their daily lives in a better, simpler way,” says Birkhead.

At their best, a strong data strategy along with AI and machine learning adoption can free employees from tedious tasks to focus on high-value work. Reaching this extended intelligence — humans and machines working better together — means having the right deployment strategy. It’s key to understand both the potential and the limitations of these tools to make sure your enterprise is investing wisely in the areas where technologies like AI and machine learning can offer the greatest value.

“At the end of the day, what we’re trying to do is build an analytic factory that can deliver AI/ML at scale,” says Birkhead. “And that type of a factory requires a really sound strategy, efficient platforms and compute, solid governance and controls, and incredible talent.”

Adopting this vision at scale is a long-term investment that requires strong conviction, adherence to governance and controls, and operationalizing data. One of the most challenging aspects of this, Birkhead says, is defining your data priorities.

“Everyone talks about data every minute of every day. However, data has been oftentimes, I think, thought of as exhaust from some product, from some process, from some application, from a feature, from an app, and enough time has not been spent actually ensuring that that data is considered an asset, that that data is of high quality, that it’s fully understood by humans and machines.”

This episode of Business Lab is produced in association with JPMorgan Chase.

Full Transcript

Laurel Ruma: From MIT Technology Review, I’m Laurel Ruma and this is Business Lab, the show that helps business leaders make sense of new technologies coming out of the lab and into the marketplace.

Our topic is data and analytics. Building a global data strategy requires a strong understanding of governance, regulations, and customer experience for both internal and external customers. As technologies like AI emerge, the opportunity expands for real-time learnings and making better decisions.

Two words for you: data strategy.

My guest is Mark Birkhead, who is the firmwide chief data officer at JPMorgan Chase.

This podcast is produced in association with JPMorgan Chase.

Welcome, Mark.

Mark Birkhead: Thank you for having me, Laurel. It’s great to be here.

Laurel: Let’s start here. You were recently appointed to firmwide chief data officer for JPMorgan Chase. Previously you were the chief data and analytics officer at Chase and JPMorgan Wealth Management. Can you give us some insight into how your new role factors into the firm’s data strategy?

Mark: Absolutely. My new role as the firmwide chief data officer will be focused primarily on driving this strategy and solutions, that maximize the impact that data can have on our clients and customers across the globe and doing it in a highly governed and controlled ways. Data plays a huge part in our firmwide strategy. It’s been described by several of our senior leaders as the oxygen that powers the firm. And I truly believe that. Data analytics has propelled so many of our businesses, including our consumer bank and business bank, our commercial bank, our wealth management businesses, and our payments business globally. And its impact continues to grow in more meaningful ways every single day and month.

Strong data analytics capabilities really do provide the foundational underpinnings for our core business activities, but it’s actually fueling the growth of our businesses in meaningful ways. This addition is driving productivity, delivering insights that help our customers grow their businesses, and enabling our bankers and advisors to deliver elevated customer experiences.

Laurel: Thank you Mark for giving that context. As a global firm, you talk about delivering first-class business in a first-class way for clients and customers. Could you tell us how data and analytics, AI and machine learning are used to improve outcomes for your customers?

Mark: Absolutely. When we talk about first-class business in a first-class way, it really applies to every part of our firm and we’re investing heavily in data analytics, machine learning, and AI. But this is not new to us. We’ve been utilizing AI and ML for many, many years in many different ways. The Chase Analytics team actually will celebrate a sixth anniversary next March with the same mission and objective. Again, this is not new to us, but when we think about applying first-class business in a first-class way to the new set of AI capabilities, the new set of LLMs [large language models], the new set of generative AI, it means to us really honoring our customers’ expectations when it comes to privacy. It means using our data to drive positive outcomes for our customers and our clients and our business partners. And it means using this to actually help our customers and clients manage their daily lives in a better, simpler way.

I’m going to actually spend most of my time talking about my former role as the chief analytics officer for Chase and JPMorgan Wealth Management, but really our AI efforts across the globe are very similar to what has been happening at Chase and JPMorgan Wealth Management. It’s really been focused on improving the financial health for our customers and our clients. Today, JPMorgan Chase serves over 80 million customers in the US and we use advanced analytics to deliver best-in-class experiences and to respond to the needs of our customers. And our customers have all kinds of situations at any given moment in time. And at one moment we’re planning for college and other times we’re dealing with some difficult times in a family situation. And being able to have the right tools for our bankers, for advisors, for our call center agents to utilize is really important to us.

And I mentioned the breadth of data analytics as being the oxygen of the firm, and that really is reflected in the Chase business. And one of the hardest parts of the CDAO [chief data and analytics officer] job is to determine what investments to make and where to focus our attention when it comes to solving data problems and also determining where we have to lead with AI/ML and when we actually don’t. For us, there’s a couple of things that we always have to lead in given the nature of our business. We have a branch network of 5,000 branches. It covers all over 48 states. And we’ve got to lead with geospatial analytics and that heavily utilizes AI and ML to determine the optimal placement of our branches, of our network, of our community centers, and for the staffing within those branches. We also have over 60 million digitally active customers.

We have to lead in product analytics, experimentation, understand the customer experience in a journey, and how they interact with our products across multiple channels. It might start in a branch, end up in a mobile app, and end up in a call center, but all that has to be stitched together. We also have to lead when it comes to preventing fraud, and it has really become a difficult task given what’s going on across the world. But protecting our customers, from these types of acts, is incredibly important to us.

And we also need to make sure that within our branches, within our customers, they get the best experience possible, which means really using data analytics, machine learning, AI to understand our customers and communities in deeper ways. And in fact, for our 5,000 branches, there’s not a lot of similarities. And we actually have to prepare playbooks for these branches to make sure our employees are trained on these types of situations, the needs of their customers and clients so they can actually produce the best possible service. The only way to deliver all that at our scale is through leveraging data analytics, machine learning, and AI.

Laurel: Touching on that, at its best artificial intelligence, machine learning, and a robust data strategy can automate those tedious tasks to free people up to focus on high-value work. How do you think about that as an ongoing effort?

Mark: We think about this a lot and innovation has cycles, and that includes my field as well. But those cycle times are really changing and becoming more compressed, and that’s drawn a lot of attention and scrutiny particularly to the field of AI. At the end of the day, with the emergence of LLMs and generative AI, there’s just more opportunities to enhance the work of our employees day-to-day. Sandy Pentland, who helped form your MIT Media Lab, really described a few years back to our employees, this interaction is extended intelligence, humans and machines working better together. And this is actually one of our highest priorities at JPMorgan Chase, leveraging machines to help our employees do their jobs better for our customers and for our clients. And today we’re exploring experimenting with LLMs in a number of capacities. But it’s really important to understand what these tools can do well and what they can’t, and then making sure that we’re actually organizing ourselves against them and making the right investments in people and resources in those areas where these actual tools can help us to the greatest extent.

It’s also important that we focus on the governance and controls around this. And all that comes into play when it comes to figuring out what we do with these tools and how we apply them. I was meeting with our global marketers a couple of weeks ago, and every time I do this and talk about our plans for generative AI across the firm or at Chase, talk about the impact it can have on JPMorgan Chase, I get two types of questions. One is, “What does this mean for me and my employees?” And I think the answer is, with any type of technology, it’s not exactly going to take your job, but people who do use this technology will. And that’s the same thing with AI. And the only caveat to all of this is I think when it comes to this type of technology and capability, particularly with generative AI, those that understand what this does well and what it doesn’t, will actually have a leg up and be better positioned to actually succeed.

The second question I always get is, “If we’re always using the same tool for every company, the same model, aren’t we all going to sound the same?” And that’s where I think the relationship of the business and our models and data scientists has to evolve. Every time we build a model or an AI solution, we always engage with the business. But I think given what’s going on now with LLMs and generative AI, it’s really important to mature that model. The thinking around design and analytics needs to change to ensure that we incorporate the brand voice, the marketers’ voice into these solutions to make sure that the content that we deliver using these tools reflects the brands that the customers have come to know is really important. And this entire operating model has to evolve. And I think it presents really exciting opportunities to go deeper with customers in meaningful ways, but it requires the model to change.

Laurel: Speaking of having a leg up, successfully deploying AI and machine learning has become a competitive differentiator for large enterprises. What are the challenges of deploying AI and machine learning at scale? And then a second big question is, as regulations for AI and machine learning evolve, how does the firm manage government regulations?

Mark: That’s a great question. And first, I would say across JPMorgan Chase, we do view this as an investment. And every time I talk to a senior leader about the work we do, I never speak of expenses. It is always investment. And I do firmly believe that. At the end of the day, what we’re trying to do is build an analytic factory that can deliver AI/ML at scale. And that type of a factory requires a really sound strategy, efficient platforms and compute, solid governance and controls, and incredible talent. And for an organization of any scale, this is a long-term investment, and it’s not for the faint of heart. You really have to have conviction to do this and to do this well. Deploying this at scale can be really, really challenging. And it’s important to ensure that as we’re thinking about AI/ML, it’s done with controls and governance in place.

We’re a bank. We have a responsibility to protect our customers and clients. We have a lot of financial data and we have an obligation to the countries that we serve in terms of ensuring that the financial health of this firm remains in place. And at JPMorgan Chase, we’re always thinking about that first and foremost, and about what we actually invest in and what we don’t, the types of things we want to do and the things that we won’t do. But at the end of the day, we have to ensure that we understand what’s going on with these technologies and tools and the explainability to our regulators and to ourselves is really, really high. And that really is the bar for us. Do we truly understand what’s behind the logic, what’s behind the decision-ing, and are we comfortable with that? And if we don’t have that comfort, then we don’t move forward.

We never release a solution until we know it’s sound, it’s good, and we understand what’s going on. In terms of government relations, we have a large focus on this, and we have a large footprint across the globe. And at JPMorgan Chase, we really are focused on engaging with policymakers to understand their concerns as well as to share our concerns. And I think largely we’re united in the fact that we think this technology can be harnessed for good. We want it to work for good. We want to make sure it stays in the hands of good actors, and it doesn’t get used for harm for our clients or our customers or anything else. And it’s a place where I think business and policymakers need to come together and really have one solid voice in terms of the path forward because I think we’re highly, highly aligned.

Laurel: You did touch on this a bit, but enterprises are relying on data to do so many things like improving decision-making and optimizing operations as well as driving business growth. But what does it mean to operationalize data and what opportunities could enterprises find through this process?

Mark: I mentioned earlier that one of the hardest parts of the CDAO job is actually understanding and trying to determine what the priorities should be, what types of activities to go after, what types of data problems, big or small or otherwise. I would say with that, equally as difficult, is trying to operationalize this. And I think one of the biggest things that have been overlooked for so long is that data itself, it’s always been critical. It’s in our models. We all know about it. Everyone talks about data every minute of every day. However, data has been oftentimes, I think, thought of as exhaust from some product, from some process, from some application, from a feature, from an app, and enough time has not been spent actually ensuring that that data is considered an asset, that that data is of high quality, that it’s fully understood by humans and machines.

And I think it’s just now becoming even more clear that as you get into a world of generative AI, where you have machines trying to do more and more, it’s really critical that it understands the data. And if our humans have a difficult time making it through our data estate, what do you think a machine is going to do? And we have a big focus on our data strategy and ensuring that data strategy means that humans and machines can equally understand our data. And because of that, operationalizing our data has become a big focus, not only of JPMorgan Chase, but certainly in the Chase business itself.

We’ve been on this multi-year journey to actually improve the health of our data, make sure our users have the right types of tools and technologies, and to do it in a safe and highly governed way. And a lot of focus on data modernization, which means transforming the way we publish and consume data. The ontologies behind that are really important. Cloud migration, making sure that our users are in the public cloud, that they have the right compute with the right types of tools and capabilities. And then real-time streaming, enabling streaming, and real-time decision-ing is a really critical factor for us and requires the data ecosystem to shift in significant ways. And making that investment in the data allows us to unlock the power of real-time and streaming.

Laurel: And speaking of data modernization, many organizations have turned to cloud-based architectures, tools, and processes in that data modernization and digital transformation journey. What has JPMorgan Chase’s road to cloud migration for data and analytics looked like, and what best practices would you recommend to large enterprises undergoing cloud transformations?

Mark: We’ve been on this journey for quite some time across JPMorgan Chase and globally. And we have a really solid relationship with our technology partners, with our cloud providers, and we really have ensured that as we move up to the cloud, we do it safely and thoughtfully with a sound strategy and governance and controls. And that’s been the first and foremost piece I would say with regard to a business like Chase and JPMorgan Wealth Management, which into itself is incredibly large and we’ve talked about this publicly many, many times. It is something that requires conviction and a sound data strategy, but at the end of the day, we are not just moving to the public cloud. We’re going to do that with modernized data, but we’re also going to improve governance and controls while improving the user experience.

And to do all of that, it’s a massive undertaking. And to ensure that our data is discoverable and easily usable where our analysts require us to make informed decisions when it comes to these investments, as well as these different types of choices and staging of the work product. And as we think about this, and my advice to others would be to do the same. If you look at the user experience when it comes to your data scientists and your modelers and how they spend their time, what their challenges are, what your analytic priorities are, all those have to be brought together before you actually start building out a data strategy. Otherwise, you’ll be building things that you may not need. And this is already hard enough, why not make it easier by understanding what you’re trying to build, what user population is looking for and then building to that specifically and then staging out in the right appropriate ways?

And that’s been our journey. And we have these milestones. We have goals and everything else. We have OKRs [objectives and key results], we have product teams, we have data engineers. Everyone is aligned and doing this, and we’re focused on doing this in the right way. We’re also focused on ensuring that we can do this in many cloud platforms, not just one. And that requires modern pipelines. It requires us to organize our data differently and inventory it in a certain way and describe it in ways that are easily understandable. This is really difficult work, but it’s well worth the investment. Even if you have to go slow and make little bits of progress year over year, this will absolutely pay off.

Laurel: Speaking of that payoff, working across the company is crucial to meet goals. What is your talent and skills strategy to mobilize cross-functional teams to ensure a data literate workforce that uses both domain and technical knowledge like data science?

Mark: Absolutely. And I’m really proud of our focus on talent, not only across JPMorgan Chase, but at Chase specifically. It has been really difficult to find great talent in this space. And once you have them, you want them to stay, you want them to grow, you want them to feel supported, and you want them to feel challenged, and you want them to be able to experiment and to work and design solutions that are elegant, that meet the needs of customers and that are advanced. And as we think about all of this, there’s a number of buckets that we’re really focused on.

First, in terms of attracting talent, we do have a very robust campus program. We have a very robust internship program, and we have a very robust rotational program that actually spans the firm. And in Chase, this rotational program has existed for many, many, many years. And it really gives data scientists and aspiring data scientists a chance to spend a couple of years with us, move across the bank and the firm, and to really understand what it’s like to work in various different types of settings and before they land in a job or land in a function or a field.

And that’s one piece. It’s really understanding the community, the new talent coming in at campuses, out of graduate programs, out of Ph.D. programs, and making sure that we have the right types of programs that meet their needs. And that’s one piece. We’re also really focused on our existing talent and our existing talent is absolutely incredible. And they come to us because they want to continue to grow. They want to continue to learn. And we’re heavily investing in training to make sure that learning development opportunities are available to our existing employees and design for the different types of data users and the different types of career goals that they have. And that’s a great thing about our field today. There are so many avenues with which you can go.

And it’s really exciting to actually be able to pick in adventure, pick a career with a firm like ours, at JPMorgan Chase. And then as I mentioned before, we are really focused on our communities and giving back. And in addition to our campus programs, we also try and invest in talent that may not actually come to work for us ever. And we do have hackathons. We bring in hundreds of college students twice a year for our campuses. We pay for everything. And they go through a twenty-four-hour hackathon where they work with other teams, meet other students, work with JPMorgan Chase volunteers, and really try to solve problems for a local nonprofit. And those hackathons really are investment in the next generation of analytic talent, but it also gives them an opportunity to work with real data, with real problems, and to learn a little bit and to help build the community.

And then lastly, we have programs around Data for Good, and our employees absolutely love this. We partner with over 30 nonprofits over the past two years to help them solve their needs. And nonprofits are amazing at serving their communities and finding needs. They’re not always great at bringing tech stacks or digital solutions or using data or analytics to help their nonprofits. And we have great partnership with them. All of this encompasses our talent strategy. It’s focused on engaging students early on in the process, experienced hires, developing our core talent, and giving them opportunities to do things beyond their core job, like giving back to their communities.

Laurel: Mark, thank you so much for joining us today on the Business Lab.

Mark: Laurel, thank you so much for having me. It was great to be here.

Laurel: That was Mark Birkhead, firmwide chief data officer at JPMorgan Chase, who I spoke with from Cambridge, Massachusetts, the home of MIT and MIT Technology Review.

That’s it for this episode of Business Lab. I’m your host, Laurel Ruma. I’m the global director of Insights, the custom publishing division of MIT Technology Review. We were founded in 1899 at the Massachusetts Institute of Technology, and you can find us in print, on the web, and at events each year around the world. For more information about us and the show, please check out our website at technologyreview.com.

This show is available wherever you get your podcasts. If you enjoyed this episode, we hope you’ll take a moment to rate and review us. Business Lab is a production of MIT Technology Review. This episode was produced by Giro Studios. Thanks for listening.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

This podcast is for informational purposes only and it is not intended as legal, tax, financial, investment, accounting or regulatory advice. Opinions expressed herein are the personal views of the individual(s) and do not represent the views of JPMorgan Chase & Co. The accuracy of any statements, linked resources, reported findings or quotations are not the responsibility of JPMorgan Chase & Co.

Transforming document understanding and insights with generative AI

At some point over the last two decades, productivity applications enabled humans (and machines!) to create information at the speed of digital—faster than any person could possibly consume or understand it. Modern inboxes and document folders are filled with information: digital haystacks with needles of insight that too often remain undiscovered.

Generative AI is an incredibly exciting technology that’s already delivering tremendous value to our customers across creative and experience-building applications. Now Adobe is embarking on our next chapter of innovation by introducing our first generative AI capabilities for digital documents and bringing the new technology to the masses.

AI Assistant in Adobe Acrobat, now in beta, is a new generative AI–powered conversational engine deeply integrated into Acrobat workflows, empowering everyone with the information inside their most important documents.

Accelerating productivity across popular document formats

As the creator of PDF, the world’s most trusted digital document format, Adobe understands document challenges and opportunities well. Our continually evolving Acrobat PDF application, the gold standard for working with PDFs, is already used by more than half a billion customers to open around 400 billion documents each year. Starting immediately, customers will be able to use AI Assistant to work even more productively. All they need to do is open Acrobat on their desktop or the web and start working.

With AI Assistant in Acrobat, project managers can scan, summarize, and distribute meeting highlights in seconds, and sales teams can quickly personalize pitch decks and respond to client requests. Students can shorten the time they spend hunting through research and spend more time on analysis and understanding, while social media and marketing teams can quickly surface top trends and issues into daily updates for stakeholders. AI Assistant can also streamline the time it takes to compose an email or scan a contract of any kind, enhancing productivity for knowledge workers and consumers globally.

Innovating with AI—responsibly

Adobe has continued to evolve the digital document category for over 30 years. We invented the PDF format and open-sourced it to the world. And we brought Adobe’s decade-long legacy of AI innovation to digital documents, including the award-winning Liquid Mode, which allows Acrobat to dynamically reflow document content and make it readable on smaller screens. The experience we’ve gained by building Liquid Mode and then learning how customers get value from it is foundational to what we’ve delivered in AI Assistant.

Today, PDF is the number-one business file format stored in the cloud, and PDFs are where individuals and organizations keep, share, and collaborate on their most important information. Adobe remains committed to secure and responsible AI innovation for digital documents, and AI Assistant in Acrobat has guardrails in place so that all customers—from individuals to the largest enterprises—can use the new features with confidence.

Like other Adobe AI features, AI Assistant in Acrobat has been developed and deployed in alignment with Adobe’s AI principles and is governed by secure data protocols. Adobe has taken a model-agnostic approach to developing AI Assistant, curating best-in-class technologies to provide customers with the value they need. When working with third-party large language models (LLMs), Adobe contractually obligates them to employ confidentiality and security protocols that match our own high standards, and we specifically prohibit third-party LLMs from manually reviewing or training their models on Adobe customer data without their consent.

The future of intelligent document experiences

Today’s beta features are part of a larger Adobe vision to transform digital document experiences with generative AI. Our vision for what’s next includes the following:

  • Insights across multiple documents and document types: AI Assistant will work across multiple documents, document types, and sources, instantly surfacing the most important information from everywhere.
  • AI-powered authoring, editing, and formatting: Last year, customers edited tens of billions of documents in Acrobat. AI Assistant will make it simple to quickly generate first drafts, as well as helping with copy editing, including instantly changing voice and tone, compressing copy length, and suggesting content design and layout options.
  • Intelligent creation: Key features from Firefly, Adobe’s family of creative generative models, and Adobe Express will make it simple for anyone to make their documents more creative, professional, and personal.
  • Elevating document collaboration with AI-supported reviews: Digital collaboration is how work gets from draft to done. And with a 75% year-over-year increase in the number of documents shared, more collaboration is happening in Acrobat than ever. Generative AI will make the process simple, analyzing feedback and comments, suggesting changes, and even highlighting and helping resolve conflicting feedback.

As we have with other Adobe generative AI features, we look forward to bringing our decades of experience, expertise, and customers along for the ride with AI Assistant.

This article contains “forward-looking statements” within the meaning of applicable securities laws, including those related to Adobe’s expectations and plans for AI Assistant in Reader and Acrobat, Adobe’s vision and roadmap for future generative AI capabilities and offerings and the expected benefits to Adobe. All such forward-looking statements are based on information available to us as of the date of this press release and involve risks and uncertainties that could cause actual results to differ materially. Factors that might cause or contribute to such differences include, but are not limited to: failure to innovate effectively and meet customer needs; issues relating to the development and use of AI; failure to realize the anticipated benefits of investments or acquisitions; failure to compete effectively; damage to our reputation or brands; service interruptions or failures in information technology systems by us or third parties; security incidents; failure to effectively develop, manage and maintain critical third-party business relationships; risks associated with being a multinational corporation and adverse macroeconomic conditions; failure to recruit and retain key personnel; complex sales cycles; changes in, and compliance with, global laws and regulations, including those related to information security and privacy; failure to protect our intellectual property; litigation, regulatory inquiries and intellectual property infringement claims; changes in tax regulations; complex government procurement processes; risks related to fluctuations in or the timing of revenue recognition from our subscription offerings; fluctuations in foreign currency exchange rates; impairment charges; our existing and future debt obligations; catastrophic events; and fluctuations in our stock price. For a discussion of these and other risks and uncertainties, please refer to Adobe’s most recently filed Annual Report on Form 10-K and other filings we make with the Securities and Exchange Commission from time to time. Adobe undertakes no obligation, and does not intend, to update the forward-looking statements, except as required by law.

This content was produced by Adobe. It was not written by MIT Technology Review’s editorial staff.

Responsible technology use in the AI age

The sudden appearance of application-ready generative AI tools over the last year has confronted us with challenging social and ethical questions. Visions of how this technology could deeply alter the ways we work, learn, and live have also accelerated conversations—and breathless media headlines—about how and whether these technologies can be responsibly used.

Responsible technology use, of course, is nothing new. The term encompasses a broad range of concerns, from the bias that might be hidden inside algorithms, to the data privacy rights of the users of an application, to the environmental impacts of a new way of work. Rebecca Parsons, CTO emerita at the technology consultancy Thoughtworks, collects all of these concerns under “building an equitable tech future,” where, as new technology is deployed, its benefits are equally shared. “As technology becomes more important in significant aspects of people’s lives,” she says, “we want to think of a future where the tech works right for everyone.”

Technology use often goes wrong, Parsons notes, “because we’re too focused on either our own ideas of what good looks like or on one particular audience as opposed to a broader audience.” That may look like an app developer building only for an imagined customer who shares his geography, education, and affluence, or a product team that doesn’t consider what damage a malicious actor could wreak in their ecosystem. “We think people are going to use my product the way I intend them to use my product, to solve the problem I intend for them to solve in the way I intend for them to solve it,” says Parsons. “But that’s not what happens when things get out in the real world.”

AI, of course, poses some distinct social and ethical challenges. Some of the technology’s unique challenges are inherent in the way that AI works: its statistical rather than deterministic nature, its identification and perpetuation of patterns from past data (thus reinforcing existing biases), and its lack of awareness about what it doesn’t know (resulting in hallucinations). And some of its challenges stem from what AI’s creators and users themselves don’t know: the unexamined bodies of data underlying AI models, the limited explainability of AI outputs, and the technology’s ability to deceive users into treating it as a reasoning human intelligence.

Parsons believes, however, that AI has not changed responsible tech so much as it has brought some of its problems into a new focus. Concepts of intellectual property, for example, date back hundreds of years, but the rise of large language models (LLMs) has posed new questions about what constitutes fair use when a machine can be trained to emulate a writer’s voice or an artist’s style. “It’s not responsible tech if you’re violating somebody’s intellectual property, but thinking about that was a whole lot more straightforward before we had LLMs,” she says.

The principles developed over many decades of responsible technology work still remain relevant during this transition. Transparency, privacy and security, thoughtful regulation, attention to societal and environmental impacts, and enabling wider participation via diversity and accessibility initiatives remain the keys to making technology work toward human good.

MIT Technology Review Insights’ 2023 report with Thoughtworks, “The state of responsible technology,” found that executives are taking these considerations seriously. Seventy-three percent of business leaders surveyed, for example, agreed that responsible technology use will come to be as important as business and financial considerations when making technology decisions. 

This AI moment, however, may represent a unique opportunity to overcome barriers that have previously stalled responsible technology work. Lack of senior management awareness (cited by 52% of those surveyed as a top barrier to adopting responsible practices) is certainly less of a concern today: savvy executives are quickly becoming fluent in this new technology and are continually reminded of its potential consequences, failures, and societal harms.

The other top barriers cited were organizational resistance to change (46%) and internal competing priorities (46%). Organizations that have realigned themselves behind a clear AI strategy, and who understand its industry-altering potential, may be able to overcome this inertia and indecision as well. At this singular moment of disruption, when AI provides both the tools and motivation to redesign many of the ways in which we work and live, we can fold responsible technology principles into that transition—if we choose to.

For her part, Parsons is deeply optimistic about humans’ ability to harness AI for good, and to work around its limitations with common-sense guidelines and well-designed processes with human guardrails. “As technologists, we just get so focused on the problem we’re trying to solve and how we’re trying to solve it,” she says. “And all responsible tech is really about is lifting your head up, and looking around, and seeing who else might be in the world with me.”

To read more about Thoughtworks’ analysis and recommendations on responsible technology, visit its Looking Glass 2024.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.