Four thoughts from Bill Gates on climate tech

Bill Gates doesn’t shy away or pretend modesty when it comes to his stature in the climate world today. “Well, who’s the biggest funder of climate innovation companies?” he asked a handful of journalists at a media roundtable event last week. “If there’s someone else, I’ve never met them.”

The former Microsoft CEO has spent the last decade investing in climate technology through Breakthrough Energy, which he founded in 2015. Ahead of the UN climate meetings kicking off next week, Gates published a memo outlining what he thinks activists and negotiators should focus on and how he’s thinking about the state of climate tech right now. Let’s get into it. 

Are we too focused on near-term climate goals?

One of the central points Gates made in his new memo is that he thinks the world is too focused on near-term emissions goals and national emissions reporting.

So in parallel with the national accounting structure for emissions, Gates argues, we should have high-level climate discussions at events like the UN climate conference. Those discussions should take a global view on how to reduce emissions in key sectors like energy and heavy industry.

“The way everybody makes steel, it’s the same. The way everybody makes cement, it’s the same. The way we make fertilizer, it’s all the same,” he says.

As he noted in one recent essay for MIT Technology Review, he sees innovation as the key to cutting the cost of clean versions of energy, cement, vehicles, and so on. And once products get cheaper, they can see wider adoption.

What’s most likely to power our grid in the future?

“In the long run, probably either fission or fusion will be the cheapest way to make electricity,” he says. (It should be noted that, as with most climate technologies, Gates has investments in both fission and fusion companies through Breakthrough Energy Ventures, so he has a vested interest here.)

He acknowledges, though, that reactors likely won’t come online quickly enough to meet rising electricity demand in the US: “I wish I could deliver nuclear fusion, like, three years earlier than I can.”

He also spoke to China’s leadership in both nuclear fission and fusion energy. “The amount of money they’re putting [into] fusion is more than the rest of the world put together times two. I mean, it’s not guaranteed to work. But name your favorite fusion approach here in the US—there’s a Chinese project.”

Can carbon removal be part of the solution?

I had my colleague James Temple’s recent story on what’s next for carbon removal at the top of my mind, so I asked Gates if he saw carbon credits or carbon removal as part of the problematic near-term thinking he wrote about in the memo.

Gates buys offsets to cancel out his own personal emissions, to the tune of about $9 million a year, he said at the roundtable, but doesn’t expect many of those offsets to make a significant dent in climate progress on a broader scale: “That stuff, most of those technologies, are a complete dead end. They don’t get you cheap enough to be meaningful.

“Carbon sequestration at $400, $200, $100, can never be a meaningful part of this game. If you have a technology that starts at $400 and can get to $4, then hallelujah, let’s go. I haven’t seen that one. There are some now that look like they can get to $40 or $50, and that can play somewhat of a role.”

 Will AI be good news for innovation? 

During the discussion, I started a tally in the corner of my notebook, adding a tick every time Gates mentioned AI. Over the course of about an hour, I got to six tally marks, and I definitely missed making a few.

Gates acknowledged that AI is going to add electricity demand, a challenge for a US grid that hasn’t seen net demand go up for decades. But so too will electric cars and heat pumps. 

I was surprised at just how positively he spoke about AI’s potential, though:

“AI will accelerate every innovation pipeline you can name: cancer, Alzheimer’s, catalysts in material science, you name it. And we’re all trying to figure out what that means. That is the biggest change agent in the world today, moving at a pace that is very, very rapid … every breakthrough energy company will be able to move faster because of using those tools, some very dramatically.”

I’ll add that, as I’ve noted here before, I’m skeptical of big claims about AI’s potential to be a silver bullet across industries, including climate tech. (If you missed it, check out this story about AI and the grid from earlier this year.) 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

What a massive thermal battery means for energy storage

Rondo Energy just turned on what it says is the world’s largest thermal battery, an energy storage system that can take in electricity and provide a consistent source of heat.

The company announced last week that its first full-scale system is operational, with 100 megawatt-hours of capacity. The thermal battery is powered by an off-grid solar array and will provide heat for enhanced oil recovery (more on this in a moment).

Thermal batteries could help clean up difficult-to-decarbonize sectors like manufacturing and heavy industrial processes like cement and steel production. With Rondo’s latest announcement, the industry has reached a major milestone in its effort to prove that thermal energy storage can work in the real world. Let’s dig into this announcement, what it means to have oil and gas involved, and what comes next.

The concept behind a thermal battery is overwhelmingly simple: Use electricity to heat up some cheap, sturdy material (like bricks) and keep it hot until you want to use that heat later, either directly in an industrial process or to produce electricity.

Rondo’s new system has been operating for 10 weeks and achieved all the relevant efficiency and reliability benchmarks, according to the company. The bricks reach temperatures over 1,000 °C (about 1,800 °F), and over 97% of the energy put into the system is returned as heat.

This is a big step from the 2 MWh pilot system that Rondo started up in 2023, and it’s the first of the mass-produced, full-size heat batteries that the company hopes to put in the hands of customers.

Thermal batteries could be a major tool in cutting emissions: 20% of total energy demand today is used to provide heat for industrial processes, and most of that is generated by burning fossil fuels. So this project’s success is significant for climate action.

There’s one major detail here, though, that dulls some of that promise: This battery is being used for enhanced oil recovery, a process where steam is injected down into wells to get stubborn oil out of the ground.

It can be  tricky for a climate technology to show its merit by helping harvest fossil fuels. Some critics argue that these sorts of techniques keep that polluting infrastructure running longer.

When I spoke to Rondo founder and chief innovation officer  John O’Donnell about the new system, he defended the choice to work with oil and gas.  

“We are decarbonizing the world as it is today,” O’Donnell says. To his mind, it’s better to help an oil and gas company use solar power for its operation than leave it to continue burning natural gas for heat. Between cheap solar, expensive natural gas, and policies in California, he adds, Rondo’s technology made sense for the customer.

Having a willing customer pay for a full-scale system has been crucial to Rondo’s effort to show that it can deliver its technology.

And the next units are on the way: Rondo is currently building three more full-scale units in Europe. The company will be able to bring them online cheaper and faster because of what it’s learned from the California project, O’Donnell says. 

The company has the capacity to build more batteries, and do it quickly. It currently makes batteries at its factory in Thailand, which has the capacity to make 2.4 gigawatt-hours’ worth of heat batteries today.

I’ve been following progress on thermal batteries for years, and this project obviously represents a big step forward. For all the promises of cheap, robust energy storage, there’s nothing like actually building a large-scale system and testing it in the field.

It’s definitely hard to get excited about enhanced oil recovery—we need to stop burning fossil fuels, and do it quickly, to avoid the worst impacts of climate change. But I see the argument that as long as oil and gas operations exist, there’s value in cleaning them up.

And as O’Donnell puts it, heat batteries can help: “This is a really dumb, practical thing that’s ready now.”

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

The problem with Big Tech’s favorite carbon removal tech

Sucking carbon pollution out of the atmosphere is becoming a big business—companies are paying top dollar for technologies that can cancel out their own emissions.

Today, nearly 70% of announced carbon removal contracts are for one technology: bioenergy with carbon capture and storage (BECCS). Basically, the idea is to use trees or some other types of biomass for energy, and then capture the emissions when you burn it.

While corporations, including tech giants like Microsoft, are betting big on this technology, there are a few potential problems with BECCS, as my colleague James Temple laid out in a new story. And some of the concerns echo similar problems with other climate technologies we cover, like carbon offsets and alternative jet fuels.

Carbon math can be complicated.

To illustrate one of the biggest issues with BECCS, we need to run through the logic on its carbon accounting. (And while this tech can use many different forms of biomass, let’s assume we’re talking about trees.)

When trees grow, they suck up carbon dioxide from the atmosphere. Those trees can be harvested and used for some intended purpose, like making paper. The leftover material, which might otherwise be waste, is then processed and burned for energy.

This cycle is, in theory, carbon neutral. The emissions from burning the biomass are canceled out by what was removed from the atmosphere during plants’ growth. (Assuming those trees are replaced after they’re harvested.)

So now imagine that carbon-scrubbing equipment is added to the facility that burns the biomass, capturing emissions. If the cycle was logically carbon neutral before, now it’s carbon negative: On net, emissions are removed from the atmosphere. Sounds great, no notes. 

There are a few problems with this math, though. For one, it leaves out the emissions that might be produced while harvesting, transporting, and processing wood. And if projects require clearing land to plant trees or grow crops, that transformation can wind up releasing emissions too.

Issues with carbon math might sound a little familiar if you’ve read any of James’s reporting on carbon offsets, programs where people pay for others to avoid emissions. In particular, his 2021 investigation with ProPublica’s Lisa Song laid out how this so-called solution was actually adding millions of tons of carbon dioxide into the atmosphere.

Carbon capture may entrench polluting facilities.

One of the big benefits of BECCS is that it can be added to existing facilities. There’s less building involved than there might be in something like a facility that vacuums carbon directly out of air. That helps keep costs down, so BECCS is currently much cheaper than direct air capture and other forms of carbon removal.

But keeping legacy equipment running might not be a great thing for emissions or local communities in the long run.

Carbon dioxide is far from the only pollutant spewing out of these facilities. Burning biomass or biofuels can release emissions that harm human health, like particulate matter, sulfur dioxide, and carbon monoxide. Carbon capture equipment might trap some of these pollutants, like sulfur dioxide, but not all.

Assuming that waste material wouldn’t be used for something else might not be right.

It sounds great to use waste, but there’s a major asterisk lurking here, as James lays out in the story:

But the critical question that emerges with waste is: Would it otherwise have been burned or allowed to decompose, or might some of it have been used in some other way that kept the carbon out of the atmosphere? 

Biomass can be used for other things, like making plastic, building material, or even soil additives that can help crops get more nutrients. So the assumption that it’s BECCS or nothing is flawed.

Moreover, a weird thing happens when you start making waste valuable: There’s an incentive to produce more of it. Some experts are concerned that companies could wind up trimming more trees or clearing more forests than what’s needed to make more material for BECCS.

These waste issues remind me of conversations around sustainable aviation fuels. These alternative fuels can be made from a huge range of materials, including crop waste or even used cooking oil. But as demand for these clean fuels has ballooned, things have gotten a little wonky—there are even some reports of fraud, where scammers try to pass off newly made oil from crops as used cooking oil.

BECCS is a potentially useful technology, but like many things in climate tech, it can quickly get complicated. 

James has been reporting on carbon offsets and carbon removal for years. As he put it to me this week when we were chatting about this story: “Just cut emissions and stop messing around.”

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

3 takeaways about climate tech right now

On Monday, we published our 2025 edition of Climate Tech Companies to Watch. This marks the third time we’ve put the list together, and it’s become one of my favorite projects to work on every year. 

In the journalism world, it’s easy to get caught up in the latest news, whether it’s a fundraising round, research paper, or startup failure. Curating this list gives our team a chance to take a step back and consider the broader picture. What industries are making progress or lagging behind? Which countries or regions are seeing quick changes? Who’s likely to succeed? 

This year is an especially interesting moment in the climate tech world, something we grappled with while choosing companies. Here are three of my takeaways from the process of building this list. 

1. It’s hard to overstate China’s role in energy technology right now. 

To put it bluntly, China’s progress on cleantech is wild. The country is dominating in installing wind and solar power and building EVs, and it’s also pumping government money into emerging technologies like fusion energy. 

We knew we wanted this list to reflect China’s emergence as a global energy superpower, and we ended up including two Chinese firms in key industries: renewables and batteries.

In 2024, China accounted for the top four wind turbine makers worldwide. Envision was in the second spot, with 19.3 gigawatts of new capacity added last year. But the company isn’t limited to wind; it’s working to help power heavy industries like steel and chemicals with technology like green hydrogen. 

Batteries are also a hot industry in China, and we’re seeing progress in tech beyond the lithium-ion cells that currently dominate EVs and energy storage on the grid. We represent that industry with HiNa Battery Technology, a leading startup building sodium-ion batteries, which could be cheaper than today’s options. The company’s batteries are already being used in electric mopeds and grid installations. 

2. Energy demand from data centers and AI is on everyone’s mind, especially in the US. 

Another trend we noticed this year was a fixation on the growing energy demand of data centers, including massive planned dedicated facilities that power AI models. (Here’s another nudge to check out our Power Hungry series on AI and energy, in case you haven’t explored it already.) 

Even if their technology has nothing to do with data centers, companies are trying to show how they can be valuable in this age of rising energy demand. Some are signing lucrative deals with tech giants that could provide the money needed to help bring their product to market. 

Kairos Power hopes to be one such energy generator, building next-generation nuclear reactors. Last year, the company signed an agreement with Google that will see the company buy up to 500 megawatts of electricity from Kairos’s first reactors through 2035. 

In a more direct play, Redwood Materials is stringing together used EV batteries to build microgrids that could power—you guessed it—data centers. The company’s first installation fired up this year, and while it’s small, it’s an interesting example of a new use for old technology. 

3. Materials continue to be an area that’s ripe for innovation. 

In a new essay that accompanies the list, Bill Gates lays out the key role of innovation in making progress on climate technology. One thing that jumped out at me while I was reading that piece was a number: 30% of global greenhouse-gas emissions come from manufacturing, including cement and steel production. 

I’ve obviously covered materials and heavy industry for years. But it still strikes me just how much innovation we still need in the most important materials we use to scaffold our world. 

Several companies on this year’s list focus on materials: We’ve once again represented cement, a material that accounts for 7% of global greenhouse-gas emissions. Cemvision is working to use alternative fuel sources and starting materials to clean up the dirty industry. 

And Cyclic Materials is trying to reclaim and recycle rare earth magnets, a crucial technology that underpins everything from speakers to EVs and wind turbines. Today, only about 0.2% of rare earths from recycled devices are recycled, but the company is building multiple facilities in North America in hopes of changing that. 

Our list of 10 Climate Tech Companies to Watch highlights businesses we think have a shot at helping the world address and adapt to climate change with the help of everything from established energy technologies to novel materials. It’s a representation of this moment, and I hope you enjoy taking a spin through it.

EV tax credits are dead in the US. Now what?

On Wednesday, federal EV tax credits in the US officially came to an end.

Those credits, expanded and extended in the 2022 Inflation Reduction Act, gave drivers up to $7,500 in credits toward the purchase of a new electric vehicle. They’ve been a major force in cutting the up-front costs of EVs, pushing more people toward purchasing them and giving automakers confidence that demand would be strong.

The tax credits’ demise comes at a time when battery-electric vehicles still make up a small percentage of new vehicle sales in the country. And transportation is a major contributor to US climate pollution, with cars, trucks, ships, trains, and planes together making up roughly 30% of total greenhouse-gas emissions.

To anticipate what’s next for the US EV market, we can look to countries like Germany, which have ended similar subsidy programs. (Spoiler alert: It’s probably going to be a rough end to the year.)

When you factor in fuel savings, the lifetime cost of an EV can already be lower than that of a gas-powered vehicle today. But EVs can have a higher up-front cost, which is why some governments offer a tax credit or rebate that can help boost adoption for the technology.

In 2016, Germany kicked off a national incentive program to encourage EV sales. While the program was active, drivers could get grants of up to about €6,000 toward the purchase of a new battery-electric or plug-in hybrid vehicle.

Eventually, the government began pulling back the credits. Support for plug-in hybrids ended in 2022, and commercial buyers lost eligibility in September 2023. Then the entire program came to a screeching halt in December 2023, when the government announced it would be ending the incentives with about one week’s notice.

Monthly sales data shows the fingerprints of those changes. In each case where there’s a contraction of public support, there’s a peak in sales just before a cutback, then a crash after. These short-term effects can be dramatic: There were about half as many battery-electric vehicles sold in Germany in January 2024 than there were in December 2023. 

We’re already seeing the first half of this sort of boom-bust cycle in the US: EV sales ticked up in August, making up about 10% of all new vehicle sales, and analysts say September will turn out to be a record-breaking month. People rushed to take advantage of the credits while they still could.

Next comes the crash—the next few months will probably be very slow for EVs. One analyst predicted to the Washington Post that the figure could plummet to the low single digits, “like 1 or 2%.”

Ultimately, it’s not terribly surprising that there are local effects around these policy changes. “The question is really how long this decline will last, and how slowly any recovery in the growth will be,” Robbie Andrew, a senior researcher at the CICERO Center for International Climate Research in Norway who collects EV sales data, said in an email. 

When I spoke to experts (including Andrew) for a story last year, several told me that Germany’s subsidies were ending too soon, and that they were concerned about what cutting off support early would mean for the long-term prospects of the technology in the country. And Germany was much further along than the US, with EVs making up 20% of new vehicle sales—twice the American proportion.

EV growth did see a longer-term backslide in Germany after the end of the subsidies. Battery-electric vehicles made up 13.5% of new registrations in 2024, down from 18.5% the year before, and the UK also passed Germany to become Europe’s largest EV market. 

Things have improved this year, with sales in the first half beating records set in 2023. But growth would need to pick up significantly for Germany to reach its goal of getting 15 million battery-electric vehicles registered in the country by 2030. As of January 2025, that number was just 1.65 million. 

According to early projections, the end of tax credits in the US could significantly slow progress on EVs and, by extension, on cutting emissions. Sales of battery-electric vehicles could be about 40% lower in 2030 without the credits than what we’d see with them, according to one analysis by Princeton University’s Zero Lab.

Some US states still have their own incentive programs for people looking to buy electric vehicles. But without federal support, the US is likely to continue lagging behind global EV leaders like China. 

As Andrew put it: “From a climate perspective, with road transport responsible for almost a quarter of US total emissions, leaving the low-hanging fruit on the tree is a significant setback.” 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Fusion power plants don’t exist yet, but they’re making money anyway

This week, Commonwealth Fusion Systems announced it has another customer for its first commercial fusion power plant, in Virginia. Eni, one of the world’s largest oil and gas companies, signed a billion-dollar deal to buy electricity from the facility.

One small detail? That reactor doesn’t exist yet. Neither does the smaller reactor Commonwealth is building first to demonstrate that its tokamak design will work as intended.

This is a weird moment in fusion. Investors are pouring billions into the field to build power plants, and some companies are even signing huge agreements to purchase power from those still-nonexistent plants. All this comes before companies have actually completed a working reactor that can produce electricity. It takes money to develop a new technology, but all this funding could lead to some twisted expectations. 

Nearly three years ago, the National Ignition Facility at Lawrence Livermore National Laboratory hit a major milestone for fusion power. With the help of the world’s most powerful lasers, scientists heated a pellet of fuel to 100 million °C. Hydrogen atoms in that fuel fused together, releasing more energy than the lasers put in.

It was a game changer for the vibes in fusion. The NIF experiment finally showed that a fusion reactor could yield net energy. Plasma physicists’ models had certainly suggested that it should be true, but it was another thing to see it demonstrated in real life.

But in some ways, the NIF results didn’t really change much for commercial fusion. That site’s lasers used a bonkers amount of energy, the setup was wildly complicated, and the whole thing lasted a fraction of a second. To operate a fusion power plant, not only do you have to achieve net energy, but you also need to do that on a somewhat constant basis and—crucially—do it economically.

So in the wake of the NIF news, all eyes went to companies like Commonwealth, Helion, and Zap Energy. Who would be the first to demonstrate this milestone in a more commercially feasible reactor? Or better yet, who would be the first to get a power plant up and running?

So far, the answer is none of them.

To be fair, many fusion companies have made technical progress. Commonwealth has built and tested its high-temperature superconducting magnets and published research about that work. Zap Energy demonstrated three hours of continuous operation in its test system, a milestone validated by the US Department of Energy. Helion started construction of its power plant in Washington in July. (And that’s not to mention a thriving, publicly funded fusion industry in China.)  

These are all important milestones, and these and other companies have seen many more. But as Ed Morse, a professor of nuclear engineering at Berkeley, summed it up to me: “They don’t have a reactor.” (He was speaking specifically about Commonwealth, but really, the same goes for the others.)

And yet, the money pours in. Commonwealth raised over $800 million in funding earlier this year. And now it’s got two big customers signed on to buy electricity from this future power plant.

Why buy electricity from a reactor that’s currently little more than ideas on paper? From the perspective of these particular potential buyers, such agreements can be something of a win-win, says Adam Stein, director of nuclear energy innovation at the Breakthrough Institute.

By putting a vote of confidence behind Commonwealth, Eni could help the fusion startup get the capital it needs to actually build its plant. The company also directly invests in Commonwealth, so it stands to benefit from success. Getting a good rate on the capital needed to build the plant could also mean the electricity is ultimately cheaper for Eni, Stein says. 

Ultimately, fusion needs a lot of money. If fossil-fuel companies and tech giants want to provide it, all the better. One concern I have, though, is how outside observers are interpreting these big commitments. 

US Energy Secretary Chris Wright has been loud about his support for fusion and his expectations of the technology. Earlier this month, he told the BBC that it will soon power the world.

He’s certainly not the first to have big dreams for fusion, and it is an exciting technology. But despite the jaw-dropping financial milestones, this industry is still very much in development. 

And while Wright praises fusion, the Trump administration is slashing support for other energy technologies, including wind and solar power, and spreading disinformation about their safety, cost, and effectiveness. 

To meet the growing electricity demand and cut emissions from the power sector, we’ll need a whole range of technologies. It’s a risk and a distraction to put all our hopes on an unproven energy tech when there are plenty of options that actually exist. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Clean hydrogen is facing a big reality check

Hydrogen is sometimes held up as a master key for the energy transition. It can be made using several low-emissions methods and could play a role in cleaning up industries ranging from agriculture and chemicals to aviation and long-distance shipping.

This moment is a complicated one for the green fuel, though, as a new report from the International Energy Agency lays out. A number of major projects face cancellations and delays, especially in the US and Europe. The US in particular is seeing a slowdown after changes to key tax credits and cuts in support for renewable energy. Still, there are bright spots for the industry, including in China, and new markets could soon become crucial for growth.

Here are three things to know about the state of hydrogen in 2025.

1. Expectations for annual clean hydrogen production by 2030 are shrinking, for the first time.

    While hydrogen has the potential to serve as a clean fuel, today most is made with processes that use fossil fuels. As of 2025, about a million metric tons of low-emissions hydrogen are produced annually. That’s less than 1% of total hydrogen production.

    In last year’s Global Hydrogen Report, the IEA projected that global production of low-emissions hydrogen would grow to as high as 49 million metric tons annually by 2030. That prediction has been steadily climbing since 2021, as more places around the world sink money into developing and scaling up the technology.

    In the 2025 edition, though, the IEA’s production prediction had shrunk to 37 million metric tons annually by 2030.

    That’s still a major expansion from today’s numbers, but it’s the first time the agency has cut its predictions for the end of the decade. The report cited the cancellations of both electrolysis projects (those that use electricity to generate hydrogen) and carbon capture projects as reasons for the pullback. The cancelled and delayed projects included sites across Africa, the Americas, Europe, and Australia. 

    2. China is dominating production today and could produce competitively cheap green hydrogen by the end of the decade.

      Speaking of electrolysis projects, China is the driving force in manufacturing and development of electrolyzers, the devices that use electricity to generate green hydrogen, according to the new IEA report. As of July 2025, the country accounted for 65% of the installed or almost installed electrolyzer capacity in the world. It also manufactures nearly 60% of the world’s electrolyzers.

      A major barrier for clean hydrogen today is that dirty methods based on fossil fuels are just so much cheaper than cleaner ones.

      But China is well on its way to narrowing that gap. Today, it’s roughly three times more expensive to make and install an electrolyzer anywhere else in the world than in China. The country could produce green hydrogen that’s cost-competitive with fossil hydrogen by the end of the decade, according to the IEA report. That could make the fuel an obvious choice for both new and existing uses of hydrogen.

      3. Southeast Asia could be a major emerging market for low-emissions hydrogen.

        One region that could become a major player in the green hydrogen market is Southeast Asia. The economy is growing fast, and so is energy demand.

        There’s an existing market for hydrogen in Southeast Asia already. Today, the region uses about 4 million metric tons of hydrogen annually, largely in the oil refining industry and the chemical business, where it is used to make ammonia and methanol.

        International shipping is also concentrated in the region—the port of Singapore supplied about one-sixth of all the fuel used in global shipping in 2024, more than any other single location. Today, that total consists almost exclusively of fossil fuels. But there’s been work to test cleaner fuels, including methanol and ammonia, and interest in shifting to hydrogen in the longer term.

        Clean hydrogen could slot into these existing industries and help cut emissions. There are 25 projects under development right now in the region, though additional support for renewables will be crucial to getting significant capacity up and running.

        Overall, hydrogen is getting a reality check, revealing problems cutting through the hype we’ve seen in recent years. The next five years will tell whether the fuel can live up to the still-lofty hopes.  

        This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

        Texas banned lab-grown meat. What’s next for the industry?

        Last week, a legal battle over lab-grown meat kicked off in Texas. On September 1, a two-year ban on the technology went into effect across the state; the following day, two companies filed a lawsuit against state officials.

        The two companies, Wildtype Foods and Upside Foods, are part of a growing industry that aims to bring new types of food to people’s plates. These products, often called cultivated meat by the industry, take live animal cells and grow them in the lab to make food products without the need to slaughter animals.

        Texas joins six other US states and the country of Italy in banning these products. These legal challenges are adding barriers to an industry that’s still in its infancy and already faces plenty of challenges before it can reach consumers in a meaningful way.

        The agriculture sector makes up a hefty chunk of global greenhouse-gas emissions, with livestock alone accounting for somewhere between 10% and 20% of climate pollution. Alternative meat products, including those grown in a lab, could help cut the greenhouse gases from agriculture.

        The industry is still in its early days, though. In the US, just a handful of companies can legally sell products including cultivated chicken, pork fat, and salmon. Australia, Singapore, and Israel also allow a few companies to sell within their borders.

        Upside Foods, which makes cultivated chicken, was one of the first to receive the legal go-ahead to sell its products in the US, in 2022. Wildtype Foods, one of the latest additions to the US market, was able to start selling its cultivated salmon in June.

        Upside, Wildtype, and other cultivated-meat companies are still working to scale up production. Products are generally available at pop-up events or on special menus at high-end restaurants. (I visited San Francisco to try Upside’s cultivated chicken at a Michelin-starred restaurant a few years ago.)

        Until recently, the only place you could reliably find lab-grown meat in Texas was a sushi restaurant in Austin. Otoko featured Wildtype’s cultivated salmon on a special tasting menu starting in July. (The chef told local publication Culture Map Austin that the cultivated fish tastes like wild salmon, and it was included in a dish with grilled yellowtail to showcase it side-by-side with another type of fish.)

        The as-yet-limited reach of lab-grown meat didn’t stop state officials from moving to ban the technology, effective from now until September 2027.

        The office of state senator Charles Perry, the author of the bill, didn’t respond to requests for comment. Neither did the Texas and Southwestern Cattle Raisers Association, whose president, Carl Ray Polk Jr., testified in support of the bill in a March committee hearing.

        “The introduction of lab-grown meat could disrupt traditional livestock markets, affecting rural communities and family farms,” Perry said during the meeting.

        In an interview with the Texas Tribune, Polk said the two-year moratorium would help the industry put checks and balances in place before the products could be sold. He also expressed concern about how clearly cultivated-meat companies will be labeling their products.

        “The purpose of these bans is to try to kill the cultivated-meat industry before it gets off the ground,” said Myra Pasek, general counsel of Upside Foods, via email. The company is working to scale up its manufacturing and get the product on the market, she says, “but that can’t happen if we’re not allowed to compete in the marketplace.”

        Others in the industry have similar worries. “Moratoriums on sale like this not only deny Texans new choices and economic growth, but they also send chilling signals to researchers and entrepreneurs across the country,” said Pepin Andrew Tuma, the vice president of policy and government relations for the Good Food Institute, a nonprofit think tank focused on alternative proteins, in a statement. (The group isn’t involved in the lawsuit.) 

        One day after the moratorium took effect on September 1, Wildtype Foods and Upside Foods filed a lawsuit challenging the ban, naming Jennifer Shuford, commissioner of the Texas Department of State Health Services, among other state officials.

        A lawsuit wasn’t necessarily part of the scale-up plan. “This was really a last resort for us,” says Justin Kolbeck, cofounder and CEO of Wildtype.

        Growing cells to make meat in the lab isn’t easy—some companies have spent a decade or more trying to make significant amounts of a product that people want to eat. These legal battles certainly aren’t going to help. 

        This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

        How Trump is helping China extend its massive lead in clean energy 

        On a spring day in 1954, Bell Labs researchers showed off the first practical solar panels at a press conference in Murray Hill, New Jersey, using sunlight to spin a toy Ferris wheel before a stunned crowd.

        The solar future looked bright. But in the race to commercialize the technology it invented, the US would lose resoundingly. Last year, China exported $40 billion worth of solar panels and modules, while America shipped just $69 million, according to the New York Times. It was a stunning forfeit of a huge technological lead. 

        And now the US seems determined to repeat the mistake. In its quest to prop up aging fossil-fuel industries, the Trump administration has slashed federal support for the emerging cleantech sector, handing his nation’s chief economic rival the most generous of gifts: an unobstructed path to locking in its control of emerging energy technologies, and a leg up in inventing the industries of the future.

        China’s dominance of solar was no accident. In the late 2000s, the government simply determined that the sector was a national priority. Then it leveraged deep subsidies, targeted policies, and price wars to scale up production, drive product improvements, and slash costs. It’s made similar moves in batteries, electric vehicles, and wind turbines. 

        Meanwhile, President Donald Trump has set to work unraveling hard-won clean-energy achievements in the US, snuffing out the gathering momentum to rebuild the nation’s energy sector in cleaner, more sustainable ways.

        The tax and spending bill that Trump signed into law in early July wound down the subsidies for solar and wind power contained in the Inflation Reduction Act of 2022. The legislation also cut off federal support for cleantech projects that rely too heavily on Chinese materials—a hamfisted bid to punish Chinese industries that will instead make many US projects financially unworkable.

        Meanwhile, the administration has slashed federal funding for science and attacked the financial foundations of premier research universities, pulling up the roots of future energy innovations and industries.

        A driving motivation for many of these policies is the quest to protect the legacy energy industry based on coal, oil, and natural gas, all of which the US is geologically blessed with. But this strategy amounts to the innovator’s dilemma playing out at a national scale—a country clinging to its declining industries rather than investing in the ones that will define the future.

        It does not particularly matter whether Trump believes in or cares about climate change. The economic and international security imperatives to invest in modern, sustainable industries are every bit as indisputable as the chemistry of greenhouse gases.

        Without sustained industrial policies that reward innovation, American entrepreneurs and investors won’t risk money and time creating new businesses, developing new products, or building first-of-a-kind projects here. Indeed, venture capitalists have told me that numerous US climate-tech companies are already looking overseas, seeking markets where they can count on government support. Some fear that many other companies will fail in the coming months as subsidies disappear, developments stall, and funding flags. 

        All of which will help China extend an already massive lead.

        The nation has installed nearly three times as many wind turbines as the US, and it generates more than twice as much solar power. It boasts five of the 10 largest EV companies in the world, and the three largest wind turbine manufacturers. China absolutely dominates the battery market, producing the vast majority of the anodes, cathodes, and battery cells that increasingly power the world’s vehicles, grids, and gadgets.

        China harnessed the clean-energy transition to clean up its skies, upgrade its domestic industries, create jobs for its citizens, strengthen trade ties, and build new markets in emerging economies. In turn, it’s using those business links to accrue soft power and extend its influence—all while the US turns it back on global institutions.

        These widening relationships increasingly insulate China from external pressures, including those threatened by Trump’s go-to tactic: igniting or inflaming trade wars. 

        But stiff tariffs and tough talk aren’t what built the world’s largest economy and established the US as the global force in technology for more than a century. What did was deep, sustained federal investment into education, science, and research and development—the very budget items that Trump and his party have been so eager to eliminate. 

        Another thing

        Earlier this summer, the EPA announced plans to revoke the Obama-era “endangerment finding,” the legal foundation for regulating the nation’s greenhouse-gas pollution. 

        The agency’s argument leans heavily on a report that rehashes decades-old climate-denial talking points to assert that rising emissions haven’t produced the harms that scientists expected. It’s a wild, Orwellian plea for you to reject the evidence of your eyes and ears in a summer that saw record heat waves in the Midwest and East and is now blanketing the West in wildfire smoke.

        Over the weekend, more than 85 scientists sent a point-by-point, 459-page rebuttal to the federal government, highlighting myriad ways in which the report “is biased, full of errors, and not fit to inform policy making,” as Bob Kopp, a climate scientist at Rutgers, put it on Bluesky.

        “The authors reached these flawed conclusions through selective filtering of evidence (‘cherry picking’), overemphasis of uncertainties, misquoting peer-reviewed research, and a general dismissal of the vast majority of decades of peer-reviewed research,” the dozens of reviewers found.

        The Trump administration handpicked researchers who would write the report it wanted to support its quarrel with thermometers and justify its preordained decision to rescind the endangerment finding. But it’s legally bound to hear from others as well, notes Karen McKinnon, a climate researcher at the University of California, Los Angeles.

        “Luckily, there is time to take action,” McKinnon said in a statement. “Comment on the report, and contact your representatives to let them know we need to take action to bring back the tolerable summers of years past.”

        You can read the full report here, or NPR’s take here. And be sure to read Casey Crownhart’s earlier piece in The Spark on the endangerment finding.

        This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

        Google’s still not giving us the full picture on AI energy use

        Google just announced that a typical query to its Gemini app uses about 0.24 watt-hours of electricity. That’s about the same as running a microwave for one second—something that, to me, feels virtually insignificant. I run the microwave for so many more seconds than that on most days.

        I was excited to see this report come out, and I welcome more openness from major players in AI about their estimated energy use per query. But I’ve noticed that some folks are taking this number and using it to conclude that we don’t need to worry about AI’s energy demand. That’s not the right takeaway here. Let’s dig into why.

        1. This one number doesn’t reflect all queries, and it leaves out cases that likely use much more energy.

        Google’s new report considers only text queries. Previous analysis, including MIT Technology Review’s reporting, suggests that generating a photo or video will typically use more electricity.

        When I spoke with Jeff Dean, Google’s chief scientist, he said the company doesn’t currently have plans to do this sort of analysis for images and videos, but that he wouldn’t rule it out.

        The reason the company started with text prompts is that those are something many people out there are using in their daily lives, he says, while image and video generation is something that not as many people are doing. But I’m seeing more AI images and videos all over my social feeds. So there’s a whole world of queries not represented here.

        Also, this estimate is the median, meaning it’s just the number in the middle of the range of queries Google is seeing. Longer questions and responses can push up the energy demand, and so can using a reasoning model.  We don’t know anything about how much energy these more complicated queries demand or what the distribution of the range is.

        2. We don’t know how many queries Gemini is seeing, so we don’t know the product’s total energy impact.

        One of my biggest outstanding questions about Gemini’s energy use is the total number of queries the product is seeing every day. 

        This number isn’t included in Google’s report, and the company wouldn’t share it with me. And let me be clear: I absolutely pestered them about this, both in a press call they had about the news and in my interview with Dean. In the press call, the company pointed me to a recent earnings report, which includes only figures about monthly active users (450 million, for what it’s worth).

        “We’re not comfortable revealing that for various reasons,” Dean told me on our call. The total number is an abstract measure that changes over time, he says, adding that the company wants users to be thinking about the energy usage per prompt.

        But there are people out there all over the world interacting with this technology, not just me—and what we all add up to seems quite relevant.

        OpenAI does publicly share its total, sharing recently that it sees 2.5 billion queries to ChatGPT every day. So for the curious, we can use this as an example and take the company’s self-reported average energy use per query (0.34 watt-hours) to get a rough idea of the total for all people prompting ChatGPT.

        According to my math, over the course of a year, that would add up to over 300 gigawatt-hours—the same as powering nearly 30,000 US homes annually. When you put it that way, it starts to sound like a lot of seconds in microwaves.

        3. AI is everywhere, not just in chatbots, and we’re often not even conscious of it.

        AI is touching our lives even when we’re not looking for it. AI summaries appear in web searches, whether you ask for them or not. There are built-in features for email and texting applications that that can draft or summarize messages for you.

        Google’s estimate is strictly for Gemini apps and wouldn’t include many of the other ways that even this one company is using AI. So even if you’re trying to think about your own personal energy demand, it’s increasingly difficult to tally up. 

        To be clear, I don’t think people should feel guilty for using tools that they find genuinely helpful. And ultimately, I don’t think the most important conversation is about personal responsibility. 

        There’s a tendency right now to focus on the small numbers, but we need to keep in mind what this is all adding up to. Over two gigawatts of natural gas will need to come online in Louisiana to power a single Meta data center this decade. Google Cloud is spending $25 billion on AI just in the PJM grid on the US East Coast. By 2028, AI could account for 326 terawatt-hours of electricity demand in the US annually, generating over 100 million metric tons of carbon dioxide.

        We need more reporting from major players in AI, and Google’s recent announcement is one of the most transparent accounts yet. But one small number doesn’t negate the ways this technology is affecting communities and changing our power grid. 

        This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.