Is a secure AI assistant possible?

<div data-chronoton-summary="

Risky business of AI assistants OpenClaw, a viral tool created by independent engineer Peter Steinberger, allows users to create personalized AI assistants. Security experts are alarmed by its vulnerabilities, with even the Chinese government issuing warnings about the risks.

The prompt injection threat Tools like OpenClaw have many vulnerabilities, but the one experts are most worried about its prompt injection. Unlike conventional hacking, prompt injection tricks an LLM by embedding malicious text in emails or websites the AI reads.

No silver bullet for security Researchers are exploring multiple defense strategies: training LLMs to ignore injections, using detector LLMs to screen inputs, and creating policies that restrict harmful outputs. The fundamental challenge remains balancing utility with security in AI assistants.

” data-chronoton-post-id=”1132768″ data-chronoton-expand-collapse=”1″ data-chronoton-analytics-enabled=”1″>

AI agents are a risky business. Even when stuck inside the chatbox window, LLMs will make mistakes and behave badly. Once they have tools that they can use to interact with the outside world, such as web browsers and email addresses, the consequences of those mistakes become far more serious.

That might explain why the first breakthrough LLM personal assistant came not from one of the major AI labs, which have to worry about reputation and liability, but from an independent software engineer, Peter Steinberger. In November of 2025, Steinberger uploaded his tool, now called OpenClaw, to GitHub, and in late January the project went viral.

OpenClaw harnesses existing LLMs to let users create their own bespoke assistants. For some users, this means handing over reams of personal data, from years of emails to the contents of their hard drive. That has security experts thoroughly freaked out. The risks posed by OpenClaw are so extensive that it would probably take someone the better part of a week to read all of the security blog posts on it that have cropped up in the past few weeks. The Chinese government took the step of issuing a public warning about OpenClaw’s security vulnerabilities.

In response to these concerns, Steinberger posted on X that nontechnical people should not use the software. (He did not respond to a request for comment for this article.) But there’s a clear appetite for what OpenClaw is offering, and it’s not limited to people who can run their own software security audits. Any AI companies that hope to get in on the personal assistant business will need to figure out how to build a system that will keep users’ data safe and secure. To do so, they’ll need to borrow approaches from the cutting edge of agent security research.

Risk management

OpenClaw is, in essence, a mecha suit for LLMs. Users can choose any LLM they like to act as the pilot; that LLM then gains access to improved memory capabilities and the ability to set itself tasks that it repeats on a regular cadence. Unlike the agentic offerings from the major AI companies, OpenClaw agents are meant to be on 24-7, and users can communicate with them using WhatsApp or other messaging apps. That means they can act like a superpowered personal assistant who wakes you each morning with a personalized to-do list, plans vacations while you work, and spins up new apps in its spare time.

But all that power has consequences. If you want your AI personal assistant to manage your inbox, then you need to give it access to your email—and all the sensitive information contained there. If you want it to make purchases on your behalf, you need to give it your credit card info. And if you want it to do tasks on your computer, such as writing code, it needs some access to your local files. 

There are a few ways this can go wrong. The first is that the AI assistant might make a mistake, as when a user’s Google Antigravity coding agent reportedly wiped his entire hard drive. The second is that someone might gain access to the agent using conventional hacking tools and use it to either extract sensitive data or run malicious code. In the weeks since OpenClaw went viral, security researchers have demonstrated numerous such vulnerabilities that put security-naïve users at risk.

Both of these dangers can be managed: Some users are choosing to run their OpenClaw agents on separate computers or in the cloud, which protects data on their hard drives from being erased, and other vulnerabilities could be fixed using tried-and-true security approaches.

But the experts I spoke to for this article were focused on a much more insidious security risk known as prompt injection. Prompt injection is effectively LLM hijacking: Simply by posting malicious text or images on a website that an LLM might peruse, or sending them to an inbox that an LLM reads, attackers can bend it to their will.

And if that LLM has access to any of its user’s private information, the consequences could be dire. “Using something like OpenClaw is like giving your wallet to a stranger in the street,” says Nicolas Papernot, a professor of electrical and computer engineering at the University of Toronto. Whether or not the major AI companies can feel comfortable offering personal assistants may come down to the quality of the defenses that they can muster against such attacks.

It’s important to note here that prompt injection has not yet caused any catastrophes, or at least none that have been publicly reported. But now that there are likely hundreds of thousands of OpenClaw agents buzzing around the internet, prompt injection might start to look like a much more appealing strategy for cybercriminals. “Tools like this are incentivizing malicious actors to attack a much broader population,” Papernot says. 

Building guardrails

The term “prompt injection” was coined by the popular LLM blogger Simon Willison in 2022, a couple of months before ChatGPT was released. Even back then, it was possible to discern that LLMs would introduce a completely new type of security vulnerability once they came into widespread use. LLMs can’t tell apart the instructions that they receive from users and the data that they use to carry out those instructions, such as emails and web search results—to an LLM, they’re all just text. So if an attacker embeds a few sentences in an email and the LLM mistakes them for an instruction from its user, the attacker can get the LLM to do anything it wants.

Prompt injection is a tough problem, and it doesn’t seem to be going away anytime soon. “We don’t really have a silver-bullet defense right now,” says Dawn Song, a professor of computer science at UC Berkeley. But there’s a robust academic community working on the problem, and they’ve come up with strategies that could eventually make AI personal assistants safe.

Technically speaking, it is possible to use OpenClaw today without risking prompt injection: Just don’t connect it to the internet. But restricting OpenClaw from reading your emails, managing your calendar, and doing online research defeats much of the purpose of using an AI assistant. The trick of protecting against prompt injection is to prevent the LLM from responding to hijacking attempts while still giving it room to do its job.

One strategy is to train the LLM to ignore prompt injections. A major part of the LLM development process, called post-training, involves taking a model that knows how to produce realistic text and turning it into a useful assistant by “rewarding” it for answering questions appropriately and “punishing” it when it fails to do so. These rewards and punishments are metaphorical, but the LLM learns from them as an animal would. Using this process, it’s possible to train an LLM not to respond to specific examples of prompt injection.

But there’s a balance: Train an LLM to reject injected commands too enthusiastically, and it might also start to reject legitimate requests from the user. And because there’s a fundamental element of randomness in LLM behavior, even an LLM that has been very effectively trained to resist prompt injection will likely still slip up every once in a while.

Another approach involves halting the prompt injection attack before it ever reaches the LLM. Typically, this involves using a specialized detector LLM to determine whether or not the data being sent to the original LLM contains any prompt injections. In a recent study, however, even the best-performing detector completely failed to pick up on certain categories of prompt injection attack.

The third strategy is more complicated. Rather than controlling the inputs to an LLM by detecting whether or not they contain a prompt injection, the goal is to formulate a policy that guides the LLM’s outputs—i.e., its behaviors—and prevents it from doing anything harmful. Some defenses in this vein are quite simple: If an LLM is allowed to email only a few pre-approved addresses, for example, then it definitely won’t send its user’s credit card information to an attacker. But such a policy would prevent the LLM from completing many useful tasks, such as researching and reaching out to potential professional contacts on behalf of its user.

“The challenge is how to accurately define those policies,” says Neil Gong, a professor of electrical and computer engineering at Duke University. “It’s a trade-off between utility and security.”

On a larger scale, the entire agentic world is wrestling with that trade-off: At what point will agents be secure enough to be useful? Experts disagree. Song, whose startup, Virtue AI, makes an agent security platform, says she thinks it’s possible to safely deploy an AI personal assistant now. But Gong says, “We’re not there yet.” 

Even if AI agents can’t yet be entirely protected against prompt injection, there are certainly ways to mitigate the risks. And it’s possible that some of those techniques could be implemented in OpenClaw. Last week, at the inaugural ClawCon event in San Francisco, Steinberger announced that he’d brought a security person on board to work on the tool.

As of now, OpenClaw remains vulnerable, though that hasn’t dissuaded its multitude of enthusiastic users. George Pickett, a volunteer maintainer of the OpenGlaw GitHub repository and a fan of the tool, says he’s taken some security measures to keep himself safe while using it: He runs it in the cloud, so that he doesn’t have to worry about accidentally deleting his hard drive, and he’s put mechanisms in place to ensure that no one else can connect to his assistant.

But he hasn’t taken any specific actions to prevent prompt injection. He’s aware of the risk but says he hasn’t yet seen any reports of it happening with OpenClaw. “Maybe my perspective is a stupid way to look at it, but it’s unlikely that I’ll be the first one to be hacked,” he says.

The AI Hype Index: Grok makes porn, and Claude Code nails your job

Everyone is panicking because AI is very bad; everyone is panicking because AI is very good. It’s just that you never know which one you’re going to get. Grok is a pornography machine. Claude Code can do anything from building websites to reading your MRI. So of course Gen Z is spooked by what this means for jobs. Unnerving new research says AI is going to have a seismic impact on the labor market this year.

If you want to get a handle on all that, don’t expect any help from the AI companies—they’re turning on each other like it’s the last act in a zombie movie. Meta’s former chief AI scientist, Yann LeCun, is spilling tea, while Big Tech’s messiest exes, Elon Musk and OpenAI, are about to go to trial. Grab your popcorn.

Everyone wants AI sovereignty. No one can truly have it.

Governments plan to pour $1.3 trillion into AI infrastructure by 2030 to invest in “sovereign AI,” with the premise being that countries should be in control of their own AI capabilities. The funds include financing for domestic data centers, locally trained models, independent supply chains, and national talent pipelines. This is a response to real shocks: covid-era supply chain breakdowns, rising geopolitical tensions, and the war in Ukraine.  

But the pursuit of absolute autonomy is running into reality. AI supply chains are irreducibly global: Chips are designed in the US and manufactured in East Asia; models are trained on data sets drawn from multiple countries; applications are deployed across dozens of jurisdictions.  

If sovereignty is to remain meaningful, it must shift from a defensive model of self-reliance to a vision that emphasizes the concept of orchestration, balancing national autonomy with strategic partnership. 

Why infrastructure-first strategies hit walls 

A November survey by Accenture found that 62% of European organizations are now seeking sovereign AI solutions, driven primarily by geopolitical anxiety rather than technical necessity. That figure rises to 80% in Denmark and 72% in Germany. The European Union has appointed its first Commissioner for Tech Sovereignty. 

This year, $475 billion is flowing into AI data centers globally. In the United States, AI data centers accounted for roughly one-fifth of GDP growth in the second quarter of 2025. But the obstacle for other nations hoping to follow suit isn’t just money. It’s energy and physics. Global data center capacity is projected to hit 130 gigawatts by 2030, and for every $1 billion spent on these facilities, $125 million is needed for electricity networks. More than $750 billion in planned investment is already facing grid delays. 

And it’s also talent. Researchers and entrepreneurs are mobile, drawn to ecosystems with access to capital, competitive wages, and rapid innovation cycles. Infrastructure alone won’t attract or retain world-class talent.  

What works: An orchestrated sovereignty

What nations need isn’t sovereignty through isolation but through specialization and orchestration. This means choosing which capabilities you build, which you pursue through partnership, and where you can genuinely lead in shaping the global AI landscape. 

The most successful AI strategies don’t try to replicate Silicon Valley; they identify specific advantages and build partnerships around them. 

Singapore offers a model. Rather than seeking to duplicate massive infrastructure, it invested in governance frameworks, digital-identity platforms, and applications of AI in logistics and finance, areas where it can realistically compete. 

Israel shows a different path. Its strength lies in a dense network of startups and military-adjacent research institutions delivering outsize influence despite the country’s small size. 

South Korea is instructive too. While it has national champions like Samsung and Naver, these firms still partner with Microsoft and Nvidia on infrastructure. That’s deliberate collaboration reflecting strategic oversight, not dependence.  

Even China, despite its scale and ambition, cannot secure full-stack autonomy. Its reliance on global research networks and on foreign lithography equipment, such as extreme ultraviolet systems needed to manufacture advanced chips and GPU architectures, shows the limits of techno-nationalism. 

The pattern is clear: Nations that specialize and partner strategically can outperform those trying to do everything alone. 

Three ways to align ambition with reality 

1.  Measure added value, not inputs.  

Sovereignty isn’t how many petaflops you own. It’s how many lives you improve and how fast the economy grows. Real sovereignty is the ability to innovate in support of national priorities such as productivity, resilience, and sustainability while maintaining freedom to shape governance and standards.  

Nations should track the use of AI in health care and monitor how the technology’s adoption correlates with manufacturing productivity, patent citations, and international research collaborations. The goal is to ensure that AI ecosystems generate inclusive and lasting economic and social value.  

2. Cultivate a strong AI innovation ecosystem. 

Build infrastructure, but also build the ecosystem around it: research institutions, technical education, entrepreneurship support, and public-private talent development. Infrastructure without skilled talent and vibrant networks cannot deliver a lasting competitive advantage.   

3. Build global partnerships.  

Strategic partnerships enable nations to pool resources, lower infrastructure costs, and access complementary expertise. Singapore’s work with global cloud providers and the EU’s collaborative research programs show how nations advance capabilities faster through partnership than through isolation. Rather than competing to set dominant standards, nations should collaborate on interoperable frameworks for transparency, safety, and accountability.  

What’s at stake 

Overinvesting in independence fragments markets and slows cross-border innovation, which is the foundation of AI progress. When strategies focus too narrowly on control, they sacrifice the agility needed to compete. 

The cost of getting this wrong isn’t just wasted capital—it’s a decade of falling behind. Nations that double down on infrastructure-first strategies risk ending up with expensive data centers running yesterday’s models, while competitors that choose strategic partnerships iterate faster, attract better talent, and shape the standards that matter. 

The winners will be those who define sovereignty not as separation, but as participation plus leadership—choosing who they depend on, where they build, and which global rules they shape. Strategic interdependence may feel less satisfying than independence, but it’s real, it is achievable, and it will separate the leaders from the followers over the next decade. 

The age of intelligent systems demands intelligent strategies—ones that measure success not by infrastructure owned, but by problems solved. Nations that embrace this shift won’t just participate in the AI economy; they’ll shape it. That’s sovereignty worth pursuing. 

Cathy Li is head of the Centre for AI Excellence at the World Economic Forum.

How AI is uncovering hidden geothermal energy resources

Sometimes geothermal hot spots are obvious, marked by geysers and hot springs on the planet’s surface. But in other places, they’re obscured thousands of feet underground. Now AI could help uncover these hidden pockets of potential power.

A startup company called Zanskar announced today that it’s used AI and other advanced computational methods to uncover a blind geothermal system—meaning there aren’t signs of it on the surface—in the western Nevada desert. The company says it’s the first blind system that’s been identified and confirmed to be a commercial prospect in over 30 years. 

Historically, finding new sites for geothermal power was a matter of brute force. Companies spent a lot of time and money drilling deep wells, looking for places where it made sense to build a plant.

Zanskar’s approach is more precise. With advancements in AI, the company aims to “solve this problem that had been unsolvable for decades, and go and finally find those resources and prove that they’re way bigger than previously thought,” says Carl Hoiland, the company’s cofounder and CEO.  

To support a successful geothermal power plant, a site needs high temperatures at an accessible depth and space for fluid to move through the rock and deliver heat. In the case of the new site, which the company calls Big Blind, the prize is a reservoir that reaches 250 °F at about 2,700 feet below the surface.

As electricity demand rises around the world, geothermal systems like this one could provide a source of constant power without emitting the greenhouse gases that cause climate change. 

The company has used its technology to identify many potential hot spots. “We have dozens of sites that look just like this,” says Joel Edwards, Zanskar’s cofounder and CTO. But for Big Blind, the team has done the fieldwork to confirm its model’s predictions.

The first step to identifying a new site is to use regional AI models to search large areas. The team trains models on known hot spots and on simulations it creates. Then it feeds in geological, satellite, and other types of data, including information about fault lines. The models can then predict where potential hot spots might be.

One strength of using AI for this task is that it can handle the immense complexity of the information at hand. “If there’s something learnable in the earth, even if it’s a very complex phenomenon that’s hard for us humans to understand, neural nets are capable of learning that, if given enough data,” Hoiland says. 

Once models identify a potential hot spot, a field crew heads to the site, which might be roughly 100 square miles or so, and collects additional information through techniques that include drilling shallow holes to look for elevated underground temperatures.

In the case of Big Blind, this prospecting information gave the company enough confidence to purchase a federal lease, allowing it to develop a geothermal plant. With that lease secured, the team returned with large drill rigs and drilled thousands of feet down in July and August. The workers found the hot, permeable rock they expected.

Next they must secure permits to build and connect to the grid and line up the investments needed to build the plant. The team will also continue testing at the site, including long-term testing to track heat and water flow.

“There’s a tremendous need for methodology that can look for large-scale features,” says John McLennan, technical lead for resource management at Utah FORGE, a national lab field site for geothermal energy funded by the US Department of Energy. The new discovery is “promising,” McLennan adds.

Big Blind is Zanskar’s first confirmed discovery that wasn’t previously explored or developed, but the company has used its tools for other geothermal exploration projects. Earlier this year, it announced a discovery at a site that had previously been explored by the industry but not developed. The company also purchased and revived a geothermal power plant in New Mexico.

And this could be just the beginning for Zanskar. As Edwards puts it, “This is the start of a wave of new, naturally occurring geothermal systems that will have enough heat in place to support power plants.”

The AI Hype Index: The people can’t get enough of AI slop

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

Last year, the fantasy author Joanna Maciejewska went viral (if such a thing is still possible on X) with a post saying “I want AI to do my laundry and dishes so that I can do art and writing, not for AI to do my art and writing so that I can do my laundry and dishes.” Clearly, it struck a chord with the disaffected masses.

Regrettably, 18 months after Maciejewska’s post, the entertainment industry insists that machines should make art and artists should do laundry. The streaming platform Disney+ has plans to let its users generate their own content from its intellectual property instead of, y’know, paying humans to make some new Star Wars or Marvel movies.

Elsewhere, it seems AI-generated music is resonating with a depressingly large audience, given that the AI band Breaking Rust has topped Billboard’s Country Digital Song Sales chart. If the people demand AI slop, who are we to deny them?

The AI Hype Index: Data centers’ neighbors are pivoting to power blackouts

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

Just about all businesses these days seem to be pivoting to AI, even when they don’t seem to know exactly why they’re investing in it—or even what it really does. “Optimization,” “scaling,” and “maximizing efficiency” are convenient buzzwords bandied about to describe what AI can achieve in theory, but for most of AI companies’ eager customers, the hundreds of billions of dollars they’re pumping into the industry aren’t adding up. And maybe they never will.

This month’s news doesn’t exactly cast the technology in a glowing light either. A bunch of NGOs and aid agencies are using AI models to generate images of fake suffering people to guilt their Instagram followers. AI translators are pumping out low-quality Wikipedia pages in the languages most vulnerable to going extinct. And thanks to the construction of new AI data centers, lots of neighborhoods living in their shadows are getting forced into their own sort of pivots—fighting back against the power blackouts and water shortages the data centers cause. How’s that for optimization?

The AI Hype Index: Cracking the chatbot code

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

Millions of us use chatbots every day, even though we don’t really know how they work or how using them affects us. In a bid to address this, the FTC recently launched an inquiry into how chatbots affect children and teenagers. Elsewhere, OpenAI has started to shed more light on what people are actually using ChatGPT for, and why it thinks its LLMs are so prone to making stuff up.

There’s still plenty we don’t know—but that isn’t stopping governments from forging ahead with AI projects. In the US, RFK Jr. is pushing his staffers to use ChatGPT, while Albania is using a chatbot for public contract procurement. Proceed with caution.

AI comes for the job market, security, and prosperity: The Debrief

When I picked up my daughter from summer camp, we settled in for an eight-hour drive through the Appalachian mountains, heading from North Carolina to her grandparents’ home in Kentucky. With little to no cell service for much of the drive, we enjoyed the rare opportunity to have a long, thoughtful conversation, uninterrupted by devices. The subject, naturally, turned to AI. 

Mat Honan

“No one my age wants AI. No one is excited about it,” she told me of her high-school-age peers. Why not? I asked. “Because,” she replied, “it seems like all the jobs we thought we wanted to do are going to go away.” 

I was struck by her pessimism, which she told me was shared by friends from California to Georgia to New Hampshire. In an already fragile world, one increasingly beset by climate change and the breakdown of the international order, AI looms in the background, threatening young people’s ability to secure a prosperous future.

It’s an understandable concern. Just a few days before our drive, OpenAI CEO Sam Altman was telling the US Federal Reserve’s board of governors that AI agents will leave entire job categories “just like totally, totally gone.” Anthropic CEO Dario Amodei told Axios he believes AI will wipe out half of all entry-level white-collar jobs in the next five years. Amazon CEO Andy Jassy said the company will eliminate jobs in favor of AI agents in the coming years. Shopify CEO Tobi Lütke told staff they had to prove that new roles couldn’t be done by AI before making a hire. And the view is not limited to tech. Jim Farley, the CEO of Ford, recently said he expects AI to replace half of all white-collar jobs in the US. 

These are no longer mere theoretical projections. There is already evidence that AI is affecting employment. Hiring of new grads is down, for example, in sectors like tech and finance. While that is not entirely due to AI, the technology is almost certainly playing a role. 

For Gen Z, the issue is broader than employment. It also touches on another massive generational challenge: climate change. AI is computationally intensive and requires massive data centers. Huge complexes have already been built all across the country, from Virginia in the east to Nevada in the west. That buildout is only going to accelerate as companies race to be first to create superintelligence. Meta and OpenAI have announced plans for data centers that will require five gigawatts of power just for their ­computing—enough to power the entire state of Maine in the summertime. 

It’s very likely that utilities will turn to natural gas to power these facilities; some already have. That means more carbon dioxide emissions for an already warming world. Data centers also require vast amounts of water. There are communities right now that are literally running out of water because it’s being taken by nearby data centers, even as climate change makes that resource more scarce. 

Proponents argue that AI will make the grid more efficient, that it will help us achieve technological breakthroughs leading to cleaner energy sources and, I don’t know, more butterflies and bumblebees? But xAI is belching CO2 into the Memphis skies from its methane-fueled generators right now. Google’s electricity demand and emissions are skyrocketing today

Things would be different, my daughter told me, if it were obviously useful. But for much of her generation, she argued, it’s a looming threat with ample costs and no obvious utility: “It’s not good for research because it’s not highly accurate. You can’t use it for writing because it’s banned—and people get zeros on papers who haven’t even used it because of AI detectors. And it seems like it’s going to take all the good jobs. One teacher told us we’re all going to be janitors.”  

It would be naïve to think we are going back to a world without AI. We’re not. And yet there are other urgent problems that we need to address to build security and prosperity for coming generations. This September/October issue is about our attempts to make the world more secure. From missiles. From asteroids. From the unknown. From threats both existential and trivial. 

We’re also introducing three new columns in this issue, from some of our leading writers: The Algorithm, which covers AI; The Checkup, on biotech; and The Spark, on energy and climate. You’ll see these in future issues, and you can also subscribe online to get them in your inbox every week. 

Stay safe out there. 

The AI Hype Index: AI-designed antibiotics show promise

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

Using AI to improve our health and well-being is one of the areas scientists and researchers are most excited about. The last month has seen an interesting leap forward: The technology has been put to work designing new antibiotics to fight hard-to-treat conditions, and OpenAI and Anthropic have both introduced new limiting features to curb potentially harmful conversations on their platforms. 

Unfortunately, not all the news has been positive. Doctors who overrely on AI to help them spot cancerous tumors found their detection skills dropped once they lost access to the tool, and a man fell ill after ChatGPT recommended he replace the salt in his diet with dangerous sodium bromide. These are yet more warning signs of how careful we have to be when it comes to using AI to make important decisions for our physical and mental states.

In a first, Google has released data on how much energy an AI prompt uses

Google has just released a technical report detailing how much energy its Gemini apps use for each query. In total, the median prompt—one that falls in the middle of the range of energy demand—consumes 0.24 watt-hours of electricity, the equivalent of running a standard microwave for about one second. The company also provided average estimates for the water consumption and carbon emissions associated with a text prompt to Gemini.

It’s the most transparent estimate yet from a Big Tech company with a popular AI product, and the report includes detailed information about how the company calculated its final estimate. As AI has become more widely adopted, there’s been a growing effort to understand its energy use. But public efforts attempting to directly measure the energy used by AI have been hampered by a lack of full access to the operations of a major tech company. 

Earlier this year, MIT Technology Review published a comprehensive series on AI and energy, at which time none of the major AI companies would reveal their per-prompt energy usage. Google’s new publication, at last, allows for a peek behind the curtain that researchers and analysts have long hoped for.

The study focuses on a broad look at energy demand, including not only the power used by the AI chips that run models but also by all the other infrastructure needed to support that hardware. 

“We wanted to be quite comprehensive in all the things we included,” said Jeff Dean, Google’s chief scientist, in an exclusive interview with MIT Technology Review about the new report.

That’s significant, because in this measurement, the AI chips—in this case, Google’s custom TPUs, the company’s proprietary equivalent of GPUs—account for just 58% of the total electricity demand of 0.24 watt-hours. 

Another large portion of the energy is used by equipment needed to support AI-specific hardware: The host machine’s CPU and memory account for another 25% of the total energy used. There’s also backup equipment needed in case something fails—these idle machines account for 10% of the total. The final 8% is from overhead associated with running a data center, including cooling and power conversion. 

This sort of report shows the value of industry input to energy and AI research, says Mosharaf Chowdhury, a professor at the University of Michigan and one of the heads of the ML.Energy leaderboard, which tracks energy consumption of AI models. 

Estimates like Google’s are generally something that only companies can produce, because they run at a larger scale than researchers are able to and have access to behind-the-scenes information. “I think this will be a keystone piece in the AI energy field,” says Jae-Won Chung, a PhD candidate at the University of Michigan and another leader of the ML.Energy effort. “It’s the most comprehensive analysis so far.”

Google’s figure, however, is not representative of all queries submitted to Gemini: The company handles a huge variety of requests, and this estimate is calculated from a median energy demand, one that falls in the middle of the range of possible queries.

So some Gemini prompts use much more energy than this: Dean gives the example of feeding dozens of books into Gemini and asking it to produce a detailed synopsis of their content. “That’s the kind of thing that will probably take more energy than the median prompt,” Dean says. Using a reasoning model could also have a higher associated energy demand because these models take more steps before producing an answer.

This report was also strictly limited to text prompts, so it doesn’t represent what’s needed to generate an image or a video. (Other analyses, including one in MIT Technology Review’s Power Hungry series earlier this year, show that these tasks can require much more energy.)

The report also finds that the total energy used to field a Gemini query has fallen dramatically over time. The median Gemini prompt used 33 times more energy in May 2024 than it did in May 2025, according to Google. The company points to advancements in its models and other software optimizations for the improvements.  

Google also estimates the greenhouse gas emissions associated with the median prompt, which they put at 0.03 grams of carbon dioxide. To get to this number, the company multiplied the total energy used to respond to a prompt by the average emissions per unit of electricity.

Rather than using an emissions estimate based on the US grid average, or the average of the grids where Google operates, the company instead uses a market-based estimate, which takes into account electricity purchases that the company makes from clean energy projects. The company has signed agreements to buy over 22 gigawatts of power from sources including solar, wind, geothermal, and advanced nuclear projects since 2010. Because of those purchases, Google’s emissions per unit of electricity on paper are roughly one-third of those on the average grid where it operates.

AI data centers also consume water for cooling, and Google estimates that each prompt consumes 0.26 milliliters of water, or about five drops. 

The goal of this work was to provide users a window into the energy use of their interactions with AI, Dean says. 

“People are using [AI tools] for all kinds of things, and they shouldn’t have major concerns about the energy usage or the water usage of Gemini models, because in our actual measurements, what we were able to show was that it’s actually equivalent to things you do without even thinking about it on a daily basis,” he says, “like watching a few seconds of TV or consuming five drops of water.”

The publication greatly expands what’s known about AI’s resource usage. It follows recent increasing pressure on companies to release more information about the energy toll of the technology. “I’m really happy that they put this out,” says Sasha Luccioni, an AI and climate researcher at Hugging Face. “People want to know what the cost is.”

This estimate and the supporting report contain more public information than has been available before, and it’s helpful to get more information about AI use in real life, at scale, by a major company, Luccioni adds. However, there are still details that the company isn’t sharing in this report. One major question mark is the total number of queries that Gemini gets each day, which would allow estimates of the AI tool’s total energy demand. 

And ultimately, it’s still the company deciding what details to share, and when and how. “We’ve been trying to push for a standardized AI energy score,” Luccioni says, a standard for AI similar to the Energy Star rating for appliances. “This is not a replacement or proxy for standardized comparisons.”