How AI is uncovering hidden geothermal energy resources

Sometimes geothermal hot spots are obvious, marked by geysers and hot springs on the planet’s surface. But in other places, they’re obscured thousands of feet underground. Now AI could help uncover these hidden pockets of potential power.

A startup company called Zanskar announced today that it’s used AI and other advanced computational methods to uncover a blind geothermal system—meaning there aren’t signs of it on the surface—in the western Nevada desert. The company says it’s the first blind system that’s been identified and confirmed to be a commercial prospect in over 30 years. 

Historically, finding new sites for geothermal power was a matter of brute force. Companies spent a lot of time and money drilling deep wells, looking for places where it made sense to build a plant.

Zanskar’s approach is more precise. With advancements in AI, the company aims to “solve this problem that had been unsolvable for decades, and go and finally find those resources and prove that they’re way bigger than previously thought,” says Carl Hoiland, the company’s cofounder and CEO.  

To support a successful geothermal power plant, a site needs high temperatures at an accessible depth and space for fluid to move through the rock and deliver heat. In the case of the new site, which the company calls Big Blind, the prize is a reservoir that reaches 250 °F at about 2,700 feet below the surface.

As electricity demand rises around the world, geothermal systems like this one could provide a source of constant power without emitting the greenhouse gases that cause climate change. 

The company has used its technology to identify many potential hot spots. “We have dozens of sites that look just like this,” says Joel Edwards, Zanskar’s cofounder and CTO. But for Big Blind, the team has done the fieldwork to confirm its model’s predictions.

The first step to identifying a new site is to use regional AI models to search large areas. The team trains models on known hot spots and on simulations it creates. Then it feeds in geological, satellite, and other types of data, including information about fault lines. The models can then predict where potential hot spots might be.

One strength of using AI for this task is that it can handle the immense complexity of the information at hand. “If there’s something learnable in the earth, even if it’s a very complex phenomenon that’s hard for us humans to understand, neural nets are capable of learning that, if given enough data,” Hoiland says. 

Once models identify a potential hot spot, a field crew heads to the site, which might be roughly 100 square miles or so, and collects additional information through techniques that include drilling shallow holes to look for elevated underground temperatures.

In the case of Big Blind, this prospecting information gave the company enough confidence to purchase a federal lease, allowing it to develop a geothermal plant. With that lease secured, the team returned with large drill rigs and drilled thousands of feet down in July and August. The workers found the hot, permeable rock they expected.

Next they must secure permits to build and connect to the grid and line up the investments needed to build the plant. The team will also continue testing at the site, including long-term testing to track heat and water flow.

“There’s a tremendous need for methodology that can look for large-scale features,” says John McLennan, technical lead for resource management at Utah FORGE, a national lab field site for geothermal energy funded by the US Department of Energy. The new discovery is “promising,” McLennan adds.

Big Blind is Zanskar’s first confirmed discovery that wasn’t previously explored or developed, but the company has used its tools for other geothermal exploration projects. Earlier this year, it announced a discovery at a site that had previously been explored by the industry but not developed. The company also purchased and revived a geothermal power plant in New Mexico.

And this could be just the beginning for Zanskar. As Edwards puts it, “This is the start of a wave of new, naturally occurring geothermal systems that will have enough heat in place to support power plants.”

The AI Hype Index: The people can’t get enough of AI slop

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

Last year, the fantasy author Joanna Maciejewska went viral (if such a thing is still possible on X) with a post saying “I want AI to do my laundry and dishes so that I can do art and writing, not for AI to do my art and writing so that I can do my laundry and dishes.” Clearly, it struck a chord with the disaffected masses.

Regrettably, 18 months after Maciejewska’s post, the entertainment industry insists that machines should make art and artists should do laundry. The streaming platform Disney+ has plans to let its users generate their own content from its intellectual property instead of, y’know, paying humans to make some new Star Wars or Marvel movies.

Elsewhere, it seems AI-generated music is resonating with a depressingly large audience, given that the AI band Breaking Rust has topped Billboard’s Country Digital Song Sales chart. If the people demand AI slop, who are we to deny them?

The AI Hype Index: Data centers’ neighbors are pivoting to power blackouts

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

Just about all businesses these days seem to be pivoting to AI, even when they don’t seem to know exactly why they’re investing in it—or even what it really does. “Optimization,” “scaling,” and “maximizing efficiency” are convenient buzzwords bandied about to describe what AI can achieve in theory, but for most of AI companies’ eager customers, the hundreds of billions of dollars they’re pumping into the industry aren’t adding up. And maybe they never will.

This month’s news doesn’t exactly cast the technology in a glowing light either. A bunch of NGOs and aid agencies are using AI models to generate images of fake suffering people to guilt their Instagram followers. AI translators are pumping out low-quality Wikipedia pages in the languages most vulnerable to going extinct. And thanks to the construction of new AI data centers, lots of neighborhoods living in their shadows are getting forced into their own sort of pivots—fighting back against the power blackouts and water shortages the data centers cause. How’s that for optimization?

The AI Hype Index: Cracking the chatbot code

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

Millions of us use chatbots every day, even though we don’t really know how they work or how using them affects us. In a bid to address this, the FTC recently launched an inquiry into how chatbots affect children and teenagers. Elsewhere, OpenAI has started to shed more light on what people are actually using ChatGPT for, and why it thinks its LLMs are so prone to making stuff up.

There’s still plenty we don’t know—but that isn’t stopping governments from forging ahead with AI projects. In the US, RFK Jr. is pushing his staffers to use ChatGPT, while Albania is using a chatbot for public contract procurement. Proceed with caution.

AI comes for the job market, security, and prosperity: The Debrief

When I picked up my daughter from summer camp, we settled in for an eight-hour drive through the Appalachian mountains, heading from North Carolina to her grandparents’ home in Kentucky. With little to no cell service for much of the drive, we enjoyed the rare opportunity to have a long, thoughtful conversation, uninterrupted by devices. The subject, naturally, turned to AI. 

Mat Honan

“No one my age wants AI. No one is excited about it,” she told me of her high-school-age peers. Why not? I asked. “Because,” she replied, “it seems like all the jobs we thought we wanted to do are going to go away.” 

I was struck by her pessimism, which she told me was shared by friends from California to Georgia to New Hampshire. In an already fragile world, one increasingly beset by climate change and the breakdown of the international order, AI looms in the background, threatening young people’s ability to secure a prosperous future.

It’s an understandable concern. Just a few days before our drive, OpenAI CEO Sam Altman was telling the US Federal Reserve’s board of governors that AI agents will leave entire job categories “just like totally, totally gone.” Anthropic CEO Dario Amodei told Axios he believes AI will wipe out half of all entry-level white-collar jobs in the next five years. Amazon CEO Andy Jassy said the company will eliminate jobs in favor of AI agents in the coming years. Shopify CEO Tobi Lütke told staff they had to prove that new roles couldn’t be done by AI before making a hire. And the view is not limited to tech. Jim Farley, the CEO of Ford, recently said he expects AI to replace half of all white-collar jobs in the US. 

These are no longer mere theoretical projections. There is already evidence that AI is affecting employment. Hiring of new grads is down, for example, in sectors like tech and finance. While that is not entirely due to AI, the technology is almost certainly playing a role. 

For Gen Z, the issue is broader than employment. It also touches on another massive generational challenge: climate change. AI is computationally intensive and requires massive data centers. Huge complexes have already been built all across the country, from Virginia in the east to Nevada in the west. That buildout is only going to accelerate as companies race to be first to create superintelligence. Meta and OpenAI have announced plans for data centers that will require five gigawatts of power just for their ­computing—enough to power the entire state of Maine in the summertime. 

It’s very likely that utilities will turn to natural gas to power these facilities; some already have. That means more carbon dioxide emissions for an already warming world. Data centers also require vast amounts of water. There are communities right now that are literally running out of water because it’s being taken by nearby data centers, even as climate change makes that resource more scarce. 

Proponents argue that AI will make the grid more efficient, that it will help us achieve technological breakthroughs leading to cleaner energy sources and, I don’t know, more butterflies and bumblebees? But xAI is belching CO2 into the Memphis skies from its methane-fueled generators right now. Google’s electricity demand and emissions are skyrocketing today

Things would be different, my daughter told me, if it were obviously useful. But for much of her generation, she argued, it’s a looming threat with ample costs and no obvious utility: “It’s not good for research because it’s not highly accurate. You can’t use it for writing because it’s banned—and people get zeros on papers who haven’t even used it because of AI detectors. And it seems like it’s going to take all the good jobs. One teacher told us we’re all going to be janitors.”  

It would be naïve to think we are going back to a world without AI. We’re not. And yet there are other urgent problems that we need to address to build security and prosperity for coming generations. This September/October issue is about our attempts to make the world more secure. From missiles. From asteroids. From the unknown. From threats both existential and trivial. 

We’re also introducing three new columns in this issue, from some of our leading writers: The Algorithm, which covers AI; The Checkup, on biotech; and The Spark, on energy and climate. You’ll see these in future issues, and you can also subscribe online to get them in your inbox every week. 

Stay safe out there. 

The AI Hype Index: AI-designed antibiotics show promise

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

Using AI to improve our health and well-being is one of the areas scientists and researchers are most excited about. The last month has seen an interesting leap forward: The technology has been put to work designing new antibiotics to fight hard-to-treat conditions, and OpenAI and Anthropic have both introduced new limiting features to curb potentially harmful conversations on their platforms. 

Unfortunately, not all the news has been positive. Doctors who overrely on AI to help them spot cancerous tumors found their detection skills dropped once they lost access to the tool, and a man fell ill after ChatGPT recommended he replace the salt in his diet with dangerous sodium bromide. These are yet more warning signs of how careful we have to be when it comes to using AI to make important decisions for our physical and mental states.

In a first, Google has released data on how much energy an AI prompt uses

Google has just released a technical report detailing how much energy its Gemini apps use for each query. In total, the median prompt—one that falls in the middle of the range of energy demand—consumes 0.24 watt-hours of electricity, the equivalent of running a standard microwave for about one second. The company also provided average estimates for the water consumption and carbon emissions associated with a text prompt to Gemini.

It’s the most transparent estimate yet from a Big Tech company with a popular AI product, and the report includes detailed information about how the company calculated its final estimate. As AI has become more widely adopted, there’s been a growing effort to understand its energy use. But public efforts attempting to directly measure the energy used by AI have been hampered by a lack of full access to the operations of a major tech company. 

Earlier this year, MIT Technology Review published a comprehensive series on AI and energy, at which time none of the major AI companies would reveal their per-prompt energy usage. Google’s new publication, at last, allows for a peek behind the curtain that researchers and analysts have long hoped for.

The study focuses on a broad look at energy demand, including not only the power used by the AI chips that run models but also by all the other infrastructure needed to support that hardware. 

“We wanted to be quite comprehensive in all the things we included,” said Jeff Dean, Google’s chief scientist, in an exclusive interview with MIT Technology Review about the new report.

That’s significant, because in this measurement, the AI chips—in this case, Google’s custom TPUs, the company’s proprietary equivalent of GPUs—account for just 58% of the total electricity demand of 0.24 watt-hours. 

Another large portion of the energy is used by equipment needed to support AI-specific hardware: The host machine’s CPU and memory account for another 25% of the total energy used. There’s also backup equipment needed in case something fails—these idle machines account for 10% of the total. The final 8% is from overhead associated with running a data center, including cooling and power conversion. 

This sort of report shows the value of industry input to energy and AI research, says Mosharaf Chowdhury, a professor at the University of Michigan and one of the heads of the ML.Energy leaderboard, which tracks energy consumption of AI models. 

Estimates like Google’s are generally something that only companies can produce, because they run at a larger scale than researchers are able to and have access to behind-the-scenes information. “I think this will be a keystone piece in the AI energy field,” says Jae-Won Chung, a PhD candidate at the University of Michigan and another leader of the ML.Energy effort. “It’s the most comprehensive analysis so far.”

Google’s figure, however, is not representative of all queries submitted to Gemini: The company handles a huge variety of requests, and this estimate is calculated from a median energy demand, one that falls in the middle of the range of possible queries.

So some Gemini prompts use much more energy than this: Dean gives the example of feeding dozens of books into Gemini and asking it to produce a detailed synopsis of their content. “That’s the kind of thing that will probably take more energy than the median prompt,” Dean says. Using a reasoning model could also have a higher associated energy demand because these models take more steps before producing an answer.

This report was also strictly limited to text prompts, so it doesn’t represent what’s needed to generate an image or a video. (Other analyses, including one in MIT Technology Review’s Power Hungry series earlier this year, show that these tasks can require much more energy.)

The report also finds that the total energy used to field a Gemini query has fallen dramatically over time. The median Gemini prompt used 33 times more energy in May 2024 than it did in May 2025, according to Google. The company points to advancements in its models and other software optimizations for the improvements.  

Google also estimates the greenhouse gas emissions associated with the median prompt, which they put at 0.03 grams of carbon dioxide. To get to this number, the company multiplied the total energy used to respond to a prompt by the average emissions per unit of electricity.

Rather than using an emissions estimate based on the US grid average, or the average of the grids where Google operates, the company instead uses a market-based estimate, which takes into account electricity purchases that the company makes from clean energy projects. The company has signed agreements to buy over 22 gigawatts of power from sources including solar, wind, geothermal, and advanced nuclear projects since 2010. Because of those purchases, Google’s emissions per unit of electricity on paper are roughly one-third of those on the average grid where it operates.

AI data centers also consume water for cooling, and Google estimates that each prompt consumes 0.26 milliliters of water, or about five drops. 

The goal of this work was to provide users a window into the energy use of their interactions with AI, Dean says. 

“People are using [AI tools] for all kinds of things, and they shouldn’t have major concerns about the energy usage or the water usage of Gemini models, because in our actual measurements, what we were able to show was that it’s actually equivalent to things you do without even thinking about it on a daily basis,” he says, “like watching a few seconds of TV or consuming five drops of water.”

The publication greatly expands what’s known about AI’s resource usage. It follows recent increasing pressure on companies to release more information about the energy toll of the technology. “I’m really happy that they put this out,” says Sasha Luccioni, an AI and climate researcher at Hugging Face. “People want to know what the cost is.”

This estimate and the supporting report contain more public information than has been available before, and it’s helpful to get more information about AI use in real life, at scale, by a major company, Luccioni adds. However, there are still details that the company isn’t sharing in this report. One major question mark is the total number of queries that Gemini gets each day, which would allow estimates of the AI tool’s total energy demand. 

And ultimately, it’s still the company deciding what details to share, and when and how. “We’ve been trying to push for a standardized AI energy score,” Luccioni says, a standard for AI similar to the Energy Star rating for appliances. “This is not a replacement or proxy for standardized comparisons.”

Why we should thank pigeons for our AI breakthroughs

In 1943, while the world’s brightest physicists split atoms for the Manhattan Project, the American psychologist B.F. Skinner led his own secret government project to win World War II. 

Skinner did not aim to build a new class of larger, more destructive weapons. Rather, he wanted to make conventional bombs more precise. The idea struck him as he gazed out the window of his train on the way to an academic conference. “I saw a flock of birds lifting and wheeling in formation as they flew alongside the train,” he wrote. “Suddenly I saw them as ‘devices’ with excellent vision and maneuverability. Could they not guide a missile?”

Skinner started his missile research with crows, but the brainy black birds proved intractable. So he went to a local shop that sold pigeons to Chinese restaurants, and “Project Pigeon” was born. Though ordinary pigeons, Columba livia, were no one’s idea of clever animals, they proved remarkably cooperative subjects in the lab. Skinner rewarded the birds with food for pecking at the right target on aerial photographs—and eventually planned to strap the birds into a device in the nose of a warhead, which they would steer by pecking at the target on a live image projected through a lens onto a screen. 

The military never deployed Skinner’s kamikaze pigeons, but his experiments convinced him that the pigeon was “an extremely reliable instrument” for studying the underlying processes of learning. “We have used pigeons, not because the pigeon is an intelligent bird, but because it is a practical one and can be made into a machine,” he said in 1944.

People looking for precursors to artificial intelligence often point to science fiction by authors like Isaac Asimov or thought experiments like the Turing test. But an equally important, if surprising and less appreciated, forerunner is Skinner’s research with pigeons in the middle of the 20th century. Skinner believed that association—learning, through trial and error, to link an action with a punishment or reward—was the building block of every behavior, not just in pigeons but in all living organisms, including human beings. His “behaviorist” theories fell out of favor with psychologists and animal researchers in the 1960s but were taken up by computer scientists who eventually provided the foundation for many of the artificial-intelligence tools from leading firms like Google and OpenAI.  

These companies’ programs are increasingly incorporating a kind of machine learning whose core concept—reinforcement—is taken directly from Skinner’s school of psychology and whose main architects, the computer scientists Richard Sutton and Andrew Barto, won the 2024 Turing Award, an honor widely considered to be the Nobel Prize of computer science. Reinforcement learning has helped enable computers to drive cars, solve complex math problems, and defeat grandmasters in games like chess and Go—but it has not done so by emulating the complex workings of the human mind. Rather, it has supercharged the simple associative processes of the pigeon brain. 

It’s a “bitter lesson” of 70 years of AI research, Sutton has written: that human intelligence has not worked as a model for machine learning—instead, the lowly principles of associative learning are what power the algorithms that can now simulate or outperform humans on a variety of tasks. If artificial intelligence really is close to throwing off the yoke of its creators, as many people fear, then our computer overlords may be less like ourselves than like “rats with wings”—and planet-size brains. And even if it’s not, the pigeon brain can at least help demystify a technology that many worry (or rejoice) is “becoming human.” 

In turn, the recent accomplishments of AI are now prompting some animal researchers to rethink the evolution of natural intelligence. Johan Lind, a biologist at Stockholm University, has written about the “associative learning paradox,” wherein the process is largely dismissed by biologists as too simplistic to produce complex behaviors in animals but celebrated for producing humanlike behaviors in computers. The research suggests not only a greater role for associative learning in the lives of intelligent animals like chimpanzees and crows, but also far greater complexity in the lives of animals we’ve long dismissed as simple-minded, like the ordinary Columba livia


When Sutton began working in AI, he felt as if he had a “secret weapon,” he told me: He had studied psychology as an undergrad. “I was mining the psychological literature for animals,” he says.

Skinner started his missile research with crows but switched to pigeons when the brainy black birds proved intractable.
B.F. SKINNER FOUNDATION

Ivan Pavlov began to uncover the mechanics of associative learning at the end of the 19th century in his famous experiments on “classical conditioning,” which showed that dogs would salivate at a neutral stimulus—like a bell or flashing light—if it was paired predictably with the presentation of food. In the middle of the 20th century, Skinner took Pavlov’s principles of conditioning and extended them from an animal’s involuntary reflexes to its overall behavior. 

Skinner wrote that “behavior is shaped and maintained by its consequences”—that a random action with desirable results, like pressing a lever that releases a food pellet, will be “reinforced” so that the animal is likely to repeat it. Skinner reinforced his lab animals’ behavior step by step, teaching rats to manipulate marbles and pigeons to play simple tunes on four-key pianos. The animals learned chains of behavior, through trial and error, in order to maximize long-term rewards. Skinner argued that this type of associative learning, which he called “operant conditioning” (and which other psychologists had called “instrumental learning”), was the building block of all behavior. He believed that psychology should study only behaviors that could be observed and measured without ever making reference to an “inner agent” in the mind.

When Richard Sutton began working in AI, he felt as if he had a “secret weapon”: He studied psychology as an undergrad. “I was mining the psychological literature for animals,” he says.

Skinner thought that even human language developed through operant conditioning, with children learning the meanings of words through reinforcement. But his 1957 book on the subject, Verbal Behavior, provoked a brutal review from Noam Chomsky, and psychology’s focus started to swing from observable behavior to innate “cognitive” abilities of the human mind, like logic and symbolic thinking. Biologists soon rebelled against behaviorism also, attacking psychologists’ quest to explain the diversity of animal behavior through an elementary and universal mechanism. They argued that each species evolved specific behaviors suited to its habitat and lifestyle, and that most behaviors were inherited, not learned. 

By the ’70s, when Sutton started reading about Skinner’s and similar experiments, many psychologists and researchers interested in intelligence had moved on from pea-brained pigeons, which learn mostly by association, to large-brained animals with more sophisticated behaviors that suggested potential cognitive abilities. “This was clearly old stuff that was not exciting to people anymore,” he told me. Still, Sutton found these old experiments instructive for machine learning: “I was coming to AI with an animal-learning-theorist mindset and seeing the big lack of anything like instrumental learning in engineering.” 


Many engineers in the second half of the 20th century tried to model AI on human intelligence, writing convoluted programs that attempted to mimic human thinking and implement rules that govern human response and behavior. This approach—commonly called “symbolic AI”—was severely limited; the programs stumbled over tasks that were easy for people, like recognizing objects and words. It just wasn’t possible to write into code the myriad classification rules human beings use to, say, separate apples from oranges or cats from dogs—and without pattern recognition, breakthroughs in more complex tasks like problem solving, game playing, and language translation seemed unlikely too. These computer scientists, the AI skeptic Hubert Dreyfus wrote in 1972, accomplished nothing more than “a small engineering triumph, an ad hoc solution of a specific problem, without general applicability.”

Pigeon research, however, suggested another route. A 1964 study showed that pigeons could learn to discriminate between photographs with people and photographs without people. Researchers simply presented the birds with a series of images and rewarded them with a food pellet for pecking an image showing a person. They pecked randomly at first but quickly learned to identify the right images, including photos where people were partially obscured. The results suggested that you didn’t need rules to sort objects; it was possible to learn concepts and use categories through associative learning alone. 

In another Skinner experiment, a pigeon receives food after correctly matching a colored light to a corresponding colored panel.
GETTY IMAGES

When Sutton began working with Barto on AI in the late ’70s, they wanted to create a “complete, interactive goal-seeking agent” that could explore and influence its environment like a pigeon or rat. “We always felt the problems we were studying were closer to what animals had to face in evolution to actually survive,” Barto told me. The agent needed two main functions: search, to try out and choose from many actions in a situation, and memory, to associate an action with the situation where it resulted in a reward. Sutton and Barto called their approach “reinforcement learning”; as Sutton said, “It’s basically instrumental learning.” In 1998, they published the definitive exploration of the concept in a book, Reinforcement Learning: An Introduction. 

Over the following two decades, as computing power grew exponentially, it became possible to train AI on increasingly complex tasks—that is, essentially, to run the AI “pigeon” through millions more trials. 

Programs trained with a mix of human input and reinforcement learning defeated human experts at chess and Atari. Then, in 2017, engineers at Google DeepMind built the AI program AlphaGo Zero entirely through reinforcement learning, giving it a numerical reward of +1 for every game of Go that it won and −1 for every game that it lost. Programmed to seek the maximum reward, it began without any knowledge of Go but improved over 40 days until it attained what its creators called “superhuman performance.” Not only could it defeat the world’s best human players at Go, a game considered even more complicated than chess, but it actually pioneered new strategies that professional players now use. 

“Humankind has accumulated Go knowledge from millions of games played over thousands of years,” the program’s builders wrote in Nature in 2017. “In the space of a few days, starting tabula rasa, AlphaGo Zero was able to rediscover much of this Go knowledge, as well as novel strategies that provide new insights into the oldest of games.” The team’s lead researcher was David Silver, who studied reinforcement learning under Sutton at the University of Alberta.

Today, more and more tech companies have turned to reinforcement learning in products such as consumer-facing chatbots and agents. The first generation of generative AI, including large language models like OpenAI’s GPT-2 and GPT-3, tapped into a simpler form of associative learning called “supervised learning,” which trained the model on data sets that had been labeled by people. Programmers often used reinforcement to fine-tune their results by asking people to rate a program’s performance and then giving these ratings back to the program as goals to pursue. (Researchers call this “reinforcement learning from feedback.”) 

Then, last fall, OpenAI revealed its o-series of large language models, which it classifies as “reasoning” models. The pioneering AI firm boasted that they are “trained with reinforcement learning to perform reasoning” and claimed they are capable of “a long internal chain of thought.” The Chinese startup DeepSeek also used reinforcement learning to train its attention-grabbing “reasoning” LLM, R1. “Rather than explicitly teaching the model on how to solve a problem, we simply provide it with the right incentives, and it autonomously develops advanced problem-­solving strategies,” they explained.

These descriptions might impress users, but at least psychologically speaking, they are confused. A computer trained on reinforcement learning needs only search and memory, not reasoning or any other cognitive mechanism, in order to form associations and maximize rewards. Some computer scientists have criticized the tendency to anthropomorphize these models’ “thinking,” and a team of Apple engineers recently published a paper noting their failure at certain complex tasks and “raising crucial questions about their true reasoning capabilities.”

Sutton, too, dismissed the claims of reasoning as “marketing” in an email, adding that “no serious scholar of mind would use ‘reasoning’ to describe what is going on in LLMs.” Still, he has argued, with Silver and other coauthors, that the pigeons’ method—learning, through trial and error, which actions will yield rewards—is “enough to drive behavior that exhibits most if not all abilities that are studied in natural and artificial intelligence,” including human language “in its full richness.” 

In a paper published in April, Sutton and Silver stated that “today’s technology, with appropriately chosen algorithms, already provides a sufficiently powerful foundation to … rapidly progress AI towards truly superhuman agents.” The key, they argue, is building AI agents that depend less than LLMs on human dialogue and prejudgments to inform their behavior. 

“Powerful agents should have their own stream of experience that progresses, like humans, over a long time-scale,” they wrote. “Ultimately, experiential data will eclipse the scale and quality of human generated data. This paradigm shift, accompanied by algorithmic advancements in RL, will unlock in many domains new capabilities that surpass those possessed by any human.”


If computers can do all that with just a pigeonlike brain, some animal researchers are now wondering if actual pigeons deserve more credit than they’re commonly given. 

“When considered in light of the accomplishments of AI, the extension of associative learning to purportedly more complicated forms of cognitive performance offers fresh prospects for understanding how biological systems may have evolved,” Ed Wasserman, a psychologist at the University of Iowa, wrote in a recent study in the journal Current Biology

Wasserman trained pigeons to succeed at a complex categorization task, which several undergraduate students failed. The students tried to find a rule that would help them sort various discs; the pigeons simply developed a sense for the group to which any given disc belonged.

In one experiment, Wasserman trained pigeons to succeed at a complex categorization task, which several undergraduate students failed. The students tried, in vain, to find a rule that would help them sort various discs with parallel black lines of various widths and tilts; the pigeons simply developed a sense, through practice and association, for the group to which any given disc belonged. 

Like Sutton, Wasserman became interested in behaviorist psychology when Skinner’s theories were out of fashion. He didn’t switch to computer science, however: He stuck with pigeons. “The pigeon lives or dies by these really rudimentary learning rules,” Wasserman told me recently, “but they are powerful enough to have succeeded colossally in object recognition.” In his most famous experiments, Wasserman trained pigeons to detect cancerous tissue and symptoms of heart disease in medical scans as accurately as experienced doctors with framed diplomas behind their desks. Given his results, Wasserman found it odd that so many psychologists and ethologists regarded associative learning as a crude, mechanical mechanism, incapable of producing the intelligence of clever animals like apes, elephants, dolphins, parrots, and crows. 

Other researchers also started to reconsider the role of associative learning in animal behavior after AI started besting human professionals in complex games. “With the progress of artificial intelligence, which in essence is built upon associative processes, it is increasingly ironic that associative learning is considered too simple and insufficient for generating biological intelligence,” Lind, the biologist from Stockholm University, wrote in 2023. He often cites Sutton and Barto’s computer science in his biological research, and he believes it’s human beings’ symbolic language and cumulative cultures that really put them in a cognitive category of their own.

Ethologists generally propose cognitive mechanisms, like theory of mind (that is, the ability to attribute mental states to others), to explain remarkable animal behaviors like social learning and tool use. But Lind has built models showing that these flexible behaviors could have developed through associative learning, suggesting that there may be no need to invoke cognitive mechanisms at all. If animals learn to associate a behavior with a reward, then the behavior itself will come to approximate the value of the reward. A new behavior can then become associated with the first behavior, allowing the animal to learn chains of actions that ultimately lead to the reward. In Lind’s view, studies demonstrating self-control and planning in chimpanzees and ravens are probably describing behaviors acquired through experience rather than innate mechanisms of the mind.  

Lind has been frustrated with what he calls the “low standard that is accepted in animal cognition studies.” As he wrote in an email, “Many researchers in this field do not seem to worry about excluding alternative hypotheses and they seem happy to neglect a lot of current and historical knowledge.” There are some signs, though, that his arguments are catching on. A group of psychologists not affiliated with Lind referenced his “associative learning paradox” last year in a criticism of a Current Biology study, which purported to show that crows used “true statistical inference” and not “low-level associative learning strategies” in an experiment. The psychologists found that they could explain the crows’ performance with a simple reinforcement-­learning model—“exactly the kind of low-level associative learning process that [the original authors] ruled out.” 

Skinner might have felt vindicated by such arguments. He lamented psychology’s cognitive turn until his death in 1990, maintaining that it was scientifically irresponsible to probe the minds of living beings. After “Project Pigeon,” he became increasingly obsessed with “behaviorist” solutions to societal problems. He went from training pigeons for war to inventions like the “Air Crib,” which aimed to “simplify” baby care by keeping the infant behind glass in a climate-­controlled chamber and eliminating the need for clothing and bedding. Skinner rejected free will, arguing that human behavior is determined by environmental variables, and wrote a novel, Walden II, about a utopian community founded on his ideas.


People who care about animals might feel uneasy about a revival in behaviorist theory. The “cognitive revolution” broke with centuries of Western thinking, which had emphasized human supremacy over animals and treated other creatures like stimulus-response machines. But arguing that animals learn by association is not the same as arguing that they are simple-minded. Scientists like Lind and Wasserman do not deny that internal forces like instinct and emotion also influence animal behavior. Sutton, too, believes that animals develop models of the world through their experiences and use them to plan actions. Their point is not that intelligent animals are empty-headed but that associative learning is a much more powerful—indeed, “cognitive”—mechanism than many of their peers believe. The psychologists who recently criticized the study on crows and statistical inference did not conclude that the birds were stupid. Rather, they argued “that a reinforcement learning model can produce complex, flexible behaviour.”

This is largely in line with the work of another psychologist, Robert Rescorla, whose work in the ’70s and ’80s influenced both Wasserman and Sutton. Rescorla encouraged people to think of association not as a “low-level mechanical process” but as “the learning that results from exposure to relations among events in the environment” and “a primary means by which the organism represents the structure of its world.” 

This is true even of a laboratory pigeon pecking at screens and buttons in a small experimental box, where scientists carefully control and measure stimuli and rewards. But the pigeon’s learning extends outside the box. Wasserman’s students transport the birds between the aviary and the laboratory in buckets—and experienced pigeons jump immediately into the buckets whenever the students open the doors. Much as Rescorla suggested, they are learning the structure of their world inside the laboratory and the relation of its parts, like the bucket and the box, even though they do not always know the specific task they will face inside. 

Comparative psychologists and animal researchers have long grappled with a question that suddenly seems urgent because of AI: How do we attribute sentience to other living beings?

The same associative mechanisms through which the pigeon learns the structure of its world can open a window to the kind of inner life that Skinner and many earlier psychologists said did not exist. Pharmaceutical researchers have long used pigeons in drug-discrimination tasks, where they’re given, say, an amphetamine or a sedative and rewarded with a food pellet for correctly identifying which drug they took. The birds’ success suggests they both experience and discriminate between internal states. “Is that not tantamount to introspection?” Wasserman asked.

It is hard to imagine AI matching a pigeon on this specific task—a reminder that, though AI and animals share associative mechanisms, there is more to life than behavior and learning. A pigeon deserves ethical consideration as a living creature not because of how it learns but because of what it feels. A pigeon can experience pain and suffer, while an AI chatbot cannot—even if some large language models, trained on corpora that include descriptions of human suffering and sci-fi stories of sentient computers, can trick people into believing otherwise. 

a pigeon in a box facing a lit screen with colored rectangles on it.
Psychologist Ed Wasserman trained pigeons to detect cancerous tissue and symptoms of heart disease in medical scans as accurately as experienced physicians.
UNIVERSITY OF IOWA/WASSERMAN LAB

“The intensive public and private investments into AI research in recent years have resulted in the very technologies that are forcing us to confront the question of AI sentience today,” two philosophers of science wrote in Aeon in 2023. “To answer these current questions, we need a similar degree of investment into research on animal cognition and behavior.” Indeed, comparative psychologists and animal researchers have long grappled with questions that suddenly seem urgent because of AI: How do we attribute sentience to other living beings? How can we distinguish true sentience from a very convincing performance of sentience?

Such an undertaking would yield knowledge not only about technology and animals but also about ourselves. Most psychologists probably wouldn’t go as far as Sutton in arguing that reward is enough to explain most if not all human behavior, but no one would dispute that people often learn by association too. In fact, most of Wasserman’s undergraduate students eventually succeeded at his recent experiment with the striped discs, but only after they gave up searching for rules. They resorted, like the pigeons, to association and couldn’t easily explain afterwards what they’d learned. It was just that with enough practice, they started to get a feel for the categories. 

It is another irony about associative learning: What has long been considered the most complex form of intelligence—a cognitive ability like rule-based learning—may make us human, but we also call on it for the easiest of tasks, like sorting objects by color or size. Meanwhile, some of the most refined demonstrations of human learning—like, say, a sommelier learning to taste the difference between grapes—are learned not through rules, but only through experience. 

Learning through experience relies on ancient associative mechanisms that we share with pigeons and countless other creatures, from honeybees to fish. The laboratory pigeon is not only in our computers but in our brains—and the engine behind some of humankind’s most impressive feats. 

Ben Crair is a science and travel writer based in Berlin. 

The AI Hype Index: The White House’s war on “woke AI”

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

The Trump administration recently declared war on so-called “woke AI,” issuing an executive order aimed at preventing companies whose models exhibit a liberal bias from landing federal contracts. Simultaneously, the Pentagon inked a deal with Elon Musk’s xAI just days after its chatbot, Grok, spouted harmful antisemitic stereotypes on X, while the White House has partnered with an anti-DEI nonprofit to create AI slop videos of the Founding Fathers. What comes next is anyone’s guess.

The AI Hype Index: AI-powered toys are coming

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

AI agents might be the toast of the AI industry, but they’re still not that reliable. That’s why Yoshua Bengio, one of the world’s leading AI experts, is creating his own nonprofit dedicated to guarding against deceptive agents. Not only can they mislead you, but new research suggests that the weaker an AI model powering an agent is, the less likely it is to be able to negotiate you a good deal online. Elsewhere, OpenAI has inked a deal with toymaker Mattel to develop “age-appropriate” AI-infused products. What could possibly go wrong?