AI Wrapped: The 14 AI terms you couldn’t avoid in 2025

If the past 12 months have taught us anything, it’s that the AI hype train is showing no signs of slowing. It’s hard to believe that at the beginning of the year, DeepSeek had yet to turn the entire industry on its head, Meta was better known for trying (and failing) to make the metaverse cool than for its relentless quest to dominate superintelligence, and vibe coding wasn’t a thing.

If that’s left you feeling a little confused, fear not. As we near the end of 2025, our writers have taken a look back over the AI terms that dominated the year, for better or worse.

Make sure you take the time to brace yourself for what promises to be another bonkers year.

—Rhiannon Williams

1. Superintelligence

a jack russell terrier wearing glasses and a bow tie

As long as people have been hyping AI, they have been coming up with names for a future, ultra-powerful form of the technology that could bring about utopian or dystopian consequences for humanity. “Superintelligence” is that latest hot term. Meta announced in July that it would form an AI team to pursue superintelligence, and it was reportedly offering nine-figure compensation packages to AI experts from the company’s competitors to join.

In December, Microsoft’s head of AI followed suit, saying the company would be spending big sums, perhaps hundreds of billions, on the pursuit of superintelligence. If you think superintelligence is as vaguely defined as artificial general intelligence, or AGI, you’d be right! While it’s conceivable that these sorts of technologies will be feasible in humanity’s long run, the question is really when, and whether today’s AI is good enough to be treated as a stepping stone toward something like superintelligence. Not that that will stop the hype kings. —James O’Donnell

2. Vibe coding

Thirty years ago, Steve Jobs said everyone in America should learn how to program a computer. Today, people with zero knowledge of how to code can knock up an app, game, or website in no time at all thanks to vibe coding—a catch-all phrase coined by OpenAI cofounder Andrej Karpathy. To vibe-code, you simply prompt generative AI models’ coding assistants to create the digital object of your desire and accept pretty much everything they spit out. Will the result work? Possibly not. Will it be secure? Almost definitely not, but the technique’s biggest champions aren’t letting those minor details stand in their way. Also—it sounds fun! — Rhiannon Williams

3. Chatbot psychosis

One of the biggest AI stories over the past year has been how prolonged interactions with chatbots can cause vulnerable people to experience delusions and, in some extreme cases, can either cause or worsen psychosis. Although “chatbot psychosis” is not a recognized medical term, researchers are paying close attention to the growing anecdotal evidence from users who say it’s happened to them or someone they know. Sadly, the increasing number of lawsuits filed against AI companies by the families of people who died following their conversations with chatbots demonstrate the technology’s potentially deadly consequences. —Rhiannon Williams

4. Reasoning

Few things kept the AI hype train going this year more than so-called reasoning models, LLMs that can break down a problem into multiple steps and work through them one by one. OpenAI released its first reasoning models, o1 and o3, a year ago.

A month later, the Chinese firm DeepSeek took everyone by surprise with a very fast follow, putting out R1, the first open-source reasoning model. In no time, reasoning models became the industry standard: All major mass-market chatbots now come in flavors backed by this tech. Reasoning models have pushed the envelope of what LLMs can do, matching top human performances in prestigious math and coding competitions. On the flip side, all the buzz about LLMs that could “reason” reignited old debates about how smart LLMs really are and how they really work. Like “artificial intelligence” itself, “reasoning” is technical jargon dressed up with marketing sparkle. Choo choo! —Will Douglas Heaven

5. World models 

For all their uncanny facility with language, LLMs have very little common sense. Put simply, they don’t have any grounding in how the world works. Book learners in the most literal sense, LLMs can wax lyrical about everything under the sun and then fall flat with a howler about how many elephants you could fit into an Olympic swimming pool (exactly one, according to one of Google DeepMind’s LLMs).

World models—a broad church encompassing various technologies—aim to give AI some basic common sense about how stuff in the world actually fits together. In their most vivid form, world models like Google DeepMind’s Genie 3 and Marble, the much-anticipated new tech from Fei-Fei Li’s startup World Labs, can generate detailed and realistic virtual worlds for robots to train in and more. Yann LeCun, Meta’s former chief scientist, is also working on world models. He has been trying to give AI a sense of how the world works for years, by training models to predict what happens next in videos. This year he quit Meta to focus on this approach in a new start up called Advanced Machine Intelligence Labs. If all goes well, world models could be the next thing. —Will Douglas Heaven

6. Hyperscalers

Have you heard about all the people saying no thanks, we actually don’t want a giant data center plopped in our backyard? The data centers in question—which tech companies want to built everywhere, including space—are typically referred to as hyperscalers: massive buildings purpose-built for AI operations and used by the likes of OpenAI and Google to build bigger and more powerful AI models. Inside such buildings, the world’s best chips hum away training and fine-tuning models, and they’re built to be modular and grow according to needs.

It’s been a big year for hyperscalers. OpenAI announced, alongside President Donald Trump, its Stargate project, a $500 billion joint venture to pepper the country with the largest data centers ever. But it leaves almost everyone else asking: What exactly do we get out of it? Consumers worry the new data centers will raise their power bills. Such buildings generally struggle to run on renewable energy. And they don’t tend to create all that many jobs. But hey, maybe these massive, windowless buildings could at least give a moody, sci-fi vibe to your community. —James O’Donnell

7. Bubble

The lofty promises of AI are levitating the economy. AI companies are raising eye-popping sums of money and watching their valuations soar into the stratosphere. They’re pouring hundreds of billions of dollars into chips and data centers, financed increasingly by debt and eyebrow-raising circular deals. Meanwhile, the companies leading the gold rush, like OpenAI and Anthropic, might not turn a profit for years, if ever. Investors are betting big that AI will usher in a new era of riches, yet no one knows how transformative the technology will actually be.

Most organizations using AI aren’t yet seeing the payoff, and AI work slop is everywhere. There’s scientific uncertainty about whether scaling LLMs will deliver superintelligence or whether new breakthroughs need to pave the way. But unlike their predecessors in the dot-com bubble, AI companies are showing strong revenue growth, and some are even deep-pocketed tech titans like Microsoft, Google, and Meta. Will the manic dream ever burst—Michelle Kim

8. Agentic

This year, AI agents were everywhere. Every new feature announcement, model drop, or security report throughout 2025 was peppered with mentions of them, even though plenty of AI companies and experts disagree on exactly what counts as being truly “agentic,” a vague term if ever there was one. No matter that it’s virtually impossible to guarantee that an AI acting on your behalf out in the wide web will always do exactly what it’s supposed to do—it seems as though agentic AI is here to stay for the foreseeable. Want to sell something? Call it agentic! —Rhiannon Williams

9. Distillation

Early this year, DeepSeek unveiled its new model DeepSeek R1, an open-source reasoning model that matches top Western models but costs a fraction of the price. Its launch freaked Silicon Valley out, as many suddenly realized for the first time that huge scale and resources were not necessarily the key to high-level AI models. Nvidia stock plunged by 17% the day after R1 was released.

The key to R1’s success was distillation, a technique that makes AI models more efficient. It works by getting a bigger model to tutor a smaller model: You run the teacher model on a lot of examples and record the answers, and reward the student model as it copies those responses as closely as possible, so that it gains a compressed version of the teacher’s knowledge.  —Caiwei Chen

10. Sycophancy

As people across the world spend increasing amounts of time interacting with chatbots like ChatGPT, chatbot makers are struggling to work out the kind of tone and “personality” the models should adopt. Back in April, OpenAI admitted it’d struck the wrong balance between helpful and sniveling, saying a new update had rendered GPT-4o too sycophantic. Having it suck up to you isn’t just irritating—it can mislead users by reinforcing their incorrect beliefs and spreading misinformation. So consider this your reminder to take everything—yes, everything—LLMs produce with a pinch of salt. —Rhiannon Williams

11. Slop

If there is one AI-related term that has fully escaped the nerd enclosures and entered public consciousness, it’s “slop.” The word itself is old (think pig feed), but “slop” is now commonly used to refer to low-effort, mass-produced content generated by AI, often optimized for online traffic. A lot of people even use it as a shorthand for any AI-generated content. It has felt inescapable in the past year: We have been marinated in it, from fake biographies to shrimp Jesus images to surreal human-animal hybrid videos.

But people are also having fun with it. The term’s sardonic flexibility has made it easy for internet users to slap it on all kinds of words as a suffix to describe anything that lacks substance and is absurdly mediocre: think “work slop” or “friend slop.” As the hype cycle resets, “slop” marks a cultural reckoning about what we trust, what we value as creative labor, and what it means to be surrounded by stuff that was made for engagement rather than expression. —Caiwei Chen

12. Physical intelligence

Did you come across the hypnotizing video from earlier this year of a humanoid robot putting away dishes in a bleak, gray-scale kitchen? That pretty much embodies the idea of physical intelligence: the idea that advancements in AI can help robots better move around the physical world. 

It’s true that robots have been able to learn new tasks faster than ever before, everywhere from operating rooms to warehouses. Self-driving-car companies have seen improvements in how they simulate the roads, too. That said, it’s still wise to be skeptical that AI has revolutionized the field. Consider, for example, that many robots advertised as butlers in your home are doing the majority of their tasks thanks to remote operators in the Philippines

The road ahead for physical intelligence is also sure to be weird. Large language models train on text, which is abundant on the internet, but robots learn more from videos of people doing things. That’s why the robot company Figure suggested in September that it would pay people to film themselves in their apartments doing chores. Would you sign up? —James O’Donnell

13. Fair use

AI models are trained by devouring millions of words and images across the internet, including copyrighted work by artists and writers. AI companies argue this is “fair use”—a legal doctrine that lets you use copyrighted material without permission if you transform it into something new that doesn’t compete with the original. Courts are starting to weigh in. In June, Anthropic’s training of its AI model Claude on a library of books was ruled fair use because the technology was “exceedingly transformative.”

That same month, Meta scored a similar win, but only because the authors couldn’t show that the company’s literary buffet cut into their paychecks. As copyright battles brew, some creators are cashing in on the feast. In December, Disney signed a splashy deal with OpenAI to let users of Sora, the AI video platform, generate videos featuring more than 200 characters from Disney’s franchises. Meanwhile, governments around the world are rewriting copyright rules for the content-guzzling machines. Is training AI on copyrighted work fair use? As with any billion-dollar legal question, it depends—Michelle Kim

14. GEO

Just a few short years ago, an entire industry was built around helping websites rank highly in search results (okay, just in Google). Now search engine optimization (SEO), is giving way to GEO—generative engine optimization—as the AI boom forces brands and businesses to scramble to maximize their visibility in AI, whether that’s in AI-enhanced search results like Google’s AI Overviews or within responses from LLMs. It’s no wonder they’re freaked out. We already know that news companies have experienced a colossal drop in search-driven web traffic, and AI companies are working on ways to cut out the middleman and allow their users to visit sites from directly within their platforms. It’s time to adapt or die. —Rhiannon Williams

How social media encourages the worst of AI boosterism

Demis Hassabis, CEO of Google DeepMind, summed it up in three words: “This is embarrassing.”  

Hassabis was replying on X to an overexcited post by Sébastien Bubeck, a research scientist at the rival firm OpenAI, announcing that two mathematicians had used OpenAI’s latest large language model, GPT-5, to find solutions to 10 unsolved problems in mathematics. “Science acceleration via AI has officially begun,” Bubeck crowed.

Put your math hats on for a minute, and let’s take a look at what this beef from mid-October was about. It’s a perfect example of what’s wrong with AI right now.

Bubeck was excited that GPT-5 seemed to have somehow solved a number of puzzles known as Erdős problems.

Paul Erdős, one of the most prolific mathematicians of the 20th century, left behind hundreds of puzzles when he died. To help keep track of which ones have been solved, Thomas Bloom, a mathematician at the University of Manchester, UK, set up erdosproblems.com, which lists more than 1,100 problems and notes that around 430 of them come with solutions. 

When Bubeck celebrated GPT-5’s breakthrough, Bloom was quick to call him out. “This is a dramatic misrepresentation,” he wrote on X. Bloom explained that a problem isn’t necessarily unsolved if this website does not list a solution. That simply means Bloom wasn’t aware of one. There are millions of mathematics papers out there, and nobody has read all of them. But GPT-5 probably has.

It turned out that instead of coming up with new solutions to 10 unsolved problems, GPT-5 had scoured the internet for 10 existing solutions that Bloom hadn’t seen before. Oops!

There are two takeaways here. One is that breathless claims about big breakthroughs shouldn’t be made via social media: Less knee jerk and more gut check.

The second is that GPT-5’s ability to find references to previous work that Bloom wasn’t aware of is also amazing. The hype overshadowed something that should have been pretty cool in itself.

Mathematicians are very interested in using LLMs to trawl through vast numbers of existing results, François Charton, a research scientist who studies the application of LLMs to mathematics at the AI startup Axiom Math, told me when I talked to him about this Erdős gotcha.

But literature search is dull compared with genuine discovery, especially to AI’s fervent boosters on social media. Bubeck’s blunder isn’t the only example.

In August, a pair of mathematicians showed that no LLM at the time was able to solve a math puzzle known as Yu Tsumura’s 554th Problem. Two months later, social media erupted with evidence that GPT-5 now could. “Lee Sedol moment is coming for many,” one observer commented, referring to the Go master who lost to DeepMind’s AI AlphaGo in 2016.

But Charton pointed out that solving Yu Tsumura’s 554th Problem isn’t a big deal to mathematicians. “It’s a question you would give an undergrad,” he said. “There is this tendency to overdo everything.”

Meanwhile, more sober assessments of what LLMs may or may not be good at are coming in. At the same time that mathematicians were fighting on the internet about GPT-5, two new studies came out that looked in depth at the use of LLMs in medicine and law (two fields that model makers have claimed their tech excels at). 

Researchers found that LLMs could make certain medical diagnoses, but they were flawed at recommending treatments. When it comes to law, researchers found that LLMs often give inconsistent and incorrect advice. “Evidence thus far spectacularly fails to meet the burden of proof,” the authors concluded.

But that’s not the kind of message that goes down well on X. “You’ve got that excitement because everybody is communicating like crazy—nobody wants to be left behind,” Charton said. X is where a lot of AI news drops first, it’s where new results are trumpeted, and it’s where key players like Sam Altman, Yann LeCun, and Gary Marcus slug it out in public. It’s hard to keep up—and harder to look away.

Bubeck’s post was only embarrassing because his mistake was caught. Not all errors are. Unless something changes researchers, investors, and non-specific boosters will keep teeing each other up. “Some of them are scientists, many are not, but they are all nerds,” Charton told me. “Huge claims work very well on these networks.”

*****

There’s a coda! I wrote everything you’ve just read above for the Algorithm column in the January/February 2026 issue of MIT Technology Review magazine (out very soon). Two days after that went to press, Axiom told me its own math model, AxiomProver, had solved two open Erdős problems (#124 and #481, for the math fans in the room). That’s impressive stuff for a small startup founded just a few months ago. Yup—AI moves fast!

But that’s not all. Five days later the company announced that AxiomProver had solved nine out of 12 problems in this year’s Putnam competition, a college-level math challenge that some people consider harder than the better-known International Math Olympiad (which LLMs from both Google DeepMind and OpenAI aced a few months back). 

The Putnam result was lauded on X by big names in the field, including Jeff Dean, chief scientist at Google DeepMind, and Thomas Wolf, cofounder at the AI firm Hugging Face. Once again familiar debates played out in the replies. A few researchers pointed out that while the International Math Olympiad demands more creative problem-solving, the Putnam competition tests math knowledge—which makes it notoriously hard for undergrads, but easier, in theory, for LLMs that have ingested the internet.

How should we judge Axiom’s achievements? Not on social media, at least. And the eye-catching competition wins are just a starting point. Determining just how good LLMs are at math will require a deeper dive into exactly what these models are doing when they solve hard (read: hard for humans) math problems.

This story originally appeared in The Algorithm, our weekly newsletter on AI. To get stories like this in your inbox first, sign up here.

China figured out how to sell EVs. Now it has to bury their batteries.

In August 2025, Wang Lei decided it was finally time to say goodbye to his electric vehicle.

Wang, who is 39, had bought the car in 2016, when EVs still felt experimental in Beijing. It was a compact Chinese brand. The subsidies were good, and the salesman talked about “supporting domestic innovation.” At the time, only a few people around him were driving on batteries. He liked being early.

But now, the car’s range had started to shrink as the battery’s health declined. He could have replaced the battery, but the warranty had expired; the cost and trouble no longer felt worth it. He also wanted an upgrade, so selling became the obvious choice.

His vague plans turned into action after he started seeing ads on Douyin from local battery recyclers. He asked around at a few recycling places, and the highest offer came from a smaller shop on the outskirts of town. He added the contact on WeChat, and the next day someone drove over to pick up his car. He got paid 8,000 yuan. With the additional automobile scrappage subsidy offered by the Chinese government, Wang ultimately pocketed about 28,000 yuan.

Wang is part of a much larger trend. In the past decade, China has seen an EV boom, thanks in part to government support. Buying an electric car has gone from a novel decision to a routine one; by late 2025, nearly 60% of new cars sold were electric or plug-in hybrids.

But as the batteries in China’s first wave of EVs reach the end of their useful life, early owners are starting to retire their cars, and the country is now under pressure to figure out what to do with those aging components.

The issue is putting strain on China’s still-developing battery recycling industry and has given rise to a gray market that often cuts corners on safety and environmental standards. National regulators and commercial players are also stepping in, building out formal recycling networks and take-back programs, but so far these efforts have struggled to keep pace with the flood of batteries coming off the road.

Like the batteries in our phones and laptops, those in EVs today are mostly lithium-ion packs. Their capacity drops a little every year, making the car slower to charge, shorter in range, and more prone to safety issues. Three professionals who work in EV retail and battery recycling told MIT Technology Review that a battery is often considered to be ready to retire from a car after its capacity has degraded to under 80%. The research institution EVtank estimates that the year’s total volume of retired EV batteries in China will come in at 820,000 tons, with annual totals climbing toward 1 million tons by 2030. 

In China, this growing pile of aging batteries is starting to test a recycling ecosystem that is still far from fully built out but is rapidly growing. By the end of November 2025, China had close to 180,000 enterprises involved in battery recycling, and more than 30,000 of them had been registered since January 2025. Over 60% of the firms were founded within the past three years. This does not even include the unregulated gray market of small workshops.

Typically, one of two things happens when an EV’s battery is retired. One is called cascade utilization, in which usable battery packs are tested and repurposed for slower applications like energy storage or low-speed vehicles. The other is full recycling: Cells are dismantled and processed to recover metals such as lithium, nickel, cobalt, and manganese, which are then reused to manufacture new batteries. Both these processes, if done properly, take significant upfront investment that is often not available to small players. 

But smaller, illicit battery recycling centers can offer higher prices to consumers because they ignore costs that formal recyclers can’t avoid, like environmental protection, fire safety, wastewater treatment, compliance, and taxes, according to the three battery recycling professionals MIT Technology Review spoke to.

“They [workers] crack them open, rearrange the cells into new packs, and repackage them to sell,” says Gary Lin, a battery recycling worker who worked in several unlicensed shops from 2022 to 2024. Sometimes, the refurbished batteries are even sold as “new” to buyers, he says. When the batteries are too old or damaged, workers simply crush them and sell them by weight to rare-metal extractors. “It’s all done in a very brute-force way. The wastewater used to soak the batteries is often just dumped straight into the sewer,” he says. 

This poorly managed battery waste can release toxic substances, contaminate water and soil, and create risks of fire and explosion. That is why the Chinese government has been trying to steer batteries into certified facilities. Since 2018, China’s Ministry of Industry and Information Technology has issued five “white lists” of approved power-battery recyclers, now totaling 156 companies. Despite this, formal recycling rates remain low compared with the rapidly growing volume of waste batteries.

China is not only the world’s largest EV market; it has also become the main global manufacturing hub for EVs and the batteries that power them. In 2024, the country accounted for more than 70% of global electric-car production and more than half of global EV sales, and firms like CATL and BYD together control close to half of global EV battery output, according to a report by the International Energy Agency. These companies are stepping in to offer solutions to customers wishing to offload their old batteries. Through their dealers and 4S stores, many carmakers now offer take-back schemes or opportunities to trade in old batteries for discount when owners scrap a vehicle or buy a new one. 

BYD runs its own recycling operations that process thousands of end-of-life packs a year and has launched dedicated programs with specialist recyclers to recover materials from its batteries. Geely has built a “circular manufacturing” system that combines disassembly of scrapped vehicles, cascade use of power batteries, and high recovery rates for metals and other materials.

CATL, China’s biggest EV maker, has created one of the industry’s most developed recycling systems through its subsidiary Brunp, with more than 240 collection depots, an annual disposal capacity of about 270,000 tons of waste batteries, and metal recovery rates above 99% for nickel, cobalt, and manganese. 

“No one is better equipped to handle these batteries than the companies that make them,” says Alex Li, a battery engineer based in Shanghai. That’s because they already understand the chemistry, the supply chain, and the uses the recovered materials can be put to next. Carmakers and battery makers “need to create a closed loop eventually,” he says.

But not every consumer can receive that support from the maker of their EV, because many of those manufacturers have ceased to exist. In the past five years, over 400 smaller EV brands and startups have gone bankrupt as the price war made it hard to stay afloat, leaving only 100 active brands today. 

Analysts expect many more used batteries to hit the market in the coming years, as the first big wave of EVs bought under generous subsidies reach retirement age. Li says, “China is going to need to move much faster toward a comprehensive end-of-life system for EV batteries—one that can trace, reuse and recycle them at scale, instead of leaving so many to disappear into the gray market.”

Why it’s time to reset our expectations for AI

Can I ask you a question: How do you feel about AI right now? Are you still excited? When you hear that OpenAI or Google just dropped a new model, do you still get that buzz? Or has the shine come off it, maybe just a teeny bit? Come on, you can be honest with me.

Truly, I feel kind of stupid even asking the question, like a spoiled brat who has too many toys at Christmas. AI is mind-blowing. It’s one of the most important technologies to have emerged in decades (despite all its many many drawbacks and flaws and, well, issues).

At the same time I can’t help feeling a little bit: Is that it?

If you feel the same way, there’s good reason for it: The hype we have been sold for the past few years has been overwhelming. We were told that AI would solve climate change. That it would reach human-level intelligence. That it would mean we no longer had to work!

Instead we got AI slop, chatbot psychosis, and tools that urgently prompt you to write better email newsletters. Maybe we got what we deserved. Or maybe we need to reevaluate what AI is for.

That’s the reality at the heart of a new series of stories, published today, called Hype Correction. We accept that AI is still the hottest ticket in town, but it’s time to re-set our expectations.

As my colleague Will Douglas Heaven puts it in the package’s intro essay, “You can’t help but wonder: When the wow factor is gone, what’s left? How will we view this technology a year or five from now? Will we think it was worth the colossal costs, both financial and environmental?” 

Elsewhere in the package, James O’Donnell looks at Sam Altman, the ultimate AI hype man, through the medium of his own words. And Alex Heath explains the AI bubble, laying out for us what it all means and what we should look out for.

Michelle Kim analyzes one of the biggest claims in the AI hype cycle: that AI would completely eliminate the need for certain classes of jobs. If ChatGPT can pass the bar, surely that means it will replace lawyers? Well, not yet, and maybe not ever. 

Similarly, Edd Gent tackles the big question around AI coding. Is it as good as it sounds? Turns out the jury is still out. And elsewhere David Rotman looks at the real-world work that needs to be done before AI materials discovery has its breakthrough ChatGPT moment.

Meanwhile, Garrison Lovely spends time with some of the biggest names in the AI safety world and asks: Are the doomers still okay? I mean, now that people are feeling a bit less scared about their impending demise at the hands of superintelligent AI? And Margaret Mitchell reminds us that hype around generative AI can blind us to the AI breakthroughs we should really celebrate.

Let’s remember: AI was here before ChatGPT and it will be here after. This hype cycle has been wild, and we don’t know what its lasting impact will be. But AI isn’t going anywhere. We shouldn’t be so surprised that those dreams we were sold haven’t come true—yet.

The more likely story is that the real winners, the killer apps, are still to come. And a lot of money is being bet on that prospect. So yes: The hype could never sustain itself over the short term. Where we’re at now is maybe the start of a post-hype phase. In an ideal world, this hype correction will reset expectations. 

Let’s all catch our breath, shall we?

This story first appeared in The Algorithm, our weekly free newsletter all about AI. Sign up to read past editions here.

Creating psychological safety in the AI era

Rolling out enterprise-grade AI means climbing two steep cliffs at once. First, understanding and implementing the tech itself. And second, creating the cultural conditions where employees can maximize its value. While the technical hurdles are significant, the human element can be even more consequential; fear and ambiguity can stall momentum of even the most promising initiatives.

Psychological safety—feeling free to express opinions and take calculated risks without worrying about career repercussions1—is essential for successful AI adoption. In psychologically safe workspaces, employees are empowered to challenge assumptions and raise concerns about new tools without fear of reprisal. This is nothing short of a necessity when introducing a nascent and profoundly powerful technology that still lacks established best practices.

“Psychological safety is mandatory in this new era of AI,” says Rafee Tarafdar, executive vice president and chief technology officer at Infosys. “The tech itself is evolving so fast—companies have to experiment, and some things will fail. There needs to be a safety net.”

To gauge how psychological safety influences success with enterprise-level AI, MIT Technology Review Insights conducted a survey of 500 business leaders. The findings reveal high self-reported levels of psychological safety, but also suggest that fear still has a foothold. Anecdotally, industry experts highlight a reason for the disconnect between rhetoric and reality: while organizations may promote a safe to experiment message publicly, deeper cultural undercurrents can counteract that intent.

Building psychological safety requires a coordinated, systems-level approach, and human resources (HR) alone cannot deliver such transformation. Instead, enterprises must deeply embed psychological safety into their collaboration processes.

Key findings for this report include:

  • Companies with experiment-friendly cultures have greater success with AI projects. The majority of executives surveyed (83%) believe a company culture that prioritizes psychological safety measurably improves the success of AI initiatives. Four in five leaders agree that organizations fostering such safety are more successful at adopting AI, and 84% have observed connections between psychological safety and tangible AI outcomes.
  • Psychological barriers are proving to be greater obstacles to enterprise AI adoption than technological challenges. Encouragingly, nearly three-quarters (73%) of respondents indicated they feel safe to provide honest feedback and express opinions freely in their workplace. Still, a significant share (22%) admit they’ve hesitated to lead an AI project because they might be blamed if it misfires.
  • Achieving psychological safety is a moving target for many organizations. Fewer than half of leaders (39%) rate their organization’s current level of psychological safety as “very high.” Another 48%report a “moderate” degree of it. This may mean that some enterprises are pursuing AI adoption on cultural foundations that are not yet fully stable.

Download the report.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. It was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

A brief history of Sam Altman’s hype

Each time you’ve heard a borderline outlandish idea of what AI will be capable of, it often turns out that Sam Altman was, if not the first to articulate it, at least the most persuasive and influential voice behind it. 

For more than a decade he has been known in Silicon Valley as a world-class fundraiser and persuader. OpenAI’s early releases around 2020 set the stage for a mania around large language models, and the launch of ChatGPT in November 2022 granted Altman a world stage on which to present his new thesis: that these models mirror human intelligence and could swing the doors open to a healthier and wealthier techno-utopia.


This story is part of MIT Technology Review’s Hype Correction package, a series that resets expectations about what AI is, what it makes possible, and where we go next.


Throughout, Altman’s words have set the agenda. He has framed a prospective superintelligent AI as either humanistic or catastrophic, depending on what effect he was hoping to create, what he was raising money for, or which tech giant seemed like his most formidable competitor at the moment. 

Examining Altman’s statements over the years reveals just how much his outlook has powered today’s AI boom. Even among Silicon Valley’s many hypesters, he’s been especially willing to speak about open questions—whether large language models contain the ingredients of human thought, whether language can also produce intelligence—as if they were already answered. 

What he says about AI is rarely provable when he says it, but it persuades us of one thing: This road we’re on with AI can go somewhere either great or terrifying, and OpenAI will need epic sums to steer it toward the right destination. In this sense, he is the ultimate hype man.

To understand how his voice has shaped our understanding of what AI can do, we read almost everything he’s ever said about the technology (we requested an interview with Altman, but he was not made available). 

His own words trace how we arrived here.

In conclusion … 

Altman didn’t dupe the world. OpenAI has ushered in a genuine tech revolution, with increasingly impressive language models that have attracted millions of users. Even skeptics would concede that LLMs’ conversational ability is astonishing.

But Altman’s hype has always hinged less on today’s capabilities than on a philosophical tomorrow—an outlook that quite handily doubles as a case for more capital and friendlier regulation. Long before large language models existed, he was imagining an AI powerful enough to require wealth redistribution, just as he imagined humanity colonizing other planets. Again and again, promises of a destination—abundance, superintelligence, a healthier and wealthier world—have come first, and the evidence second. 

Even if LLMs eventually hit a wall, there’s little reason to think his faith in a techno-utopian future will falter. The vision was never really about the particulars of the current model anyway. 

The AI doomers feel undeterred

It’s a weird time to be an AI doomer.

This small but influential community of researchers, scientists, and policy experts believes, in the simplest terms, that AI could get so good it could be bad—very, very bad—for humanity. Though many of these people would be more likely to describe themselves as advocates for AI safety than as literal doomsayers, they warn that AI poses an existential risk to humanity. They argue that absent more regulation, the industry could hurtle toward systems it can’t control. They commonly expect such systems to follow the creation of artificial general intelligence (AGI), a slippery concept generally understood as technology that can do whatever humans can do, and better. 


This story is part of MIT Technology Review’s Hype Correction package, a series that resets expectations about what AI is, what it makes possible, and where we go next.


Though this is far from a universally shared perspective in the AI field, the doomer crowd has had some notable success over the past several years: helping shape AI policy coming from the Biden administration, organizing prominent calls for international “red lines” to prevent AI risks, and getting a bigger (and more influential) megaphone as some of its adherents win science’s most prestigious awards.

But a number of developments over the past six months have put them on the back foot. Talk of an AI bubble has overwhelmed the discourse as tech companies continue to invest in multiple Manhattan Projects’ worth of data centers without any certainty that future demand will match what they’re building. 

And then there was the August release of OpenAI’s latest foundation model, GPT-5, which proved something of a letdown. Maybe that was inevitable, since it was the most hyped AI release of all time; OpenAI CEO Sam Altman had boasted that GPT-5 felt “like a PhD-level expert” in every topic and told the podcaster Theo Von that the model was so good, it had made him feel “useless relative to the AI.” 

Many expected GPT-5 to be a big step toward AGI, but whatever progress the model may have made was overshadowed by a string of technical bugs and the company’s mystifying, quickly reversed decision to shut off access to every old OpenAI model without warning. And while the new model achieved state-of-the-art benchmark scores, many people felt, perhaps unfairly, that in day-to-day use GPT-5 was a step backward

All this would seem to threaten some of the very foundations of the doomers’ case. In turn, a competing camp of AI accelerationists, who fear AI is actually not moving fast enough and that the industry is constantly at risk of being smothered by overregulation, is seeing a fresh chance to change how we approach AI safety (or, maybe more accurately, how we don’t). 

This is particularly true of the industry types who’ve decamped to Washington: “The Doomer narratives were wrong,” declared David Sacks, the longtime venture capitalist turned Trump administration AI czar. “This notion of imminent AGI has been a distraction and harmful and now effectively proven wrong,” echoed the White House’s senior policy advisor for AI and tech investor Sriram Krishnan. (Sacks and Krishnan did not reply to requests for comment.) 

(There is, of course, another camp in the AI safety debate: the group of researchers and advocates commonly associated with the label “AI ethics.” Though they also favor regulation, they tend to think the speed of AI progress has been overstated and have often written off AGI as a sci-fi story or a scam that distracts us from the technology’s immediate threats. But any potential doomer demise wouldn’t exactly give them the same opening the accelerationists are seeing.)

So where does this leave the doomers? As part of our Hype Correction package, we decided to ask some of the movement’s biggest names to see if the recent setbacks and general vibe shift had altered their views. Are they angry that policymakers no longer seem to heed their threats? Are they quietly adjusting their timelines for the apocalypse? 

Recent interviews with 20 people who study or advocate AI safety and governance—including Nobel Prize winner Geoffrey Hinton, Turing Prize winner Yoshua Bengio, and high-profile experts like former OpenAI board member Helen Toner—reveal that rather than feeling chastened or lost in the wilderness, they’re still deeply committed to their cause, believing that AGI remains not just possible but incredibly dangerous.

At the same time, they seem to be grappling with a near contradiction. While they’re somewhat relieved that recent developments suggest AGI is further out than they previously thought (“Thank God we have more time,” says AI researcher Jeffrey Ladish), they also feel frustrated that some people in power are pushing policy against their cause (Daniel Kokotajlo, lead author of a cautionary forecast called “AI 2027,” says “AI policy seems to be getting worse” and calls the Sacks and Krishnan tweets “deranged and/or dishonest.”)

Broadly speaking, these experts see the talk of an AI bubble as no more than a speed bump, and disappointment in GPT-5 as more distracting than illuminating. They still generally favor more robust regulation and worry that progress on policy—the implementation of the EU AI Act; the passage of the first major American AI safety bill, California’s SB 53; and new interest in AGI risk from some members of Congress—has become vulnerable as Washington overreacts to what doomers see as short-term failures to live up to the hype. 

Some were also eager to correct what they see as the most persistent misconceptions about the doomer world. Though their critics routinely mock them for predicting that AGI is right around the corner, they claim that’s never been an essential part of their case: It “isn’t about imminence,” says Berkeley professor Stuart Russell, the author of Human Compatible: Artificial Intelligence and the Problem of Control. Most people I spoke with say their timelines to dangerous systems have actually lengthened slightly in the last year—an important change given how quickly the policy and technical landscapes can shift. 

“If someone said there’s a four-mile-diameter asteroid that’s going to hit the Earth in 2067, we wouldn’t say, ‘Remind me in 2066 and we’ll think about it.’”

Many of them, in fact, emphasize the importance of changing timelines. And even if they are just a tad longer now, Toner tells me that one big-picture story of the ChatGPT era is the dramatic compression of these estimates across the AI world. For a long while, she says, AGI was expected in many decades. Now, for the most part, the predicted arrival is sometime in the next few years to 20 years. So even if we have a little bit more time, she (and many of her peers) continue to see AI safety as incredibly, vitally urgent. She tells me that if AGI were possible anytime in even the next 30 years, “It’s a huge fucking deal. We should have a lot of people working on this.”

So despite the precarious moment doomers find themselves in, their bottom line remains that no matter when AGI is coming (and, again, they say it’s very likely coming), the world is far from ready. 

Maybe you agree. Or maybe you may think this future is far from guaranteed. Or that it’s the stuff of science fiction. You may even think AGI is a great big conspiracy theory. You’re not alone, of course—this topic is polarizing. But whatever you think about the doomer mindset, there’s no getting around the fact that certain people in this world have a lot of influence. So here are some of the most prominent people in the space, reflecting on this moment in their own words. 

Interviews have been edited and condensed for length and clarity. 


The Nobel laureate who’s not sure what’s coming

Geoffrey Hinton, winner of the Turing Award and the Nobel Prize in physics for pioneering deep learning

The biggest change in the last few years is that there are people who are hard to dismiss who are saying this stuff is dangerous. Like, [former Google CEO] Eric Schmidt, for example, really recognized this stuff could be really dangerous. He and I were in China recently talking to someone on the Politburo, the party secretary of Shanghai, to make sure he really understood—and he did. I think in China, the leadership understands AI and its dangers much better because many of them are engineers.

I’ve been focused on the longer-term threat: When AIs get more intelligent than us, can we really expect that humans will remain in control or even relevant? But I don’t think anything is inevitable. There’s huge uncertainty on everything. We’ve never been here before. Anybody who’s confident they know what’s going to happen seems silly to me. I think this is very unlikely but maybe it’ll turn out that all the people saying AI is way overhyped are correct. Maybe it’ll turn out that we can’t get much further than the current chatbots—we hit a wall due to limited data. I don’t believe that. I think that’s unlikely, but it’s possible. 

I also don’t believe people like Eliezer Yudkowsky, who say if anybody builds it, we’re all going to die. We don’t know that. 

But if you go on the balance of the evidence, I think it’s fair to say that most experts who know a lot about AI believe it’s very probable that we’ll have superintelligence within the next 20 years. [Google DeepMind CEO] Demis Hassabis says maybe 10 years. Even [prominent AI skeptic] Gary Marcus would probably say, “Well, if you guys make a hybrid system with good old-fashioned symbolic logic … maybe that’ll be superintelligent.” [Editor’s note: In September, Marcus predicted AGI would arrive between 2033 and 2040.]

And I don’t think anybody believes progress will stall at AGI. I think more or less everybody believes a few years after AGI, we’ll have superintelligence, because the AGI will be better than us at building AI.

So while I think it’s clear that the winds are getting more difficult, simultaneously, people are putting in many more resources [into developing advanced AI]. I think progress will continue just because there’s many more resources going in.

The deep learning pioneer who wishes he’d seen the risks sooner

Yoshua Bengio, winner of the Turing Award, chair of the International AI Safety Report, and founder of LawZero

Some people thought that GPT-5 meant we had hit a wall, but that isn’t quite what you see in the scientific data and trends.

There have been people overselling the idea that AGI is tomorrow morning, which commercially could make sense. But if you look at the various benchmarks, GPT-5 is just where you would expect the models at that point in time to be. By the way, it’s not just GPT-5, it’s Claude and Google models, too. In some areas where AI systems weren’t very good, like Humanity’s Last Exam or FrontierMath, they’re getting much better scores now than they were at the beginning of the year.

At the same time, the overall landscape for AI governance and safety is not good. There’s a strong force pushing against regulation. It’s like climate change. We can put our head in the sand and hope it’s going to be fine, but it doesn’t really deal with the issue.

The biggest disconnect with policymakers is a misunderstanding of the scale of change that is likely to happen if the trend of AI progress continues. A lot of people in business and governments simply think of AI as just another technology that’s going to be economically very powerful. They don’t understand how much it might change the world if trends continue, and we approach human-level AI. 

Like many people, I had been blinding myself to the potential risks to some extent. I should have seen it coming much earlier. But it’s human. You’re excited about your work and you want to see the good side of it. That makes us a little bit biased in not really paying attention to the bad things that could happen.

Even a small chance—like 1% or 0.1%—of creating an accident where billions of people die is not acceptable. 

The AI veteran who believes AI is progressing—but not fast enough to prevent the bubble from bursting

Stuart Russell, distinguished professor of computer science, University of California, Berkeley, and author of Human Compatible

I hope the idea that talking about existential risk makes you a “doomer” or is “science fiction” comes to be seen as fringe, given that most leading AI researchers and most leading AI CEOs take it seriously. 

There have been claims that AI could never pass a Turing test, or you could never have a system that uses natural language fluently, or one that could parallel-park a car. All these claims just end up getting disproved by progress.

People are spending trillions of dollars to make superhuman AI happen. I think they need some new ideas, but there’s a significant chance they will come up with them, because many significant new ideas have happened in the last few years. 

My fairly consistent estimate for the last 12 months has been that there’s a 75% chance that those breakthroughs are not going to happen in time to rescue the industry from the bursting of the bubble. Because the investments are consistent with a prediction that we’re going to have much better AI that will deliver much more value to real customers. But if those predictions don’t come true, then there’ll be a lot of blood on the floor in the stock markets.

However, the safety case isn’t about imminence. It’s about the fact that we still don’t have a solution to the control problem. If someone said there’s a four-mile-diameter asteroid that’s going to hit the Earth in 2067, we wouldn’t say, “Remind me in 2066 and we’ll think about it.” We don’t know how long it takes to develop the technology needed to control superintelligent AI.

Looking at precedents, the acceptable level of risk for a nuclear plant melting down is about one in a million per year. Extinction is much worse than that. So maybe set the acceptable risk at one in a billion. But the companies are saying it’s something like one in five. They don’t know how to make it acceptable. And that’s a problem.

The professor trying to set the narrative straight on AI safety

David Krueger, assistant professor in machine learning at the University of Montreal and Yoshua Bengio’s Mila Institute, and founder of Evitable

I think people definitely overcorrected in their response to GPT-5. But there was hype. My recollection was that there were multiple statements from CEOs at various levels of explicitness who basically said that by the end of 2025, we’re going to have an automated drop-in replacement remote worker. But it seems like it’s been underwhelming, with agents just not really being there yet.

I’ve been surprised how much these narratives predicting AGI in 2027 capture the public attention. When 2027 comes around, if things still look pretty normal, I think people are going to feel like the whole worldview has been falsified. And it’s really annoying how often when I’m talking to people about AI safety, they assume that I think we have really short timelines to dangerous systems, or that I think LLMs or deep learning are going to give us AGI. They ascribe all these extra assumptions to me that aren’t necessary to make the case. 

I’d expect we need decades for the international coordination problem. So even if dangerous AI is decades off, it’s already urgent. That point seems really lost on a lot of people. There’s this idea of “Let’s wait until we have a really dangerous system and then start governing it.” Man, that is way too late.

I still think people in the safety community tend to work behind the scenes, with people in power, not really with civil society. It gives ammunition to people who say it’s all just a scam or insider lobbying. That’s not to say that there’s no truth to these narratives, but the underlying risk is still real. We need more public awareness and a broad base of support to have an effective response.

If you actually believe there’s a 10% chance of doom in the next 10 years—which I think a reasonable person should, if they take a close look—then the first thing you think is: “Why are we doing this? This is crazy.” That’s just a very reasonable response once you buy the premise.

The governance expert worried about AI safety’s credibility

Helen Toner, acting executive director of Georgetown University’s Center for Security and Emerging Technology and former OpenAI board member

When I got into the space, AI safety was more of a set of philosophical ideas. Today, it’s a thriving set of subfields of machine learning, filling in the gulf between some of the more “out there” concerns about AI scheming, deception, or power-seeking and real concrete systems we can test and play with. 

“I worry that some aggressive AGI timeline estimates from some AI safety people are setting them up for a boy-who-cried-wolf moment.”

AI governance is improving slowly. If we have lots of time to adapt and governance can keep improving slowly, I feel not bad. If we don’t have much time, then we’re probably moving too slow.

I think GPT-5 is generally seen as a disappointment in DC. There’s a pretty polarized conversation around: Are we going to have AGI and superintelligence in the next few years? Or is AI actually just totally all hype and useless and a bubble? The pendulum had maybe swung too far toward “We’re going to have super-capable systems very, very soon.” And so now it’s swinging back toward “It’s all hype.”

I worry that some aggressive AGI timeline estimates from some AI safety people are setting them up for a boy-who-cried-wolf moment. When the predictions about AGI coming in 2027 don’t come true, people will say, “Look at all these people who made fools of themselves. You should never listen to them again.” That’s not the intellectually honest response, if maybe they later changed their mind, or their take was that they only thought it was 20 percent likely and they thought that was still worth paying attention to. I think that shouldn’t be disqualifying for people to listen to you later, but I do worry it will be a big credibility hit. And that’s applying to people who are very concerned about AI safety and never said anything about very short timelines.

The AI security researcher who now believes AGI is further out—and is grateful

Jeffrey Ladish, executive director at Palisade Research

In the last year, two big things updated my AGI timelines. 

First, the lack of high-quality data turned out to be a bigger problem than I expected. 

Second, the first “reasoning” model, OpenAI’s o1 in September 2024, showed reinforcement learning scaling was more effective than I thought it would be. And then months later, you see the o1 to o3 scale-up and you see pretty crazy impressive performance in math and coding and science—domains where it’s easier to sort of verify the results. But while we’re seeing continued progress, it could have been much faster.

All of this bumps up my median estimate to the start of fully automated AI research and development from three years to maybe five or six years. But those are kind of made up numbers. It’s hard. I want to caveat all this with, like, “Man, it’s just really hard to do forecasting here.”

Thank God we have more time. We have a possibly very brief window of opportunity to really try to understand these systems before they are capable and strategic enough to pose a real threat to our ability to control them.

But it’s scary to see people think that we’re not making progress anymore when that’s clearly not true. I just know it’s not true because I use the models. One of the downsides of the way AI is progressing is that how fast it’s moving is becoming less legible to normal people. 

Now, this is not true in some domains—like, look at Sora 2. It is so obvious to anyone who looks at it that Sora 2 is vastly better than what came before. But if you ask GPT-4 and GPT-5 why the sky is blue, they’ll give you basically the same answer. It is the correct answer. It’s already saturated the ability to tell you why the sky is blue. So the people who I expect to most understand AI progress right now are the people who are actually building with AIs or using AIs on very difficult scientific problems.

The AGI forecaster who saw the critics coming

Daniel Kokotajlo, executive director of the AI Futures Project; an OpenAI whistleblower; and lead author of “AI 2027,” a vivid scenario where—starting in 2027—AIs progress from “superhuman coders” to “wildly superintelligent” systems in the span of months

AI policy seems to be getting worse, like the “Pro-AI” super PAC [launched earlier this year by executives from OpenAI and Andreessen Horowitz to lobby for a deregulatory agenda], and the deranged and/or dishonest tweets from Sriram Krishnan and David Sacks. AI safety research is progressing at the usual pace, which is excitingly rapid compared to most fields, but slow compared to how fast it needs to be.

We said on the first page of “AI 2027” that our timelines were somewhat longer than 2027. So even when we launched AI 2027, we expected there to be a bunch of critics in 2028 triumphantly saying we’ve been discredited, like the tweets from Sacks and Krishnan. But we thought, and continue to think, that the intelligence explosion will probably happen sometime in the next five to 10 years, and that when it does, people will remember our scenario and realize it was closer to the truth than anything else available in 2025. 

Predicting the future is hard, but it’s valuable to try; people should aim to communicate their uncertainty about the future in a way that is specific and falsifiable. This is what we’ve done and very few others have done. Our critics mostly haven’t made predictions of their own and often exaggerate and mischaracterize our views. They say our timelines are shorter than they are or ever were, or they say we are more confident than we are or were.

I feel pretty good about having longer timelines to AGI. It feels like I just got a better prognosis from my doctor. The situation is still basically the same, though.

This story has been updated to clarify some of Kokotajlo’s views on AI policy.

Garrison Lovely is a freelance journalist and the author of Obsolete, an online publication and forthcoming book on the discourse, economics, and geopolitics of the race to build machine superintelligence (out spring 2026). His writing on AI has appeared in the New York Times, Nature, Bloomberg, Time, the Guardian, The Verge, and elsewhere.

The great AI hype correction of 2025

Some disillusionment was inevitable. When OpenAI released a free web app called ChatGPT in late 2022, it changed the course of an entire industry—and several world economies. Millions of people started talking to their computers, and their computers started talking back. We were enchanted, and we expected more.

We got it. Technology companies scrambled to stay ahead, putting out rival products that outdid one another with each new release: voice, images, video. With nonstop one-upmanship, AI companies have presented each new product drop as a major breakthrough, reinforcing a widespread faith that this technology would just keep getting better. Boosters told us that progress was exponential. They posted charts plotting how far we’d come since last year’s models: Look how the line goes up! Generative AI could do anything, it seemed.

Well, 2025 has been a year of reckoning. 


This story is part of MIT Technology Review’s Hype Correction package, a series that resets expectations about what AI is, what it makes possible, and where we go next.


For a start, the heads of the top AI companies made promises they couldn’t keep. They told us that generative AI would replace the white-collar workforce, bring about an age of abundance, make scientific discoveries, and help find new cures for disease. FOMO across the world’s economies, at least in the Global North, made CEOs tear up their playbooks and try to get in on the action.

That’s when the shine started to come off. Though the technology may have been billed as a universal multitool that could revamp outdated business processes and cut costs, a number of studies published this year suggest that firms are failing to make the AI pixie dust work its magic. Surveys and trackers from a range of sources, including the US Census Bureau and Stanford University, have found that business uptake of AI tools is stalling. And when the tools do get tried out, many projects stay stuck in the pilot stage. Without broad buy-in across the economy it is not clear how the big AI companies will ever recoup the incredible amounts they’ve already spent in this race. 

At the same time, updates to the core technology are no longer the step changes they once were.

The highest-profile example of this was the botched launch of GPT-5 in August. Here was OpenAI, the firm that had ignited (and to a large extent sustained) the current boom, set to release a brand-new generation of its technology. OpenAI had been hyping GPT-5 for months: “PhD-level expert in anything,” CEO Sam Altman crowed. On another occasion Altman posted, without comment, an image of the Death Star from Star Wars, which OpenAI stans took to be a symbol of ultimate power: Coming soon! Expectations were huge.

And yet, when it landed, GPT-5 seemed to be—more of the same? What followed was the biggest vibe shift since ChatGPT first appeared three years ago. “The era of boundary-breaking advancements is over,” Yannic Kilcher, an AI researcher and popular YouTuber, announced in a video posted two days after GPT-5 came out: “AGI is not coming. It seems very much that we’re in the Samsung Galaxy era of LLMs.”

A lot of people (me included) have made the analogy with phones. For a decade or so, smartphones were the most exciting consumer tech in the world. Today, new products drop from Apple or Samsung with little fanfare. While superfans pore over small upgrades, to most people this year’s iPhone now looks and feels a lot like last year’s iPhone. Is that where we are with generative AI? And is it a problem? Sure, smartphones have become the new normal. But they changed the way the world works, too.

To be clear, the last few years have been filled with genuine “Wow” moments, from the stunning leaps in the quality of video generation models to the problem-solving chops of so-called reasoning models to the world-class competition wins of the latest coding and math models. But this remarkable technology is only a few years old, and in many ways it is still experimental. Its successes come with big caveats.

Perhaps we need to readjust our expectations.

The big reset

Let’s be careful here: The pendulum from hype to anti-hype can swing too far. It would be rash to dismiss this technology just because it has been oversold. The knee-jerk response when AI fails to live up to its hype is to say that progress has hit a wall. But that misunderstands how research and innovation in tech work. Progress has always moved in fits and starts. There are ways over, around, and under walls.

Take a step back from the GPT-5 launch. It came hot on the heels of a series of remarkable models that OpenAI had shipped in the previous months, including o1 and o3 (first-of-their-kind reasoning models that introduced the industry to a whole new paradigm) and Sora 2, which raised the bar for video generation once again. That doesn’t sound like hitting a wall to me.

AI is really good! Look at Nano Banana Pro, the new image generation model from Google DeepMind that can turn a book chapter into an infographic, and much more. It’s just there—for free—on your phone.

And yet you can’t help but wonder: When the wow factor is gone, what’s left? How will we view this technology a year or five from now? Will we think it was worth the colossal costs, both financial and environmental? 

With that in mind, here are four ways to think about the state of AI at the end of 2025: The start of a much-needed hype correction.

01: LLMs are not everything

In some ways, it is the hype around large language models, not AI as a whole, that needs correcting. It has become obvious that LLMs are not the doorway to artificial general intelligence, or AGI, a hypothetical technology that some insist will one day be able to do any (cognitive) task a human can.

Even an AGI evangelist like Ilya Sutskever, chief scientist and cofounder at the AI startup Safe Superintelligence and former chief scientist and cofounder at OpenAI, now highlights the limitations of LLMs, a technology he had a huge hand in creating. LLMs are very good at learning how to do a lot of specific tasks, but they do not seem to learn the principles behind those tasks, Sutskever said in an interview with Dwarkesh Patel in November.

It’s the difference between learning how to solve a thousand different algebra problems and learning how to solve any algebra problem. “The thing which I think is the most fundamental is that these models somehow just generalize dramatically worse than people,” Sutskever said.

It’s easy to imagine that LLMs can do anything because their use of language is so compelling. It is astonishing how well this technology can mimic the way people write and speak. And we are hardwired to see intelligence in things that behave in certain ways—whether it’s there or not. In other words, we have built machines with humanlike behavior and cannot resist seeing a humanlike mind behind them.

That’s understandable. LLMs have been part of mainstream life for only a few years. But in that time, marketers have preyed on our shaky sense of what the technology can really do, pumping up expectations and turbocharging the hype. As we live with this technology and come to understand it better, those expectations should fall back down to earth.  

02: AI is not a quick fix to all your problems

In July, researchers at MIT published a study that became a tentpole talking point in the disillusionment camp. The headline result was that a whopping 95% of businesses that had tried using AI had found zero value in it.  

The general thrust of that claim was echoed by other research, too. In November, a study by researchers at Upwork, a company that runs an online marketplace for freelancers, found that agents powered by top LLMs from OpenAI, Google DeepMind, and Anthropic failed to complete many straightforward workplace tasks by themselves.

This is miles off Altman’s prediction: “We believe that, in 2025, we may see the first AI agents ‘join the workforce’ and materially change the output of companies,” he wrote on his personal blog in January.

But what gets missed in that MIT study is that the researchers’ measure of success was pretty narrow. That 95% failure rate accounts for companies that had tried to implement bespoke AI systems but had not yet scaled them beyond the pilot stage after six months. It shouldn’t be too surprising that a lot of experiments with experimental technology don’t pan out straight away.

That number also does not include the use of LLMs by employees outside of official pilots. The MIT researchers found that around 90% of the companies they surveyed had a kind of AI shadow economy where workers were using personal chatbot accounts. But the value of that shadow economy was not measured.  

When the Upwork study looked at how well agents completed tasks together with people who knew what they were doing, success rates shot up. The takeaway seems to be that a lot of people are figuring out for themselves how AI might help them with their jobs.

That fits with something the AI researcher and influencer (and coiner of the term “vibe coding”) Andrej Karpathy has noted: Chatbots are better than the average human at a lot of different things (think of giving legal advice, fixing bugs, doing high school math), but they are not better than an expert human. Karpathy suggests this may be why chatbots have proved popular with individual consumers, helping non-experts with everyday questions and tasks, but they have not upended the economy, which would require outperforming skilled employees at their jobs.

That may change. For now, don’t be surprised that AI has not (yet) had the impact on jobs that boosters said it would. AI is not a quick fix, and it cannot replace humans. But there’s a lot to play for. The ways in which AI could be integrated into everyday workflows and business pipelines are still being tried out.   

03: Are we in a bubble? (If so, what kind of bubble?)

If AI is a bubble, is it like the subprime mortgage bubble of 2008 or the internet bubble of 2000? Because there’s a big difference.

The subprime bubble wiped out a big part of the economy, because when it burst it left nothing behind except debt and overvalued real estate. The dot-com bubble wiped out a lot of companies, which sent ripples across the world, but it left behind the infant internet—an international network of cables and a handful of startups, like Google and Amazon, that became the tech giants of today.  

Then again, maybe we’re in a bubble unlike either of those. After all, there’s no real business model for LLMs right now. We don’t yet know what the killer app will be, or if there will even be one. 

And many economists are concerned about the unprecedented amounts of money being sunk into the infrastructure required to build capacity and serve the projected demand. But what if that demand doesn’t materialize? Add to that the weird circularity of many of those deals—with Nvidia paying OpenAI to pay Nvidia, and so on—and it’s no surprise everybody’s got a different take on what’s coming. 

Some investors remain sanguine. In an interview with the Technology Business Programming Network podcast in November, Glenn Hutchins, cofounder of Silver Lake Partners, a major international private equity firm, gave a few reasons not to worry. “Every one of these data centers—almost all of them—has a solvent counterparty that is contracted to take all the output they’re built to suit,” he said. In other words, it’s not a case of “Build it and they’ll come”—the customers are already locked in. 

And, he pointed out, one of the biggest of those solvent counterparties is Microsoft. “Microsoft has the world’s best credit rating,” Hutchins said. “If you sign a deal with Microsoft to take the output from your data center, Satya is good for it.”

Many CEOs will be looking back at the dot-com bubble and trying to learn its lessons. Here’s one way to see it: The companies that went bust back then didn’t have the money to last the distance. Those that survived the crash thrived.

With that lesson in mind, AI companies today are trying to pay their way through what may or may not be a bubble. Stay in the race; don’t get left behind. Even so, it’s a desperate gamble.

But there’s another lesson too. Companies that might look like sideshows can turn into unicorns fast. Take Synthesia, which makes avatar generation tools for businesses. Nathan Benaich, cofounder of the VC firm Air Street Capital, admits that when he first heard about the company a few years ago, back when fear of deepfakes was rife, he wasn’t sure what its tech was for and thought there was no market for it.

“We didn’t know who would pay for lip-synching and voice cloning,” he says. “Turns out there’s a lot of people who wanted to pay for it.” Synthesia now has around 55,000 corporate customers and brings in around $150 million a year. In October, the company was valued at $4 billion.

04: ChatGPT was not the beginning, and it won’t be the end

ChatGPT was the culmination of a decade’s worth of progress in deep learning, the technology that underpins all of modern AI. The seeds of deep learning itself were planted in the 1980s. The field as a whole goes back at least to the 1950s. If progress is measured against that backdrop, generative AI has barely got going.

Meanwhile, research is at a fever pitch. There are more high-quality submissions to the world’s major AI conferences than ever before. This year, organizers of some of those conferences resorted to turning down papers that reviewers had already approved, just to manage numbers. (At the same time, preprint servers like arXiv have been flooded with AI-generated research slop.)

“It’s back to the age of research again,” Sutskever said in that Dwarkesh interview, talking about the current bottleneck with LLMs. That’s not a setback; that’s the start of something new.

“There’s always a lot of hype beasts,” says Benaich. But he thinks there’s an upside to that: Hype attracts the money and talent needed to make real progress. “You know, it was only like two or three years ago that the people who built these models were basically research nerds that just happened on something that kind of worked,” he says. “Now everybody who’s good at anything in technology is working on this.”

Where do we go from here?

The relentless hype hasn’t come just from companies drumming up business for their vastly expensive new technologies. There’s a large cohort of people—inside and outside the industry—who want to believe in the promise of machines that can read, write, and think. It’s a wild decades-old dream

But the hype was never sustainable—and that’s a good thing. We now have a chance to reset expectations and see this technology for what it really is—assess its true capabilities, understand its flaws, and take the time to learn how to apply it in valuable (and beneficial) ways. “We’re still trying to figure out how to invoke certain behaviors from this insanely high-dimensional black box of information and skills,” says Benaich.

This hype correction was long overdue. But know that AI isn’t going anywhere. We don’t even fully understand what we’ve built so far, let alone what’s coming next.

Generative AI hype distracts us from AI’s more important breakthroughs

On April 28, 2022, at a highly anticipated concert in Spokane, Washington, the musician Paul McCartney astonished his audience with a groundbreaking application of AI: He began to perform with a lifelike depiction of his long-deceased musical partner, John Lennon. 

Using recent advances in audio and video processing, engineers had taken the pair’s final performance (London, 1969), separated Lennon’s voice and image from the original mix and restored them with lifelike clarity.


This story is part of MIT Technology Review’s Hype Correction package, a series that resets expectations about what AI is, what it makes possible, and where we go next.


For years, researchers like me had taught machines to “see” and “hear” in order to make such a moment possible. As McCartney and Lennon appeared to reunite across time and space, the arena fell silent; many in the crowd began to cry. As an AI scientist and lifelong Beatles fan, I felt profound gratitude that we could experience this truly life-changing moment. 

Later that year, the world was captivated by another major breakthrough: AI conversation. For the first time in history, systems capable of generating new, contextually relevant comments in real time, on virtually any subject, were widely accessible owing to the release of ChatGPT. Billions of people were suddenly able to interact with AI. This ignited the public’s imagination about what AI could be, bringing an explosion of creative ideas, hopes, and fears.

Having done my PhD on AI language generation (long considered niche), I was thrilled we had come this far. But the awe I felt was rivaled by my growing rage at the flood of media takes and self-appointed experts insisting that generative AI could do things it simply can’t, and warning that anyone who didn’t adopt it would be left behind.

This kind of hype has contributed to a frenzy of misunderstandings about what AI actually is and what it can and cannot do. Crucially, generative AI is a seductive distraction from the type of AI that is most likely to make your life better, or even save it: Predictive AI. In contrast to AI designed for generative tasks, predictive AI involves tasks with a finite, known set of answers; the system just has to process information to say which answer is right. A basic example is plant recognition: Point your phone camera at a plant and learn that it’s a Western sword fern. Generative tasks, in contrast, have no finite set of correct answers: The system must blend snippets of information it’s been trained on to create, for example, a novel picture of a fern. 

The generative AI technology involved in chatbots, face-swaps, and synthetic video makes for stunning demos, driving clicks and sales as viewers run wild with ideas that superhuman AI will be capable of bringing us abundance or extinction. Yet predictive AI has quietly been improving weather prediction and food safety, enabling higher-quality music production, helping to organize photos, and accurately predicting the fastest driving routes. We incorporate predictive AI into our everyday lives without evening thinking about it, a testament to its indispensable utility.

To get a sense of the immense progress on predictive AI and its future potential, we can look at the trajectory of the past 20 years. In 2005, we couldn’t get AI to tell the difference between a person and a pencil. By 2013, AI still couldn’t reliably detect a bird in a photo, and the difference between a pedestrian and a Coke bottle was massively confounding (this is how I learned that bottles do kind of look like people, if people had no heads). The thought of deploying these systems in the real world was the stuff of science fiction. 

Yet over the past 10 years, predictive AI has not only nailed bird detection down to the specific species; it has rapidly improved life-critical medical services like identifying problematic lesions and heart arrhythmia. Because of this technology, seismologists can predict earthquakes and meteorologists can predict flooding more reliably than ever before. Accuracy has skyrocketed for consumer-facing tech that detects and classifies everything from what song you’re thinking of when you hum a tune to which objects to avoid while you’re driving—making self-driving cars a reality. 

In the very near future, we should be able to accurately detect tumors and forecast hurricanes long before they can hurt anyone, realizing the lifelong hopes of people all over the world. That might not be as flashy as generating your own Studio Ghibli–ish film, but it’s definitely hype-worthy. 

Predictive AI systems have also been shown to be incredibly useful when they leverage certain generative techniques within a constrained set of options. Systems of this type are diverse, spanning everything from outfit visualization to cross-language translation. Soon, predictive-generative hybrid systems will make it possible to clone your own voice speaking another language in real time, an extraordinary aid for travel (with serious impersonation risks). There’s considerable room for growth here, but generative AI delivers real value when anchored by strong predictive methods.

To understand the difference between these two broad classes of AI, imagine yourself as an AI system tasked with showing someone what a cat looks like. You could adopt a generative approach, cutting and pasting small fragments from various cat images (potentially from sources that object) to construct a seemingly perfect depiction. The ability of modern generative AI to produce such a flawless collage is what makes it so astonishing.

Alternatively, you could take the predictive approach: Simply locate and point to an existing picture of a cat. That method is much less glamorous but more energy-efficient and more likely to be accurate, and it properly acknowledges the original source. Generative AI is designed to create things that look real; predictive AI identifies what is real. A misunderstanding that generative systems are retrieving things when they are actually creating them has led to grave consequences when text is involved, requiring the withdrawal of legal rulings and the retraction of scientific articles.

Driving this confusion is a tendency for people to hype AI without making it clear what kind of AI they’re talking about (I reckon many don’t know). It’s very easy to equate “AI” with generative AI, or even just language-generating AI, and assume that all other capabilities fall out from there. That fallacy makes a ton of sense: The term literally references “intelligence,” and our human understanding of what “intelligence” might be is often mediated by the use of language. (Spoiler: No one actually knows what intelligence is.) But the phrase “artificial intelligence” was intentionally designed in the 1950s to inspire awe and allude to something humanlike. Today, it just refers to a set of disparate technologies for processing digital data. Some of my friends find it helpful to call it “mathy maths” instead.

The bias toward treating generative AI as the most powerful and real form of AI is troubling given that it consumes considerably more energy than predictive AI systems. It also means using existing human work in AI products against the original creators’ wishes and replacing human jobs with AI systems whose capabilities their work made possible in the first place—without compensation. AI can be amazingly powerful, but that doesn’t mean creators should be ripped off

Watching this unfold as an AI developer within the tech industry, I’ve drawn important lessons for next steps. The widespread appeal of AI is clearly linked to the intuitive nature of conversation-based interactions. But this method of engagement currently overuses generative methods where predictive ones would suffice, resulting in an awkward situation that’s confusing for users while imposing heavy costs in energy consumption, exploitation, and job displacement. 

We have witnessed just a glimpse of AI’s full potential: The current excitement around AI reflects what it could be, not what it is. Generation-based approaches strain resources while still falling short on representation, accuracy, and the wishes of people whose work is folded into the system. 

If we can shift the spotlight from the hype around generative technologies to the predictive advances already transforming daily life, we can build AI that is genuinely useful, equitable, and sustainable. The systems that help doctors catch diseases earlier, help scientists forecast disasters sooner, and help everyday people navigate their lives more safely are the ones poised to deliver the greatest impact. 

The future of beneficial AI will not be defined by the flashiest demos but by the quiet, rigorous progress that makes technology trustworthy. And if we build on that foundation—pairing predictive strength with more mature data practices and intuitive natural-language interfaces—AI can finally start living up to the promise that many people perceive today.

Dr. Margaret Mitchell is a computer science researcher and chief ethics scientist at AI startup Hugging Face. She has worked in the technology industry for 15 years, and has published over 100 papers on natural language generation, assistive technology, computer vision, and AI ethics. Her work has received numerous awards and has been implemented by multiple technology companies.

AI might not be coming for lawyers’ jobs anytime soon

When the generative AI boom took off in 2022, Rudi Miller and her law school classmates were suddenly gripped with anxiety. “Before graduating, there was discussion about what the job market would look like for us if AI became adopted,” she recalls. 

So when it came time to choose a speciality, Miller—now a junior associate at the law firm Orrick—decided to become a litigator, the kind of lawyer who represents clients in court. She hoped the courtroom would be the last human stage. “Judges haven’t allowed ChatGPT-enabled robots to argue in court yet,” she says.


This story is part of MIT Technology Review’s Hype Correction package, a series that resets expectations about what AI is, what it makes possible, and where we go next.


She had reason to be worried. The artificial-intelligence job apocalypse seemed to be coming for lawyers. In March 2023, researchers reported that GPT-4 had smashed the Uniform Bar Exam. That same month, an industry report predicted that 44% of legal work could be automated. The legal tech industry entered a boom as law firms began adopting generative AI to mine mountains of documents and draft contracts, work ordinarily done by junior associates. Last month, the law firm Clifford Chance axed 10% of its staff in London, citing increased use of AI as a reason.

But for all the hype, LLMs are still far from thinking like lawyers—let alone replacing them. The models continue to hallucinate case citations, struggle to navigate gray areas of the law and reason about novel questions, and stumble when they attempt to synthesize information scattered across statutes, regulations, and court cases. And there are deeper institutional reasons to think the models could struggle to supplant legal jobs. While AI is reshaping the grunt work of the profession, the end of lawyers may not be arriving anytime soon.

The big experiment

The legal industry has long been defined by long hours and grueling workloads, so the promise of superhuman efficiency is appealing. Law firms are experimenting with general-purpose tools like ChatGPT and Microsoft Copilot and specialized legal tools like Harvey and Thomson Reuters’ CoCounsel, with some building their own in-house tools on top of frontier models. They’re rolling out AI boot camps and letting associates bill hundreds of hours to AI experimentation. As of 2024, 47.8% of attorneys at law firms employing 500 or more lawyers used AI, according to the American Bar Association. 

But lawyers say that LLMs are a long way from reasoning well enough to replace them. Lucas Hale, a junior associate at McDermott Will & Schulte, has been embracing AI for many routine chores. He uses Relativity to sift through long documents and Microsoft Copilot for drafting legal citations. But when he turns to ChatGPT with a complex legal question, he finds the chatbot spewing hallucinations, rambling off topic, or drawing a blank.

“In the case where we have a very narrow question or a question of first impression for the court,” he says, referring to a novel legal question that a court has never decided before, “that’s the kind of thinking that the tool can’t do.”

Much of Lucas’s work involves creatively applying the law to new fact patterns. “Right now, I don’t think very much of the work that litigators do, at least not the work that I do, can be outsourced to an AI utility,” he says.

Allison Douglis, a senior associate at Jenner & Block, uses an LLM to kick off her legal research. But the tools only take her so far. “When it comes to actually fleshing out and developing an argument as a litigator, I don’t think they’re there,” she says. She has watched the models hallucinate case citations and fumble through ambiguous areas of the law.

“Right now, I would much rather work with a junior associate than an AI tool,” she says. “Unless they get extraordinarily good very quickly, I can’t imagine that changing in the near future.”

Beyond the bar

The legal industry has seemed ripe for an AI takeover ever since ChatGPT’s triumph on the bar exam. But passing a standardized test isn’t the same as practicing law. The exam tests whether people can memorize legal rules and apply them to hypothetical situations—not whether they can exercise strategic judgment in complicated realities or craft arguments in uncharted legal territory. And models can be trained to ace benchmarks without genuinely improving their reasoning.

But new benchmarks are aiming to better measure the models’ ability to do legal work in the real world. The Professional Reasoning Benchmark, published by ScaleAI in November, evaluated leading LLMs on legal and financial tasks designed by professionals in the field. The study found that the models have critical gaps in their reliability for professional adoption, with the best-performing model scoring only 37% on the most difficult legal problems, meaning it met just over a third of possible points on the evaluation criteria. The models frequently made inaccurate legal judgments, and if they did reach correct conclusions, they did so through incomplete or opaque reasoning processes. 

“The tools actually are not there to basically substitute [for] your lawyer,” says Afra Feyza Akyurek, the lead author of the paper. “Even though a lot of people think that LLMs have a good grasp of the law, it’s still lagging behind.” 

The paper builds on other benchmarks measuring the models’ performance on economically valuable work. The AI Productivity Index, published by the data firm Mercor in September and updated in December, found that the models have “substantial limitations” in performing legal work. The best-performing model scored 77.9% on legal tasks, meaning it satisfied roughly four out of five evaluation criteria. A model with such a score might generate substantial economic value in some industries, but in fields where errors are costly, it may not be useful at all, the early version of the study noted.  

Professional benchmarks are a big step forward in evaluating the LLMs’ real-world capabilities, but they may still not capture what lawyers actually do. “These questions, although more challenging than those in past benchmarks, still don’t fully reflect the kinds of subjective, extremely challenging questions lawyers tackle in real life,” says Jon Choi, a law professor at the University of Washington School of Law, who coauthored a study on legal benchmarks in 2023. 

Unlike math or coding, in which LLMs have made significant progress, legal reasoning may be challenging for the models to learn. The law deals with messy real-world problems, riddled with ambiguity and subjectivity, that often have no right answer, says Choi. Making matters worse, a lot of legal work isn’t recorded in ways that can be used to train the models, he says. When it is, documents can span hundreds of pages, scattered across statutes, regulations, and court cases that exist in a complex hierarchy.  

But a more fundamental limitation might be that LLMs are simply not trained to think like lawyers. “The reasoning models still don’t fully reason about problems like we humans do,” says Julian Nyarko, a law professor at Stanford Law School. The models may lack a mental model of the world—the ability to simulate a scenario and predict what will happen—and that capability could be at the heart of complex legal reasoning, he says. It’s possible that the current paradigm of LLMs trained on next-word prediction gets us only so far.  

The jobs remain

Despite early signs that AI is beginning to affect entry-level workers, labor statistics have yet to show that lawyers are being displaced. 93.4% of law school graduates in 2024 were employed within 10 months of graduation—the highest rate on record—according to the National Association for Law Placement. The number of graduates working in law firms rose by 13% from 2023 to 2024. 

For now, law firms are slow to shrink their ranks. “We’re not reducing headcounts at this point,” said Amy Ross, the chief of attorney talent at the law firm Ropes & Gray. 

Even looking ahead, the effects could be incremental. “I will expect some impact on the legal profession’s labor market, but not major,” says Mert Demirer, an economist at MIT. “AI is going to be very useful in terms of information discovery and summary,” he says, but for complex legal tasks, “the law’s low risk tolerance, plus the current capabilities of AI, are going to make that case less automatable at this point.” Capabilities may evolve over time, but that’s a big unknown.

It’s not just that the models themselves are not ready to replace junior lawyers. Institutional barriers may also shape how AI is deployed. Higher productivity reduces billable hours, challenging the dominant business model of law firms. Liability looms large for lawyers, and clients may still want a human on the hook. Regulations could also constrain how lawyers use the technology.

Still, as AI takes on some associate work, law firms may need to reinvent their training system. “When junior work dries up, you have to have a more formal way of teaching than hoping that an apprenticeship works,” says Ethan Mollick, a management professor at the Wharton School of the University of Pennsylvania.

Zach Couger, a junior associate at McDermott Will & Schulte, leans on ChatGPT to comb through piles of contracts he once slogged through by hand. He can’t imagine going back to doing the job himself, but he wonders what he’s missing. 

“I’m worried that I’m not getting the same reps that senior attorneys got,” he says, referring to the repetitive training that has long defined the early experiences of lawyers. “On the other hand, it is very nice to have a semi–knowledge expert to just ask questions to that’s not a partner who’s also very busy.” 

Even though an AI job apocalypse looks distant, the uncertainty sticks with him. Lately, Couger finds himself staying up late, wondering if he could be part of the last class of associates at big law firms: “I may be the last plane out.”