This company plans to transplant gene-edited pig hearts into babies next year

The baby baboon is wearing a mesh gown and appears to be sitting upright. “This little lady … looks pretty philosophical, I would say,” says Eli Katz, who is showing me the image over a Zoom call.

This baboon is the first to receive a heart transplant from a young gene-edited pig as part of a study that should pave the way for similar transplants in human babies, says Katz, chief medical officer at the biotech company eGenesis.

The company, based in Cambridge, Massachusetts, has developed a technique that uses the gene-editing tool CRISPR to make around 70 edits to a pig’s genome. These edits should allow the organs to be successfully transplanted into people, the team says. As soon as next year, eGenesis hopes to transplant pig hearts into babies with serious heart defects. The goal is to buy them more time to wait for a human heart. 

Before that happens, the team at eGenesis will practice on 12 infant baboons. Two such surgeries have been performed so far. Neither animal survived beyond a matter of days.

But the company is optimistic, as are others in the field. Many recipients of the first liver transplants didn’t survive either—but thousands of people have since benefited from such transplants, says Robert Montgomery, director of the NYU Langone Transplant Institute, who has worked with rival company United Therapeutics. Babies born with heart conditions represent “a great population to be focusing on,” he says, “because so many of them die.”

Editing risk

Over 100,000 people in the US alone are waiting for an organ transplant. Every day, around 17 of them die. Researchers are exploring multiple options, including the possibility of bioprinting organs or growing new ones inside people’s bodies. Transplanting animal organs is another potential alternative to help meet the need.

The idea of using organs and tissues from animals, known as xenotransplantation, is an old one—the first experiments were performed back in the 17th century. More recent attempts were made in the 1960s, and again in the 1990s. Many of these used organs from monkeys and baboons. But toward the start of the 1990s, a consensus emerged that pigs were the best donor candidates, says Montgomery. 

Primates are precious—they are intelligent animals that experience complex emotions. Only a small number can be used for human research, and at any rate, they reproduce slowly. They are also more likely to be able to pass on harmful viruses. On the other hand, people already know a lot about how to rear and farm pigs, and their organs are about the right size for humans.

But transferring organs between animals of different species isn’t straightforward. Even organs from another human can be rejected by a recipient’s immune system, and animal tissues have a lot more components that our immune systems will regard as “foreign.” This can cause the organ to be attacked by immune cells. There’s also the possibility of transferring a virus along with the organ, for example. Even if a donor animal isn’t infected, it will have “endogenous retroviruses”—genetic code for ancient viruses that have long since been incorporated into its DNA.

These viruses don’t cause problems for their animal hosts. But there’s a chance they could cause an infection in another species. “There’s a risk that viruses that are endemic to animals evolve in a human and become deadly,” says Chris Gyngell, a bioethicist at Murdoch Children’s Research Institute in Melbourne, Australia.

The team at eGenesis is using CRISPR to address this risk. “You can use CRISPR-Cas9 to inactivate the 50 to 70 copies of retrovirus in the genome,” says Mike Curtis, president and chief executive officer at eGenesis. The edits prevent retroviruses from being able to replicate, he says.

Scientists at the company perform other gene edits, too. Several serve to “knock out” pig genes whose protein products trigger harmful immune responses in humans. And the team members insert seven human genes, which they believe should reduce the likelihood that the organ will be rejected by a human recipient’s immune system. In all, “we’re producing [organ] donors with over 70 edits,” says Curtis.

The team performs these edits on pig fibroblasts—cells that are found in connective tissue. Then they take the DNA-containing nuclei of edited cells and put them into pig egg cells. Once an egg is fertilized with sperm, the resulting embryo is implanted into the uterus of an adult pig. Eventually, cloned piglets are delivered by C-section. “It’s the same technology that was used to clone Dolly back in the ’90s,” says Curtis, referring to the famous sheep that was the first animal cloned from an adult cell.

eGenesis has around 400 cloned pigs housed at a research facility in the Midwest (he is reluctant to reveal the exact location because facilities have been targeted by animal rights protesters). And early last year, the company set up a “clean” facility to produce organs fit for humans. Anyone who enters has to shower and don protective gear to avoid bringing in any bugs that might infect the pigs. The 200 pigs currently at this center live in groups of 15 to 25, says Curtis: “It’s basically like a very clean barn. We control all the feed that comes in, and we have waste control and airflow control.” There’s no mud.

The pigs that don’t end up having their organs used will be closely studied, says Curtis. The company needs to understand how the numerous gene edits they implement affect an animal over the course of its life. The team also wants to know if the human genes continue to be expressed over time. Some of the pigs are over four years old, says Curtis. “So far, it looks good,” he adds. 

Five masked people in a lab doing tasks around a sedated donor pig laying on a metal bed
eGenesis researchers collect cells from a pig donor
EGENESIS

Complications

When it comes to organ transplants, size is important. Surgeons take care to match the size of a donor’s heart to that of the recipient. Baby baboons are small—only hearts taken from pigs aged one to two months old are suitable, says Curtis. Once they are transplanted, the hearts are expected to grow with the baboons.

The first baboon to get a pig heart, which was just under a year old, died within a day of surgery. “It was a surgical complication,” says Curtis. The intravenous tube providing essential fluids to the baboon became blocked, he says. “The animal had to be euthanized.”

A second baboon was operated on a few months later. The team encountered another surgical complication: this time, the surgeons couldn’t get the baboon’s blood vessels to stay attached to those in the pig’s organs. The baboon died nine days after the operation.

In both cases, “the heart itself was beating well,” says Curtis. “So far, the first two are very encouraging from cardiac performance … the hearts look good.” The surgeons who performed the operations are confident they’ll be able to avoid the surgical complications in the future, he says.

Tough decisions

Once the baboon trial is completed, the team at eGenesis wants to offer the pig hearts to babies under the age of two who were born with severe heart conditions. Such children have limited treatment options—human hearts of the right size are few and far between, and some of the devices used to treat heart conditions in adults aren’t suitable for little children with small hearts.

Curtis hopes the pig hearts could initially be used as a temporary measure for such children—essentially buying them more time to wait for a donated human heart. Once a potential recipient has been found, the company can seek approval for the surgery from the US Food and Drug Administration.

Ethicists will point out that babies won’t be able to give informed consent for surgery. That decision will come down to their caregiver, who will likely be in a dire situation, says Syd Johnson, a bioethicist at Upstate Medical University in Syracuse, New York. “These are parents who are desperate for anything that might save their child’s life,” she says.

But Gyngell thinks the focus should be on who has the most to gain from an experimental procedure like this. “The fact is that pediatric patients have a greater clinical need, because there are far fewer other options available to them,” he says.

Montgomery, who is himself the recipient of a donated human heart, agrees. He says he supports eGenesis’s goals. “These babies that have congenital heart disease … have a 50% mortality rate,” he says. “It’s a flip of a coin whether that kid is going to live or not.”

That reasoning doesn’t wash with Johnson. The procedure is risky, and a child whose immune system rejects the organ could suffer, she says: “One hundred percent of the patients who’ve been transplanted with an animal organ have died [soon after the procedure]—that’s just an inescapable fact.” David Bennett Sr., who was the first living person to receive a gene-edited pig heart, in 2022, died two months later

There are more risks when using organs from gene-edited animals, says Johnson. We still don’t know if these genetic modifications might affect human recipients, especially in the long term. “The desire to do something to save these babies [with heart conditions] is obviously very strong for everyone who is involved,” she says. “But we still need to be honest and transparent about what the risks are—and they are, to some extent, unknown.”

Montgomery himself has transplanted gene-edited pig organs into adults who have been declared brain dead. Those organs—which include kidneys and, in unpublished work, hearts—were from pigs bred by the rival company Revivicor, which was acquired by United Therapeutics. The experiments ran for just two or three days, but Montgomery plans to run a similar experiment in individuals who will be studied for a month after the transplant. So far, he says, “we’ve got very good results.”

He believes young children may be better candidates for pig organs than adults, because their immune systems are still developing and therefore might be less likely to reject the organ. “They may well have some level of tolerance,” he says.

A third baboon is due to receive a pig heart in August. The company plans to perform at least one such operation a month until 12 animals have been operated on. The team members hope they’ll be able to fix the surgical issues and enable the baboons to live longer. Some other non-human primates that have received kidneys from the gene-edited pigs have already survived over a year, says Curtis.

“When you’re pioneering something new, there’s a steep learning curve,” Montgomery says.

How gene-edited microbiomes could improve our health

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Microbes have been on my mind this week. These tiny organisms are everywhere, and the ones that reside in our bodies appear to be incredibly important for our health.

Microbes are ancient—they were evolving on the planet for millions of years before humans came along. So it’s no surprise that they’ve developed intricate relationships with other living systems. They feed on chemicals in their environments to produce other chemicals—some of which are more beneficial to nearby organisms than others.

The question is: can we tweak the genomes of these microbes to control exactly which chemicals they break down or produce? Imagine the possibilities. What if we could get microbes to help us reduce pollution? What if we could create microbes that make medicines, or that churn out gut-friendly products in our intestines?

Modified microbes seem to help treat cancer in mice, and human trials are on the way, as I reported earlier this year. (For a more general update on gene editing, you can read about how the editing tool CRISPR is already changing people’s lives, and how some believe we’ll eventually be using the technology to treat the majority of people.)

Getting microbes to work for us has been a tantalizing prospect to scientists for decades. New technologies are bringing us ever closer to making it a reality. So for this week’s newsletter, let’s focus on a couple of particularly exciting ways people are engineering microbes to benefit our health and environment.

Take the work being done by Brad Ringeisen, executive director of the Innovative Genomics Institute in Berkeley, California, and his colleagues. The team recently received a huge amount of funding to explore new ways to engineer microbes for the well-being of people and the planet—particularly people living in low- and middle-income countries.

“We got $70 million to develop precision microbiome-editing tools,” says Ringeisen. The team is focusing on using CRISPR to change the behavior of microbes—not just bacteria, but also their lesser-studied co-habitants, such as fungi and archaea. The idea is that feeding such treatments to people or animals could get their gut microbiomes to a healthier state.

The likely first recipients of such treatments will be cows. The way we farm these animals has a tremendous impact on the environment, for several reasons. (Read more from Tech Review about what it would take to clean up farming here and here.) But one significant element is the methane they emit, since methane is a powerful greenhouse gas that contributes to climate change.

Technically, the methane isn’t made by the cows themselves. It’s produced by the bacteria in their guts. Ringeisen and his colleagues are looking at ways to alter microbes that reside in the rumen—the first and largest stomach compartment—so that they produce much less of the gas, if any.

Ringeisen thinks that modifying existing microbes should be less disruptive than introducing entirely new ones. He likens the approach to that of a conductor fine-tuning the sound of an orchestra. “[It would be like] bringing up the violin and lowering the bass drum, but to tune the microbiome,” he says.

The team is also looking at how a CRISPR microbiome treatment might benefit human infants. A baby’s first microbiome—thought to be picked up at birth—is especially malleable during the first two years of life. So microbiologists believe it’s important to get an infant’s microbiome as healthy as possible early on.

We still don’t know exactly what that means, or what a healthy microbiome should look like. But ideally, we want to avoid having bugs that make chemicals that cause harmful inflammation or damage the gut lining, for example. And we might want to encourage the growth of microbes that make chemicals that aid gut health—like butyrate, which is made when some microbes ferment fiber and seems to strengthen the intestine’s natural barrier.

The work being done here is still in its early stages. But the researchers envision an oral treatment that would be fed to babies to manipulate their microbiomes. They don’t have a specific age in mind, but it could be quite soon after birth.

As long as the modified microbes aren’t making anything harmful, it should be relatively straightforward to approve these treatments, says Ringeisen. “Those are experiments that are going to be relatively easy to do,” he says.

Justin Sonnenburg, a professor of microbiology and immunology at Stanford University in California, is also looking at ways to reengineer the microbes in our guts to improve our health. One important target is inflammation—a process that has been linked to all sorts of diseases, ranging from arthritis to cardiovascular disease.

Microbes that live in our guts can sense inflammation, says Sonnenburg. If we could “rewire the genetic circuit” of these microbes, we could potentially enable them to secrete anti-inflammatory compounds that treat inflammation if and when it arises. “All this [would be] happening behind the scenes without the person harboring the microbes even knowing about it,” he says.

One of the challenges will be to develop a treatment that works the same way in different people, who will have different microbiomes. But there may be some ways around this. In a study a few years ago, Sonnenburg and his colleagues delivered a modified microbe into the guts of mice. This microbe glowed under a microscope, so the scientists could tell how well it had settled in the mice’s intestines. It was quite variable—some of the mice had more of the microbes than others.

This particular microbe also fed on a carbohydrate found in seaweed, called porphyran. And when the scientists fed the mice seaweed, they found they could influence levels of the microbe in the gut. A diet rich in seaweed brought up the levels in all the mice, for example. “Now we have the ability to control engraftment and the level of the microbe independent of the background microbiota,” says Sonnenburg.

Some of the scientists who worked with Sonnenburg on this study have since formed a company, called Novome, which has shown that it can achieve similar results in people. The company is working on a proprietary microbial strain that has been engineered to break down oxalate, a compound that contributes to the formation of kidney stones. The company is also working on engineered microbes for irritable bowel syndrome and inflammatory bowel disease.

Scientists have been working on “designer microbes” for decades. But the progress made in recent years has brought such treatments closer to reality. Ringeisen reckons we’re four to six years away from a human treatment, and he thinks cow treatments are even closer than that. It’s an exciting time. Let’s wait and see.

Read more from Tech Review’s archive

About 60 million metric tons of food waste is generated every year in the US alone. My colleague Casey Crownhart wrote about one company trying to use microbes to help “digest” it.

Engineered microbes are also being explored as a new way to make cheaper and cleaner fuels, as Casey reported last year.

Your microbiome ages as you do—and that’s a problem. Scientists are trying to work out whether tweaking our microbiomes could help keep us healthy in old age.

Feel like you could do with some personalized, microbiome-based diet advice? Your poo could provide a rich source of such information.

From around the web

Penile enlargement surgery promises to help men stop worrying about their penises. But for those who experience problems—including devices protruding from their skin or injuring their wives, and loss of penile sensitivity—the dissatisfaction can get worse. (The New Yorker)

Learning about our ancestors can be fascinating and enriching. But it can also be disturbing—especially if we find out they were awful people, or were treated badly. Should DNA tests come with trigger warnings? (The Conversation)

A third of US adults say they would pay whatever they could afford, indefinitely, to get their hands on weight loss drugs like Wegovy. Nearly a quarter would pay up to $250 a month, according to a poll. (STAT)

When Singulair, a treatment for childhood asthma, was launched in the late ’90s, the company behind the drug didn’t mention any risk of psychiatric side effects. Then came reports of children who developed neuropsychiatric symptoms and some who died by suicide. The company, Merck, now faces multiple lawsuits alleging it knew of the risks and minimized them. (Reuters)

A janitor assigned to clean a university lab turned off a freezer when he heard its “annoying alarms.” In doing so, he destroyed decades’ worth of research materials valued at nearly $1 million, according to scientists at the university, which is suing the cleaning company that employed the janitor. The lawsuit states he was “just trying to help.” (Washington Post)

More than 200 people have been treated with experimental CRISPR therapies

This article is from The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, sign up here.

I’ve spent the last few days thinking about how, when, and if we should use gene-editing tools to change the human genome. These are huge questions, and very emotive ones—especially when it comes to editing embryos.

I watched scientists, ethicists, patient advocacy groups, and others wrestle with these topics at the Third International Summit on Human Genome Editing in London earlier this week.

There’s plenty to get excited about when it comes to gene editing. In the decade since scientists found they could use CRISPR to edit cell genomes, multiple clinical trials have sprung up to test the technology’s use for serious diseases. CRISPR has already been used to save some lives and transform others.

But it hasn’t all been smooth sailing. Not all of the trials have gone to plan, and some volunteers have died. Successful treatments are likely to be expensive, and thus limited to the wealthy few. And while these trials tend to involve changes to the genes in adult body cells, some are hoping to use CRISPR and other gene-editing tools in eggs, sperm, and embryos. The specter of designer babies continues to loom over the field.

It was at the last summit, held in Hong Kong in 2018, that He Jiankui, then based at the Southern University of Science and Technology in Shenzhen, China, announced that he had used CRISPR on human embryos. The news of the first “CRISPR babies,” as they became known, caused a massive ruckus, as you might imagine. “We’ll never forget the shock,” Victor Dzau, president of the US National Academy of Medicine, told us.

Protesters outside the Third International Human Genome Editing Summit in London

He Jiankui ended up in prison and was released only last year. And while heritable genome editing was already banned in China at the time—it has been outlawed since 2003—the country has since enacted a series of additional laws designed to prevent anything like that from happening again. Today, heritable genome editing is prohibited under criminal law, Yaojin Peng of the Beijing Institute of Stem Cell and Regenerative Medicine told the audience.

There was much less drama at this year’s summit. But there was plenty of emotion. In a session about how gene editing might be used to treat sickle-cell disease, Victoria Gray, a 37-year-old survivor of the disease, took to the stage. She told the audience about how her severe symptoms had disrupted her childhood and adolescence, and scuppered her dreams of training to be a doctor. She described episodes of severe pain that left her hospitalized for months at a time. Her children were worried she might die.

But then she underwent a treatment that involved editing the genes in cells from her bone marrow. Her new “super cells,” as she calls them, have transformed her life. Within minutes of receiving her transfusion of edited cells, she felt reborn and shed tears of joy, she told us. It took seven to eight months for her to feel better, but after that point, “I really began to enjoy the life that I once felt was just passing me by,” she said. I could see the typically stoic scientists around me wiping tears from their eyes.

Victoria is one of more than 200 people who have been treated with CRISPR-based therapies in clinical trials, said David Liu of the Broad Institute of MIT and Harvard, who has led the development of new and improved forms of CRISPR. Trials are also underway for a range of other diseases, including cancers, genetic vision loss, and amyloidosis.

Liu highlighted the case of Alyssa, a teenager in the UK who was diagnosed with a form of leukemia that affects a type of white blood cells called T cells. Chemotherapy didn’t work, and neither did a bone marrow transplant. So doctors at Great Ormond Street Hospital in London tried a CRISPR-based approach.

It involved taking healthy T cells from a donor and using CRISPR to modify them. The treated cells were altered so that they wouldn’t be rejected by Alyssa’s immune system, but they would be able to track down and attack Alyssa’s own cancerous T cells. These cells were then given to Alyssa as a treatment. It seems to have worked.

“As of now, approximately 10 months after treatment, her cancer remains undetectable,” Liu said.

It really is incredible that we are hearing such success stories already. But there are concerns.

The question of equity came up again and again at the summit. Gene-editing therapies are expected to cost a lot of money—likely millions of dollars. Who will be able to afford them? Probably not the people living in low- and middle-income countries, multiple attendees worried.

For now, CRISPR therapies are still considered experimental, and none have been approved, so the only way for people to access them is through clinical trials. The majority of these are being run in the rich world. Natacha Salomé Lima, a psychologist and bioethicist at the University of Buenos Aires in Argentina, pointed out that while 70% of global cancer cases are in low- and middle-income countries, two-thirds of gene-therapy cancer trials are taking place in wealthy countries.

I could tell that the summit’s organizers had made an effort to feature speakers from all over the world, and to include people who have the disorders being targeted by gene editing. But some attendees felt that some voices were still missing from the discussion. “What about the LGBTQ community?” Marc Dusseiller of ETH Zurich in Switzerland, who describes himself as a “workshopologist” interested in biohacking and bio art, asked me.

It’s also worth pointing out that not all CRISPR treatments have been a success. Multiple researchers noted that we still don’t fully understand how the treatment works. We know we can cut DNA, and swap either DNA bases or chunks of genetic code. But we can’t be sure about unintended effects elsewhere in the genome. It’s possible that you could accidentally trigger some genetic change elsewhere—one that might have harmful consequences.

Last year, 27-year-old Terry Horgan died while participating in a clinical trial of a CRISPR treatment designed to treat his Duchenne muscular dystrophy, a fatal disease that causes muscle degeneration. The cause of his death—and whether or not it might have been related to the treatment—has not been made clear.

And there’s always a risk that rogue scientists will set up companies offering unapproved procedures to desperate individuals who are willing to pay for them, said Robin Lovell-Badge, a stem-cell biologist at the Crick Institute, where the summit took place. They might even sell unauthorized procedures designed to enhance people rather than treat them.

On the first day of the summit, a couple of protesters stood at the entrance of the venue, holding a banner reading “Stop designer babies.” This sentiment is shared by a lot of scientists. They are particularly worried about future attempts to edit the genes of eggs, sperm, or embryos.

In theory, you could change the DNA of an embryo to prevent a baby from developing a heritable disease. But research into early embryos (scientists are generally allowed to study them for only 14 days before having to destroy them) suggests that they are even more likely to be affected by unintended, potentially harmful effects of gene editing. And these changes would be passed on to the next generation, too.

Most attendees focused on technical and ethical worries, but Dusseiller had another concern. The summit was too dry, he told me; the serious issues surrounding gene editing can be addressed with some degree of humor. “We need more weirdness,” he argued. “We need more jokes.”

Read more from Tech Review’s archive

There are more than 50 experimental studies underway that use gene editing in people to treat cancer, HIV, blood diseases, and more. Most of them involve CRISPR, my colleague Antonio Regalado reported earlier this week.

And last year, a volunteer in New Zealand became the first to receive an experimental CRISPR treatment to lower her cholesterol. One of the scientists behind the work thinks the approach could potentially benefit almost everyone.

CRISPR is also being explored for an inherited form of blindness. The first volunteer underwent the experimental treatment in 2020.

He Jiankui’s work was never published. It was rejected by the leading medical journals it was submitted to. But Antonio got hold of the manuscript, and showed it to four experts. Their verdicts were damning. He’s claims were not supported by his results, the babies’ parents may have been under pressure to agree to join the experiment, and the researchers went ahead without fully understanding what they were doing.

The summit was focused on human genome editing, but CRISPR is also being explored to make farmed animals bigger and stronger. One team of scientists has put an alligator gene into catfish in an attempt to make them more resistant to disease, for example.

From around the web

A microbiologist found a forgotten beef soup at the back of her fridge had turned bright blue. So she set out on a scientific quest to find out why. (Twitter)

Governments around the world are using algorithms to control access to various services. A system that flags people who might be committing benefits fraud in Rotterdam appears to discriminate on the basis of ethnicity and gender, according to an investigation. (Wired)

Last year, biotech company Retro Biosciences announced its launch with $180 million in funding. It turns out that all of that is from Sam Altman, the CEO of OpenAI. (MIT Technology Review)

Makena, a drug approved to prevent preterm birth, has been voluntarily pulled from the market by the company that makes it. Several studies have shown that the drug doesn’t work, and the US Food and Drug Administration recommended that it be withdrawn back in 2020. (The New York Times)

Forget designer babies. Here’s how CRISPR is really changing lives

Forget about He Jiankui, the Chinese scientist who created gene-edited babies. Instead, when you think about gene editing you should think of Victoria Gray, the African-American woman who says she’s been cured of her sickle-cell disease symptoms. 

This week in London, scientists are gathering for the Third International Summit on Human Genome Editing. It’s gene editing’s big event, where researchers get to awe the audience with their new ability to modify DNA—and ethicists get to worry about what it all means. 

The event got underway Monday with a look back at what organizers called the technology’s “misuse” in China to create designer babies in 2018. That was certainly an ethical dumpster fire and raised profound questions about whether we should meddle in evolution.

But the designer-baby debate is a distraction from the real story of how gene editing is changing people’s lives, through treatments used on adults with serious diseases. 

In fact, there are now more than 50 experimental studies underway that use gene editing in human volunteers to treat everything from cancer to HIV and blood diseases, according to a tally shared with MIT Technology Review by David Liu, a gene-editing specialist at Harvard University. 

Most of these studies—about 40 of them—involve CRISPR, the most versatile of the gene-editing methods, which was developed only 10 years ago. 

That is where Gray comes in. She was one of the first patients treated using a CRISPR procedure, in 2019, and when she addressed the group in London, her story left the room in tears. 

“I stand here before you today as proof miracles still happen,” Gray said of her battle with the disease, in which misshapen blood cells that don’t carry enough oxygen can cause severe pain and anemia.

But Gray’s case also shows the obstacles facing the first generation of CRISPR treatments, sometimes referred to as “CRISPR 1.0.” They will be hugely expensive and tricky to implement, and they could be quickly superseded by a next generation of improved editing drugs.

The company developing Gray’s treatment, Vertex Pharmaceuticals, says it’s treated more than 75 people in its studies of sickle cell, and a related disease, beta-thalassemia, and that the therapy could be approved for sale in the US within a year. It is widely expected to be the first treatment using CRISPR to go on sale. 

Vertex hasn’t said what it could cost, but you can expect a price tag in the millions.

A revelation

Researchers say the technique’s march forward to use in medicine has been remarkably fast. “I think CRISPR [has] outpaced every previous genomic therapy technology,” says Fyodor Urnov, a researcher at the University of California, Berkeley.

To scientists, CRISPR is a revelation because of how it can snip the genome at specific locations. It’s made up of a cutting protein paired with a short gene sequence that acts like GPS, zipping to a predetermined spot in a person’s chromosomes. 

What’s more, it’s trivially easy to change that GPS sequence, says Jennifer Doudna, the Berkeley biochemist who shared a Nobel for inventing the method. ​​“CRISPR is a technology that enables changes to DNA that are programmed,” she reminded the audience at the summit. 

Along with Vertex, a wave of biotech companies, like Intellia, Beam Therapeutics, and Editas Medicine, are hoping they can use this technology to develop successful treatments. Many of them are running the trials on Liu’s list. But not all of these trials will be successful.

For instance, in January the San Francisco biotech Graphite Bio had to stop its own tests of a gene-editing treatment for sickle-cell after its first patient’s blood cell counts dropped dangerously. The problem was caused by the treatment itself. Graphite’s stock has plunged more than 90%, and now the firm’s future is in question.

The trick facing all these efforts remains getting CRISPR where it needs to go in the body. That’s not easy. In Gray’s case, doctors removed bone marrow cells and edited them in the lab. But before they were put back in her body, she underwent punishing chemotherapy to kill off her remaining bone marrow in order to make room for the new cells.

Victoria Gray at the podium speaking at the Third International Summit on Human Genome Editing in 2023
Victoria Gray describing her battle with sickle cell disease to a summit of gene-editing experts. She received a CRISPR treatment in 2019 that resolved her symptoms.
LLUIS MONTOLIU

In essence, the Vertex treatment requires a bone marrow transplant. That is an ordeal in itself, and not every patient will be ready for it. Vertex thinks the treatment will be suitable for “severe” cases, a market it estimates includes 32,000 people in Europe and the US.

Even then, patients won’t get the treatments if insurers and governments balk at paying. It’s a real risk. For instance, a different gene therapy for beta-thalassemia, developed by Bluebird Bio, was pulled out of the European market after governments there refused to pay the $1.8 million price.  

CRISPR 2.0

The first generation of CRISPR treatments are also limited in another way. Most use the tool to damage DNA, essentially shutting off genes—a process famously described as “genome vandalism” by Harvard biologist George Church.

Treatments that attempt to break genes include one designed to try to zap HIV. Another is the one Gray got. By breaking a specific bit of DNA, her treatment unlocks a second version of the hemoglobin gene that people normally use only as babies. Since hemoglobin is the errant protein in sickle-cell, booting up another copy solves the problem.

According to Liu’s analysis, two-thirds of current studies aim at “disrupting” genes in this way.

Liu’s lab is working on next-generation gene-editing approaches. These tools also employ the CRISPR protein, but it’s engineered not to cut the DNA helix, but instead to deftly swap individual genetic letters or make larger edits. These are known as “base editors.”

According to Lluís Montoliu, a gene scientist at Spain’s National Center for Biotechnology, these new versions of CRISPR have “lower risk and better performance,” although delivering them “to the right target cell in the body” remains difficult. 

At his lab, Montoliu is using base editors to cure mice of albinism, in some cases from birth. It’s a step, he says, toward a treatment newborn humans could receive, although not to change their skin color. Instead, he dreams of putting Liu’s molecules in their eyes to correct severe vision problems that albinism can cause. 

So far, though, the albinism project is not a commercial venture. And that points to one of the biggest limits on CRISPR’s impact now and in the foreseeable future. Nearly all CRISPR trials underway aim at either cancer or sickle-cell disease, with multiple companies chasing the exact same problems.

According to Urnov, this means thousands of other inherited diseases that could be treated with CRISPR are just being ignored. “This is near-entirely due to the fact that most of them are too rare to be a viable commercial opportunity,” he says.  

At the London meeting, however, Urnov will be presenting his ideas on how treatments could be tested even for ultra-rare diseases, including some genetic conditions so unusual they affect just one person. 

That’s not a commercial opportunity, but because of how CRISPR can be programmed to go anywhere in the genome, it’s scientifically possible. Now that gene editing has had its first successes, Urnov says, there’s an “urgent need” to open a “path to the clinic for all.”

How CRISPR could help save crops from devastation caused by pests

Central California grape-grower Steve McIntyre was familiar with Pierce’s Disease. But that did not prepare him for what he saw when he visited his brother’s Southern California citrus and avocado farm in 1998. The disease, which causes vines to wither and grapes to deflate like old balloons, had long existed in California. But the infection he saw on a farm adjacent to his brother’s property seemed different. 

“It was devastation,” says McIntyre. Blocks of grapes looked as though their irrigation had been entirely cut. On his flight home, McIntyre contemplated calling a realtor to offload his land. His own vines, he thought, were doomed. 

Less than a decade after it was first identified in California, an invasive insect called the glassy-winged sharpshooter had turned the bacterium that causes Pierce’s from a nuisance to a nightmare. The oblong bug, with wings like red-tinged stained glass, is quicker and flies further afield than sharpshooters native to the state, and it can feed on tougher grapevines. Its arrival, which the state suspects was in the late ‘80s, supercharged the spread of the disease. 

An adult glassy-winged sharpshooter, Homalodisca vitripennis.
RODRIGO KRUGNER/USDA-ARS

Through inspections and targeted pesticide spraying, the state has largely been able to confine the invasive sharpshooter to Southern California. But the disease still has no cure, and it’s at risk of getting worse and harder to combat due to climate change

Researchers are now looking to add cutting-edge technology to California’s anti-Pierce’s arsenal, by changing the genome of the glassy-winged sharpshooter so that it can no longer spread the bacterium.  

Such a solution is possible thanks to CRISPR gene-editing technology, which has made modifying the genes of any organism increasingly simple. The technique has been used in experiments in cancer immunotherapy, apple breeding, and—controversially—human embryos. Now a growing number of researchers are applying it to agricultural pests, aiming to control a range of insects that together destroy about 40% of global crop production each year. If successful, these efforts could reduce reliance on insecticides and provide an alternative to genetic modifications to crops.

For now, these gene-edited insects are shut away in labs across the globe, but that is poised to change. This year, a US company expects to start greenhouse tests in conjunction with the US Department of Agriculture (USDA) of fruit-damaging insects made sterile using CRISPR. At the same time, scientists at government and private institutions are beginning to learn more about pest genetics and to make edits in more species.

The use of gene-edited organisms remains controversial, and edited agricultural pests haven’t  been approved for widespread release in the US yet. A potentially lengthy and still-evolving regulatory process awaits. But scientists say CRISPR has ushered in a critical moment for the use of gene edits in insects that impact agriculture, with more discoveries on the horizon. 

“Until CRISPR, the technology simply wasn’t there,” says Peter Atkinson, an entomologist at the University of California, Riverside, who is working on modifying the sharpshooter. “We’re entering this new age where genetic control can be realistically contemplated.” 

Know your enemy

Scientists didn’t know much about the genetics of the glassy-winged sharpshooter until recently. The first draft of its genome was mapped out in 2016, by a group at the USDA and Baylor College of Medicine, in Texas. But the map had gaps. In 2021, researchers at UC Riverside, including Atkinson, filled in many of them to produce a more complete version. 

As scientists set out to gene edit more pest species, a better understanding of their biology and genetics will be important, says Linda Walling, a plant geneticist at UC Riverside who is working on the sharpshooter research. “There’s going to have to be a very big investment in understanding biology,” she says. “All we’ve previously wanted to do is just kill them.”

That understanding goes beyond DNA sequencing. Before making edits, researchers have to figure out what could stop an insect from harming a plant and then determine which edits could make that happen. In the case of the sharpshooter, there was a good candidate in hand: previous research from University of California, Berkeley, has shown that a carbohydrate in the sharpshooter’s mouth makes it easier for Pierce’s-causing bacteria to stick, and pointed to certain molecules scientists could modify to change that. 

Female Spotted wing fruit fly (Drosophila suzukii) in flight over a strawberry.
Female Spotted wing fruit fly (Drosophila suzukii) in flight over a strawberry.
ALAMY

Now, a group at UC Riverside, including Atkinson and Walling, is trying to make those changes. 

Part of the challenge is simply finding a way to deliver gene editing machinery to minuscule and fast-developing bug embryos. 

“Delivery is the secret of everything,” says Wayne Hunter, a research entomologist with the USDA who worked on the 2016 draft of the sharpshooter genome.  

Glassy-winged sharpshooter embryos are about 3 mm long. The Riverside team developed a novel way to inject them with CRISPR/Cas9 machinery without removing them from the leaf where they’re laid. The technique, according to a paper published last year, was “simple to perform, as a mass with 20 eggs can be injected within ten minutes by a novice operator.” 

After injection, the team showed that CRISPR technology could cut and change the sharpshooter genome (as a proof of principle, the researchers used the technology to knock out genes that control sharpshooter eye color). Now, the group is working to insert genes in the sharpshooter’s genome that they hope will transform the tissue in the bug’s mouth so that it acts like Teflon, causing Pierce’s-causing bacteria to slide right off. 

The team has received funding from the USDA as well as a board of wine industry representatives specifically convened by California’s government to combat Pierce’s. 

The board, of which McIntyre is a member, supports a range of potential approaches to defeating the disease, including gene editing of grapevines as well as biopesticides, which are usually derived from natural materials. Pierce’s is a “uniquely terrible” problem for grape growers, says Kristin Lowe, the board’s research coordinator. “With most plant pathogens that are [spread] by an insect, you have to exploit any and all weaknesses you can find—in the biology, in the environment, in the ecology of that disease—to get long-term control.” 

Operation fruit fly

Another California-hatched CRISPR technology has already begun the lengthy process toward commercialization for use in an agricultural pest. 

Omar Akbari began using CRISPR as a postdoc in biological engineering at Caltech, soon after the release of a seminal paper on the technology. A decade later, his lab at the University of California, San Diego, uses CRISPR in nearly a dozen insect species. 

One of its subjects is Drosophila suzukii, or spotted wing drosophila, a species of fruit fly that cuts holes in soft, ripe fruit like cherries and plums to lay its eggs. The flies, which spoil about $500 million in US fruit crops every year, have already grown resistant to some pesticides. 

Akbari’s lab has used CRISPR to modify genes in order to create sterile males and kill females. Were those male flies to be released, they’d mingle with normal flies, and their inability to reproduce could depress the overall population. 

Agragene, a company that licensed Akbari’s technology, has raised $5.2 million to commercialize this sterilization method in crop pests. The company is testing the product this year at greenhouses in Oregon. 

The possible strategies for controlling pest populations and the diseases they transmit using CRISPR are numerous. “Your experiment is only limited by your ingenuity, to some degree,” says Nikolay Kandul, who works with Akbari at UC San Diego. 

But researchers must also contend with biology, and the implications of their choices. For certain systems, like Akbari’s fruit fly edits, a change shouldn’t remain in the population unless gene-edited insects continue to be released. “It’s safe, it’s effective, it’s confinable, it’s not going to persist in the environment,” says Akbari. 

Akbari has also worked on another approach that could be more permanent: gene drives. This technique cheats the rules of genetics, increasing an organism’s chance of inheriting certain genes and spreading them through the population. The technology’s potential has drawn excitement as well as concern (there are efforts underway to examine the use of gene drives in mosquitoes to disrupt malaria transmission, but many scientists have pointed out potential risks and urged caution). 

“Chemicals can only travel so far before they degrade in the environment,” says Jason Delborne, a professor of science, policy, and society at North Carolina State University. “If you introduce a gene-edited organism that can move through the environment, you have the potential to change or transform environments across a huge spatial and temporal scale.”

Kandul puts it more bluntly. Gene drives, he says, can be “sloppy.” 

Agragene considered deploying them in fruit flies, but Akbari says executives decided it would be difficult to attract investors and gain regulatory approval. Instead, the company went with the sterilization technology. After completing lab cage tests last year, Agragene is starting greenhouse tests in collaboration with the USDA, ones it hopes will ultimately pave the way for widespread release.

“You’re gathering enough data to show that your sterile insect is, in this case, safe,” says Agragene CEO Bryan Witherbee, who previously worked at Monsanto and other biotech companies. 

The tests Agragene completed last year gave the company confidence that its sterile bugs could survive and function like nonedited bugs, says Witherbee, and the company also worked on techniques to manufacture sterile insects at scale. But Agragene is still determining what data it will need to submit to the US Environmental Protection Agency to get approval to release the bugs, a process that could take years. 

In the US, the regulatory environment around CRISPR-modified insects is currently “evolving,” according to an EPA spokesperson. Government guidance released in 2017 outlined a coordinated approach that suggested the USDA will largely have authority over genetically engineered animals related to agriculture. But jurisdiction may vary depending on whether an edited organism is intended to reduce the population of an insect or disrupt disease transmission. Thus far, the US government has allowed the release of genetically modified mosquitoes, but tests of crop pests, like diamondback moths and pink bollworms, have been limited. 

UC Riverside’s Walling and Atkinson expect that it will take years to refine genetically altered agricultural pests and get approval for their release. Agragene hopes the timeline could be faster: the company, which has already been in communication with the EPA, is targeting 2024 to submit an application for regulatory approval for commercial use of its fruit flies and expects the process to take up to two years. 

Beyond editing

Gene editing insects may be a powerful tactic, but some experts in plant and insect biology see promise in other techniques as well.

For more than a decade, Hunter, the USDA entomologist, has worked on various efforts to map the genome of a pest that causes billions of dollars in damage across six continents each year: the Asian citrus psyllid, which spreads a disease that kills citrus trees, but not before leaving behind yellowed leaves and green, bitter fruit. 

“You really don’t have much to sell even if the tree is alive,” he says.

He’s now part of a large, grant-funded team working on a variety of potential methods to protect trees from citrus greening disease. In the next few years, the group hopes to focus on several products or solutions that can then be commercialized for use in the field.

Adult asian citrus phyllids (left) and nymphs (right) perched on a lemon plant leaf petiole.
PEGGY GREB/USDA-ARS; ALAMY

This year, Hunter will start using CRISPR to tweak genes that may neutralize the psyllid as a vector for spreading citrus greening disease. But he says plants modified to resist bacteria are still the most likely solution to deal with the disease. “That’s where the real answer is going to come from,” he says. Targeting insects could leave the disease circulating, albeit in a smaller number of bugs, but plant immunity would blunt the disease’s impact. 

Still, modifying plants has its limitations as a general solution to the agricultural pest problem. Bugs like the spotted wing drosophila impact so many different fruits that producing resistant plant varieties would be exceedingly cumbersome, says Anthony Shelton, professor emeritus at Cornell University’s Department of Entomology who has worked on producing sterile diamondback moths.

When it comes to the age-old struggle between farmers and pests, Shelton says, it’s important to embrace a variety of new tools.   

“I think we’ve all learned enough to know that there’s no silver bullet in agriculture or in medical entomology to try and control pests,” he says. “We’ve all become smarter, hopefully.”

Emma Foehringer Merchant is a journalist who often covers climate change, energy, and the environment. She is based in California. 

A de-extinction company is trying to resurrect the dodo

The dodo bird was big, flightless, and pretty good eating. All that helps explain why it went extinct around 1662, just 150 years after European sailing ships found Mauritius, the island in the Indian Ocean where the bird once lived.

Now a US biotechnology company says it plans to bring the dodo back into existence.

It’s the third species picked by Colossal Biosciences, of Austin, Texas, for what it calls a process of technological “de-extinction.” The company is also working on using large-scale genome engineering to morph modern elephants back into woolly mammoths and resurrect the Tasmanian tiger. 

In an interview with MIT Technology Review, Ben Lamm, Colossal’s CEO, described a startup whose sizable scientific staff (including 41 PhD scientists), substantial funding, and eye-grabbing projects could have “far-reaching” consequences for animal conservation and human health.

That’s because reviving any lost species requires technology straight out of Jurassic Park—including sequencing of ancient DNA, cloning, and even artificial wombs. The two-year-old startup also said today that it had raised a further $150 million in funding (bringing the total it’s raised to $225 million)—some of which will go to a new effort around bird genomics.

The resurrection of the dodo is a theoretical possibility thanks to Beth Shapiro, a specialist in ancient DNA at the University of California, Santa Cruz, who says that she and coworkers were able to recover detailed DNA information from 500-year-old dodo remains held at a museum in Denmark.

“I have the dodo genome,” Shapiro, who is now advising Colossal, said in a phone interview with MIT Technology Review. “That is something we just finished.”

To create a dodo from such genetic information, the company plans to try to modify the bird’s closest living relative, the brightly colored Nicobar pigeon, turning it step by step into a dodo and possibly “re-wilding” the animal in its native habitat.  

Colossal has not yet created any kind of animal. It’s still working on developing the necessary processes. And making a dodo might not even be possible. That’s because it is hard to predict how many DNA changes will be needed to transform the Nicobar pigeon into a big-beaked, three-foot-tall dodo.

“That is one of the big questions. At what point is your editing done?” says Mike McGrew, an avian biologist at the Roslin Institute, in Edinburgh, who is a paid advisor to Colossal. “Is it hitting a hundred genes or one thousand genes?”

Even if Colossal can make what it terms “a functional proxy for the dodo,” there won’t be a clear answer about where to put it. The big agricultural industry in Mauritius is sugarcane farming, and there are plenty of rats and other non-native predators around. “It would not really be a dodo—it would be a new species. But it still needs an environment,” says Jennifer Li Pook Than, a gene-sequencing specialist at Stanford University, whose parents were born on the island. “What would that mean ethically, if one is not available?”

Lamm isn’t offering a firm time frame for producing a dodo. He has predicted that the mammoth could arrive before 2029 and that the dodo could come sooner or later than that, depending on scientific factors.

Another organization, the nonprofit Revive & Restore, has worked for a decade toward bringing back the passenger pigeon, a bird that once dominated American skies. But it has confronted a major technical difficulty that will also affect the dodo project.

The problem is that while it is easy to gene-edit bird cells in the lab, it’s hard to turn carefully edited cells back into a bird. For mammals, such as cattle or elephants, the answer is easy: cloning. But cloning doesn’t work with a bird egg—it’s a huge cell and its nucleus is an opaque yolk. “You would have to take it out and implant another nucleus, and it’s impossible to do,” says McGrew.

McGrew believes the likely solution is to inject genetically edited cells into the gonads of a developing pigeon chick. That way, some of those cells will end up forming the new bird’s egg or sperm. If that bird then reproduces, its offspring will be related to the donor cells (and will include any DNA changes). This technology already works, McGrew says, but so far only in chickens.

“They have to be able to transfer this technology to a pigeon,” he says. “We thought that what worked for chickens would apply to other species, but it turns out to be difficult.”

These types of obstacles are why some scientists doubt de-extinction will work, and Shapiro herself has been among the skeptics, expressing doubts about the idea in interviews last year.

However, the geneticist says she’s changed her mind and now views de-extinction as a useful form of scientific public relations. “At first, I was really like, ‘I don’t know about this technology,’” Shapiro says. “But gradually I’ve come to think this is the future. We need to develop these tools and additional approaches to be able to protect species today from becoming extinct. And if we’re going to excite people enough to do that, we’re going to have to throw something big out there, and everybody’s heard of the dodo.”

Several hundred bird species are currently considered endangered. Gene editing and assisted reproduction could help to save them, or at least preserve them in zoos. 

Because there isn’t much money to be made in conservation, how Colossal will ever turn a profit is another evolving question. One Colossal executive told MIT Technology Review that the company could sell tickets to see its animals, and Lamm believes the technologies needed to create the mammoth or the dodo will have other commercial uses. Last fall, Colossal spun out a bioinformatics company, Form Bio, which is selling software to manage lab results (it’s also being used to study the dodo genome).

“I think it’s highly likely that you will see a couple more technology spinouts,” Lamm says.

Any advances the company achieves in gene editing, in particular, could find substantial markets. Colossal’s investors include the billionaire Thomas Tull, the CIA’s venture capital arm, and the prominent biotech venture capitalist Robert Nelsen. Nelsen invested in the company because de-extinction “is just really cool,” he said in an email. “Mammoths and direwolves are cool.”

How CRISPR is making farmed animals bigger, stronger, and healthier

This article is from The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, sign up here.

The CRISPR gene-editing tool has been making headlines for the last 10 years, since scientists showed it could be used to easily alter the genome of a living organism.

The technology could eventually revolutionize health care. We’ve seen CRISPR start to be used experimentally to treat children with cancer, for example. It is being explored for lots of genetic diseases. And last year, a company used CRISPR to try to treat a woman with dangerously high cholesterol.

But CRISPR could also transform farming, including aquaculture. This week, I wrote about  researchers who inserted an alligator gene into catfish. The idea isn’t to make these fish more alligator-like, but to make them more resistant to disease. It turns out that alligators have a particular talent for fighting off infections.

Even a small bump in resilience could have huge consequences for fish farming. As things stand, around 40% of fish farmed worldwide die before they can be harvested. Imagine being able to prevent even part of that loss.

This isn’t the first time scientists have tried to tweak the genomes of farm animals. Of course, farmers have used selective breeding to try to make animals big, muscular, docile, and easy to rear for generations. But gene-editing tools like CRISPR should allow them to fast-forward the process.

CRISPR offers a major advance over previous gene-editing tools. For a start, it’s relatively cheap, quick, and easy to use. Newer forms of CRISPR allow scientists to do more to a genome, too. Some forms allow us to change the base letters of DNA, such as swapping a C for a T. Others let us insert entirely new genes.

So perhaps it’s no surprise that scientists have started experimenting with CRISPR in farm animals. One popular target is a gene called myostatin, which codes for a protein that controls muscle growth. Interfering with this gene can lead to muscle overgrowth. In other words, you end up with big, muscly animals. And, eventually, more meat.

Scientists have already experimented with using CRISPR to generate super-muscly cattle, pigs, sheep, rabbits, and goats. These studies have not had perfect results. Many of the animals didn’t survive infancy. And a lot of them had weirdly large tongues.

Research in fish is also well underway. Using CRISPR to target the myostatin gene, scientists in Japan have generated red sea bream that are bigger and heavier, with 17% more muscle than their unmodified counterparts, despite being fed the same amount of food.

And similar approaches have been used to beef up carp, tilapia, catfish, and other aquatic animals, including oysters. Other researchers are experimenting with different ways of using CRISPR to boost disease resistance or create salmon that make more omega-3.

You won’t find CRISPR animals as products on supermarket shelves just yet. But some are remarkably close. In 2021, Japan approved the sale of two CRISPR-edited fish. One of them is the beefed-up red sea bream. The other is a tiger puffer fish that’s also designed to be heavier.

The researchers behind the transgenic catfish are hoping they’ll get it approved for commercial production in the US. But that could take a while. Only one gene-edited fish has so far been approved for sale in the US—and it took decades to get to that point.

That fish, AquAdvantage salmon, has a genetic modification that makes it grow bigger. As a result, it takes 25% less feed to get these salmon to the size at which they can be sold, says Sylvia Wulf, CEO and president of AquaBounty, the company that produces the fish.

The company made its first genetically engineered fish in 1992. But it didn’t enter the US market until 2021. “For a startup company founded in 1991, it took over 30 years to bring its innovative Atlantic salmon to the market, at a cost exceeding US$100 million,” says Wulf.

The approval of gene-edited pigs had a similar timeline. It was in 2001 that PPL Therapeutics (now known as Revivicor) created pigs genetically engineered to lack a sugar called alpha-gal. The company’s main goal is to use the pigs to grow organs that can be transplanted into people, whose immune systems would be likely to reject an organ with this sugar in its cells.

But in 2020, the FDA approved the animals for human consumption. These gene-edited pork products, which could be safe for people who are allergic to alpha-gal, will initially be available by mail order only, according to an FDA news release.

It’s difficult to predict how quickly CRISPR animals will progress through the US approval process. But they are on their way.

Read more from Tech Review’s archive:

Here’s the piece about catfish that were given an alligator gene to make them more resistant to infections and disease. They’re also sterile unless given a hormone, which should limit any impact they might have on the natural environment should they ever escape.

It’s not just farmed animals. The first gene-edited pet dogs were created in China back in 2015—a pair of super-muscly beagles called Tiangou (after the “heaven dog” in Chinese myth) and Hercules, as my colleague Antonio Regalado reported.

A heart from one of Revivicor’s gene-edited pigs was transplanted into a man with terminal heart disease last year, in a world first, as my colleague Charlotte Jee reported.

But the heart given to the man, who died a few months later, turned out to have been infected with a pig virus, as Antonio exclusively reported in May.

Gene-editing animals can have unexpected consequences. Cows that were genetically engineered to be hornless ended up with additional DNA for bacteria, including a gene that confers antibiotic resistance, Antonio reported.

From around the web

Two gene therapies for sickle-cell disease could soon enter clinics. But choosing to take one of these therapies—and potentially lead an entirely different life—is not an easy one. (The New York Times)

Online pharmacies that sell abortion pills are sharing sensitive data with third parties like Google. This data could potentially be used by law enforcement officials to prosecute people who end their pregnancies. (ProPublica)

Moderna says its mRNA vaccine for respiratory syncytial virus (RSV) works. The results of the trial—which involved 37,000 volunteers, all over the age of 60—suggest the vaccine lowered the rate of disease by 83.7%. (Moderna)

A probiotic might help reduce the risk of infection with Staphylococcus aureus, a bacterium that can cause disease. A small trial in Thailand found that people who took the probiotic had less S. aureus in their feces. (The Lancet Microbe)

Last week, my colleagues and I released our annual list of the year’s top 10 breakthrough technologies. Here are some that didn’t quite make the cut. (MIT Technology Review)

Next up for CRISPR: Gene editing for the masses?

CRISPR for high cholesterol is one of MIT Technology Review’s 10 Breakthrough Technologies of 2023. Explore the rest of the list here.

We know the basics of healthy living by now. A balanced diet, regular exercise, and stress reduction can help us avoid heart disease—the world’s biggest killer. But what if you could take a vaccine, too? And not a typical vaccine—one shot that would alter your DNA to provide lifelong protection? 

That vision is not far off, researchers say. Advances in gene editing, and CRISPR technology in particular, may soon make it possible. In the early days, CRISPR was used to simply make cuts in DNA. Today, it’s being tested as a way to change existing genetic code, even by inserting all-new chunks of DNA or possibly entire genes into someone’s genome.

These new techniques mean CRISPR could potentially help treat many more conditions—not all of them genetic. In July 2022, for example, Verve Therapeutics launched a trial of a CRISPR-based therapy that alters genetic code to permanently lower cholesterol levels

The first recipient—a volunteer in New Zealand—has an inherited risk for high cholesterol and already has heart disease. But Kiran Musunuru, cofounder and senior scientific advisor at Verve, thinks that the approach could help almost anyone. 

The treatment works by permanently switching off a gene that codes for a protein called PCSK9, which seems to play a role in maintaining cholesterol levels in the blood.

“Even if you start with a normal cholesterol level, and you turn off PCSK9 and bring cholesterol levels even lower, that reduces the risk of having a heart attack,” says Musunuru. “It’s a general strategy that would work for anyone in the population.”

CRISPR’s evolution

While newer innovations are still being explored in lab dishes and research animals, CRISPR treatments have already entered human trials. It’s a staggering accomplishment when you consider that the technology was first used to edit the genomes of cells about 10 years ago. “It’s been a pretty quick journey to the clinic,” says Alexis Komor at the University of California, San Diego, who developed some of these newer forms of CRISPR gene editing.

Gene-editing treatments work by directly altering the DNA in a genome. The first generation of CRISPR technology essentially makes cuts in the DNA. Cells repair these cuts, and this process usually stops a harmful genetic mutation from having an effect.

Newer forms of CRISPR work in slightly different ways. Take base editing, which some describe as “CRISPR 2.0.” This technique targets the core building blocks of DNA, which are called bases.

There are four DNA bases: A, T, C, and G. Instead of cutting the DNA, CRISPR 2.0 machinery can convert one base letter into another. Base editing can swap a C for a T, or an A for a G. “It’s no longer acting like scissors, but more like a pencil and eraser,” says Musunuru.

In theory, base editing should be safer than the original form of CRISPR gene editing. Because the DNA is not being cut, there’s less chance that you’ll accidentally excise an important gene, or that the DNA will come back together in the wrong way.

Verve’s cholesterol-lowering treatment uses base editing, as do several other experimental therapies. A company called Beam Therapeutics, for example, is using the approach to create potential treatments for sickle-cell disease and other disorders.

And then there’s prime editing, or “CRISPR 3.0.” This technique allows scientists to replace bits of DNA or insert new chunks of genetic code. It has only been around for a few years and is still being explored in lab animals. But its potential is huge.

That’s because prime editing vastly expands the options. “CRISPR 1.0” and base editing are somewhat limited—you can only use them in situations where cutting DNA or changing a single letter would be useful. Prime editing could allow scientists to insert entirely new genes into a person’s genome.

That would open up many more genetic disorders as potential targets. If you want to correct a specific mutation that is beyond the reach of base editing, “prime editing is your only option,” says Musunuru. 

If it works, it could be revolutionary. A hundred people with a disorder might have all kinds of genetic influences that made them vulnerable to it. But inserting a corrective gene could potentially cure all of them, says Musunuru. “If you can put in a fresh new working copy of the gene, it may not matter what mutation you have,” he says. “You’re putting in a working copy, and that’s good enough.”

Together, these new forms of CRISPR could dramatically broaden the scope of gene-editing treatments—making them potentially available to many more people, and for a much broader range of disorders. The target diseases don’t even have to be caused by genetic mutations. In fact, even some of the older CRISPR approaches could be used to target diseases that aren’t necessarily the result of a rogue gene. Verve’s treatment to permanently lower cholesterol is a first example of a CRISPR treatment that could benefit the majority of adults, according to Musnuru.

Genetic vaccinations

Verve’s approach involves swapping a base letter in the gene that codes for the PCSK9 protein. This disables the gene, so much less protein is made. Because the PCSK9 protein plays an important role in maintaining levels of LDL cholesterol—the type associated with clogged arteries—cholesterol levels drop too. 

In experiments, when mice and monkeys were given the treatment, their blood cholesterol levels dropped by around 60 to 70% within a few days, says Musunuru. “And once it’s down, it stays down,” he adds. The company expects its first human clinical trial to run for a few years. If the trial is successful, the company will continue with larger trials. The treatment will have to be approved by the US Food and Drug Administration before it can be prescribed by doctors in the US. “It will be a while before any [CRISPR treatments] are actually approved for use,” says Musunuru. 

But in the future, he says, we might be able to use the same approach to protect people from high blood pressure and diabetes. 

Komor of UC San Diego says a CRISPR-based treatment to prevent Alzheimer’s might also be desirable. But she cautions that editing the genomes of healthy people is ethically ambiguous and could be an unnecessary gamble for people who are otherwise well. “If I was given the opportunity to do editing of my liver cells to reduce cholesterol potentially in the future, I would probably say no,” she says. “I want to keep my genome as is, unless there’s a problem.”

Any new treatment has to be at least as safe as what is already available, says Tania Bubela, who studies the legal and ethical implications of new technologies at Simon Fraser University in Burnaby, British Columbia. Plenty of drugs have side effects. “The difference is that with a drug, you can … change the person’s medication,” says Bubela. “With a gene therapy, I can’t see how you would do that.”

The price, as well as the safety, of any gene-editing treatment will determine whether it can really help the masses, Bubela says: “I find it difficult to believe that a gene-based therapy like CRISPR will ever be either safer or more cost-effective than a very simple cholesterol pill.” But she accepts that these treatments could become cheaper, and that the “one-shot” approach might appeal to some.

There’s a good reason the first trials of CRISPR have focused on people with rare disorders who have few options, says Komor: “Those are the people most in need.” While broadening the applications of CRISPR is exciting, she says, “we have an ethical obligation to help those people before we help the general masses.” 

These scientists used CRISPR to put an alligator gene into catfish

Millions of fish are farmed in the US every year, but many of them die from infections. In theory, genetically engineering fish with genes that protect them from disease could reduce waste and help limit the environmental impact of fish farming. A team of scientists have attempted to do just that—by inserting an alligator gene into the genomes of catfish.

Americans go through a lot of catfish. In 2021, catfish farms in the US produced 307 million pounds (139 million kilogram) of the fish. “On a per-pound basis, anywhere from 60 to 70% of US aquaculture is … catfish production,” says Rex Dunham, who works on the genetic improvement of catfish at Auburn University in Alabama.

But catfish farming is also a great breeding ground for infections. From the time farmed fish are newly hatched to the time they are harvested, around 40% of the animals worldwide die from various diseases, says Dunham.

Could the new genetic modification help? 

The alligator gene, which Dunham’s research turned up as a potential answer, codes for a protein called cathelicidin. The protein is antimicrobial, says Dunham—it’s thought to help protect alligators from developing infections in the wounds they sustain during their aggressive fights with each other. Dunham wondered whether animals that have the gene artificially inserted into their genomes might be more resistant to diseases.

Dunham and his colleagues also wanted to go a step further and ensure that the resulting transgenic fish couldn’t reproduce. That’s because genetically modified animals have the potential to wreak havoc in the wild should they escape from farms, outcompeting their wild counterparts for food and habitat.

Transgenic survivors

Dunham, Baofeng Su (also at Auburn University), and their colleagues used the gene-editing tool CRISPR to insert the alligator gene for cathelicidin into the part of the genome that codes for an important reproductive hormone, “to try to kill two birds with one stone,” says Dunham. Without the hormone, fish are unable to spawn.

The resulting fish do seem to be more resistant to infections. When the researchers put two different types of disease-causing bacteria in water tanks, they found that gene-edited fish were much more likely to survive than their counterparts that had not undergone gene editing. Depending on the infection, “the survival rate of the cathelicidin transgenic fish was between two- and five-fold higher,” says Dunham. 

The transgenic fish are also sterile and can’t reproduce unless they are injected with reproductive hormones, say the researchers, who published their findings online at the preprint server bioRxiv. The paper has not yet been peer-reviewed.

“When I first [heard about the study], I thought: what on earth? Who would have thought to do this? And why would they?” says Greg Lutz at Louisiana State University, who has been researching the role of genetics in aquaculture for decades. But Lutz thinks the work has promise—disease resistance can have a big impact on the amount of waste generated by fish farms, and reducing this waste has long been a goal of gene editing in farmed animals, he says.

Farming fish that are resistant to disease will require fewer resources and produce less waste overall, he says. Though Lutz is positive about the research, he isn’t convinced that the CRISPR catfish represent the future of aquaculture. The gene-editing procedure used by the team is fiddly, and it would probably need to be done for each round of fish spawning for the hybrid catfish commonly used in fish farming.  “It’s just too difficult to produce enough of these fish to get a viable, genetically healthy line going,” he says.

Ready to eat?

The Auburn scientists hope to eventually get their transgenic catfish approved so that it can be sold and eaten. But that could be a long process.

Only one other type of genetically engineered fish has received approval in the US. In 2021, AquAdvantage salmon finally entered the US market—26 years after the company behind the fish, AquaBounty, first applied for approval from the Food and Drug Administration. The salmon have an extra gene—taken from the genome of another type of salmon—that makes them grow much bigger than they otherwise would. 

Suppose the catfish are eventually approved for sale. Would anyone eat them? Su and Dunham think so. Once the fish are cooked, the protein made by the alligator gene will lose its biological activity, so it is unlikely to have any consequences for the person eating the fish, says Su. At any rate, plenty of people already eat alligator meat, he adds. “I would eat it in a heartbeat,” says Dunham.

But Lutz points out that others might not be comfortable with the idea of eating a catfish with an alligator gene. “I’m sure you’ll have people that fully expect that catfish to have a big, long mouth with pointy teeth to bite them,” he says.

Correction: This article has been updated to correct the description of the approval of AquAdvantage salmon.

How much would you pay to see a woolly mammoth?

Sara Ord spent her week talking to scientists about skin cells from a mouse-size marsupial called the dunnart. The cells were sent to the “de-extinction” company where she works, Colossal Biosciences, from collaborators in Australia.

Ord’s job is to lead a team that’s figuring out how to use gene editing to gradually change the DNA of those cells so that it begins to resemble that of a distantly related animal, the thylacine, a striped marsupial predator also known as the Tasmanian tiger that went extinct in 1936. 

If they can make a dunnart cell with enough thylacine DNA, the next step is to use cloning to try to create an embryo—and, eventually, an animal. Another project involves trying to turn Asian elephants into something resembling a woolly mammoth, by adding genes for cold resistance and thick red hair.

Sara

COLOSSAL

There are no resurrected species yet, of course. Ord’s job as “director, species restoration” is really about an imagined future, in which a high-tech combination of DNA technology, stem-cell research, gene editing, and artificial wombs could lead not just to the resurrection of lost species, but also to the preservation of those close to disappearing.

Ord got into the job after trying her hand at lab research, a job in a hospital, and work for a software company. She says it’s a natural fit. She grew up with many pets and watched a lot of Discovery Channel and National Geographic programs. “I have always loved animals,” she says.

It’s certain Colossal is as much Hollywood production as it is hard science. Its financial backers include investor and entertainment mogul Thomas Tull and Tony Robbins, the motivational speaker, and its ideas originate in the laboratory of the outspoken gene scientist George Church, who has been promoting mammoth resurrection in the media since 2013, though with few results yet.

Ord’s job is similarly composed: part communication, part science, and part futurism. And what if the company succeeds in re-creating the thylacine—or something close to it? Ord says Colossal might turn a profit by selling tickets to see it.

In an interview with MIT Technology Review, Ord says the company hopes to produce a thylacine in just two years, by 2025, and a mammoth by 2027.

This interview has been edited for length and clarity.

You have one of the more futuristic job titles I have seen. 

I was one of the first employees here at Colossal. I was with the CEO, Ben [Lamm], and we were brainstorming what my title should be. We came up with “director of species restoration.” The second I heard it, I was like, yeah, that is the one. 

I would have gone with “director, resurrection technology.”

But that can be scary. Right? And so it’s trying to take what we’re doing and making it very digestible for everybody.

How much of your job is communication?

I would say it’s probably a third of my job. The most fun thing to explain is the thylacine project, which I lead. Why bring back the thylacine? The thylacine was an apex predator in the Tasmanian ecosystem. And when you remove an apex predator, you see a lot of negative effects. You end up with a ton of prey in an environment, and they wreak havoc because there’s no population control. Bringing back the thylacine to the Tasmanian ecosystem will hold tremendous value.

The thylacine is a marsupial, but it’s also a carnivore. So something fluffy could get chomped if this works. Are there animal lovers who oppose this plan?

We had an overwhelmingly positive reaction. I think more than anything, it’s because this animal was hunted to extinction. And this is our opportunity to fix that.

What is the science part of your job?

I have a team of 12 genome engineers and phenotype engineers. We also have collaborations with some of our embryologists and our computational biologists. It is reading as many papers as I can, getting my hands in the lab, and pushing the science forward. And then it’s being a part of conversations about—once we have a thylacine, once we have a mammoth, where do we put it? What does that look like? What is the ecological impact of bringing the species back, and how will this help currently endangered species?

You’ve blogged about how bringing back a species involves quite a few steps, including editing genes in the cells of a related species, cloning an embryo, and then bringing an animal into the world. Which of these is the most speculative?

It’s really about understanding how many genes you need to edit. The thylacine is related to the whole family of dasyurids, which includes the dunnart, the quoll, and the Tasmanian devil. But it’s still about 70 million years of [evolutionary] divergence—an extreme amount of divergence. So what do you have to edit in a dunnart or an Asian elephant in order to create a phenotype of a species that will fill the same ecological niche the thylacine or woolly mammoth filled?

Do you have a stuffed thylacine to work from? What’s the starting point for the project?

There was a pup that was preserved in ethanol in the early 1900s—it’s called the “miracle pup.” Our collaborators at the University of Melbourne have been able to extract DNA from that sample and generate a really high-[accuracy] genome sequence from this. In addition to that, there are a lot of pelts in circulation, as well as museum samples, and we’re getting these and generating sequences from them.

Do you have a timeline for when the first extinct species is going to roam again?

Absolutely. For the mammoth, we are projecting a 2027 timeline, and for the thylacine, 2025. The key difference here is the gestation time. Elephants take around 18 to 22 months to gestate, whereas marsupials—and especially the dunnart, which will be our surrogate species for the thylacine—are anywhere between 12 and 14 days. After that, it matures in the pouch.

There have been studies showing that marsupials can be transferred from one species’ pouch to another species’ pouch and grow just fine. But we also have a team working [on] an “exo pouch.” This will be an artificial pouch that the pups can go in and have all the same nutrition, the same environment, same kind of light exposure that it would inside the pouch of a marsupial mom.

Colossal makes a point of saying it’s a for-profit company. What is the product, exactly? What will you sell?

I think there’s a couple of different ways that Colossal will profit. One of our products is the story. Right? We’re going to have a lot of partners in the media who are helping tell our story. Another is that as we develop new technologies along the way, these can be licensed or spun out. We had a first spinout called FormBio [a biology software company], and we also have a large staff of genome editors. 

And then we get to the real meat, which is the species: the thylacine or the mammoth. We are looking to partner with zoos. I think that there’s a world where we create rewilding habitats and sell tickets to go see these species in their natural area.

How much would you pay to see a thylacine?

Well, I’m putting hours and hours of my life into this. So I would honestly pay all the money in the world.