Industry- and AI-focused cloud transformation

For years, cloud technology has demonstrated its ability to cut costs, improve efficiencies, and boost productivity. But today’s organizations are looking to cloud for more than simply operational gains. Faced with an ever-evolving regulatory landscape, a complex business environment, and rapid technological change, organizations are increasingly recognizing cloud’s potential to catalyze business transformation.

Cloud can transform business by making it ready for AI and other emerging technologies. The global consultancy McKinsey projects that a staggering $3 trillion in value could be created by cloud transformations by 2030. Key value drivers range from innovation-driven growth to accelerated product development.

“As applications move to the cloud, more and more opportunities are getting unlocked,” says Vinod Mamtani, vice president and general manager of generative AI services for Oracle Cloud Infrastructure. “For example, the application of AI and generative AI are transforming businesses in deep ways.”

No longer simply a software and infrastructure upgrade, cloud is now a powerful technology capable of accelerating innovation, improving agility, and supporting emerging tools. In order to capitalize on cloud’s competitive advantages, however, businesses must ask for more from their cloud transformations.

Every business operates in its own context, and so a strong cloud solution should have built-in support for industry-specific best practices. And because emerging technology increasingly drives all businesses, an effective cloud platform must be ready for AI and the immense impacts it will have on the way organizations operate and employees work.

An industry-specific approach

The imperative for cloud transformation is evident: In today’s fast-faced business environment, cloud can help organizations enhance innovation, scalability, agility, and speed while simultaneously alleviating the burden on time-strapped IT teams. Yet most organizations have not fully made the leap to cloud. McKinsey, for example, reports a broad mismatch between leading companies’ cloud aspirations and realities—though nearly all organizations say they aspire to run the majority of their applications in the cloud within the decade, the average organization has currently relocated only 15–20% of them.

Cloud solutions that take an industry-specific approach can help companies meet their business needs more easily, making cloud adoption faster, smoother, and more immediately useful. “Cloud requirements can vary significantly across vertical industries due to differences in compliance requirements, data sensitivity, scalability, and specific business objectives,” says Deviprasad Rambhatla, senior vice president and sector head of retail services and transportation at Wipro.

Health-care organizations, for instance, need to manage sensitive patient data while complying with strict regulations such as HIPAA. As a result, cloud solutions for that industry must ensure features such as high availability, disaster recovery capabilities, and continuous access to critical patient information.

Retailers, on the other hand, are more likely to experience seasonal business fluctuations, requiring cloud solutions that allow for greater flexibility. “Cloud solutions allow retailers to scale infrastructure on an up-and-down basis,” says Rambhatla. “Moreover, they’re able to do it on demand, ensuring optimal performance and cost efficiency.”

Cloud-based applications can also be tailored to meet the precise requirements of a particular industry. For retailers, these might include analytics tools that ingest vast volumes of data and generate insights that help the business better understand consumer behavior and anticipate market trends.

Download the full report.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Unlocking the trillion-dollar potential of generative AI

Generative AI is poised to unlock trillions in annual economic value across industries. This rapidly evolving field is changing the way we approach everything from content creation to software development, promising never-before-seen efficiency and productivity gains.

In this session, experts from Amazon Web Services (AWS) and QuantumBlack, AI by McKinsey, discuss the drivers fueling the massive potential impact of generative AI. Plus, they look at key industries set to capture the largest share of this value and practical strategies for effectively upskilling their workforces to take advantage of these productivity gains. 

Watch this session to:

  • Explore generative AI’s economic impact
  • Understand workforce upskilling needs
  • Integrate generative AI responsibly
  • Establish an AI-ready business model

Learn how to seamlessly integrate generative AI into your organization’s workflows while fostering a skilled and adaptable workforce. Register now to learn how to unlock the trillion-dollar potential of generative AI.

Register here for free.

Optimizing the supply chain with a data lakehouse

When a commercial ship travels from the port of Ras Tanura in Saudi Arabia to Tokyo Bay, it’s not only carrying cargo; it’s also transporting millions of data points across a wide array of partners and complex technology systems.

Consider, for example, Maersk. The global shipping container and logistics company has more than 100,000 employees, offices in 120 countries, and operates about 800 container ships that can each hold 18,000 tractor-trailer containers. From manufacture to delivery, the items within these containers carry hundreds or thousands of data points, highlighting the amount of supply chain data organizations manage on a daily basis.

Until recently, access to the bulk of an organizations’ supply chain data has been limited to specialists, distributed across myriad data systems. Constrained by traditional data warehouse limitations, maintaining the data requires considerable engineering effort; heavy oversight, and substantial financial commitment. Today, a huge amount of data—generated by an increasingly digital supply chain—languishes in data lakes without ever being made available to the business.

A 2023 Boston Consulting Group survey notes that 56% of managers say although investment in modernizing data architectures continues, managing data operating costs remains a major pain point. The consultancy also expects data deluge issues are likely to worsen as the volume of data generated grows at a rate of 21% from 2021 to 2024, to 149 zettabytes globally.

“Data is everywhere,” says Mark Sear, director of AI, data, and integration at Maersk. “Just consider the life of a product and what goes into transporting a computer mouse from China to the United Kingdom. You have to work out how you get it from the factory to the port, the port to the next port, the port to the warehouse, and the warehouse to the consumer. There are vast amounts of data points throughout that journey.”

Sear says organizations that manage to integrate these rich sets of data are poised to reap valuable business benefits. “Every single data point is an opportunity for improvement—to improve profitability, knowledge, our ability to price correctly, our ability to staff correctly, and to satisfy the customer,” he says.

Organizations like Maersk are increasingly turning to a data lakehouse architecture. By combining the cost-effective scale of a data lake with the capability and performance of a data warehouse, a data lakehouse promises to help companies unify disparate supply chain data and provide a larger group of users with access to data, including structured, semi-structured, and unstructured data. Building analytics on top of the lakehouse not only allows this new architectural approach to advance supply chain efficiency with better performance and governance, but it can also support easy and immediate data analysis and help reduce operational costs.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Multimodal: AI’s new frontier

Multimodality is a relatively new term for something extremely old: how people have learned about the world since humanity appeared. Individuals receive information from myriad sources via their senses, including sight, sound, and touch. Human brains combine these different modes of data into a highly nuanced, holistic picture of reality.

“Communication between humans is multimodal,” says Jina AI CEO Han Xiao. “They use text, voice, emotions, expressions, and sometimes photos.” That’s just a few obvious means of sharing information. Given this, he adds, “it is very safe to assume that future communication between human and machine will also be multimodal.”

A technology that sees the world from different angles

We are not there yet. The furthest advances in this direction have occurred in the fledgling field of multimodal AI. The problem is not a lack of vision. While a technology able to translate between modalities would clearly be valuable, Mirella Lapata, a professor at the University of Edinburgh and director of its Laboratory for Integrated Artificial Intelligence, says “it’s a lot more complicated” to execute than unimodal AI.

In practice, generative AI tools use different strategies for different types of data when building large data models—the complex neural networks that organize vast amounts of information. For example, those that draw on textual sources segregate individual tokens, usually words. Each token is assigned an “embedding” or “vector”: a numerical matrix representing how and where the token is used compared to others. Collectively, the vector creates a mathematical representation of the token’s meaning. An image model, on the other hand, might use pixels as its tokens for embedding, and an audio one sound frequencies.

A multimodal AI model typically relies on several unimodal ones. As Henry Ajder, founder of AI consultancy Latent Space, puts it, this involves “almost stringing together” the various contributing models. Doing so involves various techniques to align the elements of each unimodal model, in a process called fusion. For example, the word “tree”, an image of an oak tree, and audio in the form of rustling leaves might be fused in this way. This allows the model to create a multifaceted description of reality.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

The top 3 ways to use generative AI to empower knowledge workers 

Though generative AI is still a nascent technology, it is already being adopted by teams across companies to unleash new levels of productivity and creativity. Marketers are deploying generative AI to create personalized customer journeys. Designers are using the technology to boost brainstorming and iterate between different content layouts more quickly. The future of technology is exciting, but there can be implications if these innovations are not built responsibly.

As Adobe’s CIO, I get questions from both our internal teams and other technology leaders: how can generative AI add real value for knowledge workers—at an enterprise level? Adobe is a producer and consumer of generative AI technologies, and this question is urgent for us in both capacities. It’s also a question that CIOs of large companies are uniquely positioned to answer. We have a distinct view into different teams across our organizations, and working with customers gives us more opportunities to enhance business functions.

Our approach

When it comes to AI at Adobe, my team has taken a comprehensive approach that includes investment in foundational AI, strategic adoption, an AI ethics framework, legal considerations, security, and content authentication. ​The rollout follows a phased approach, starting with pilot groups and building communities around AI. ​

This approach includes experimenting with and documenting use cases like writing and editing, data analysis, presentations and employee onboarding, corporate training, employee portals, and improved personalization across HR channels. The rollouts are accompanied by training podcasts and other resources to educate and empower employees to use AI in ways that improve their work and keep them more engaged. ​

Unlocking productivity with documents

While there are innumerable ways that CIOs can leverage generative AI to help surface value at scale for knowledge workers, I’d like to focus on digital documents—a space in which Adobe has been a leader for over 30 years. Whether they are sales associates who spend hours responding to requests for proposals (RFPs) or customizing presentations, marketers who need competitive intel for their next campaign, or legal and finance teams who need to consume, analyze, and summarize massive amounts of complex information—documents are a core part of knowledge workers’ daily work life. Despite their ubiquity and the fact that critical information lives inside companies’ documents (from research reports to contracts to white papers to confidential strategies and even intellectual property), most knowledge workers are experiencing information overload. The impact on both employee productivity and engagement is real.  

Lessons from customer zero

Adobe invented the PDF and we’ve been innovating new ways for knowledge workers to get more productive with their digital documents for decades. Earlier this year, the Acrobat team approached my team about launching an all-employee beta for the new generative AI-powered AI Assistant. The tool is designed to help people consume the information in documents faster and enable them to consolidate and format information into business content.

I faced all the same questions every CIO is asking about deploying generative AI across their business— from security and governance to use cases and value. We discovered the following three specific ways where generative AI helped (and is still helping) our employees work smarter and improve productivity.

  1. Faster time to knowledge
    Our employees used AI Assistant to close the gap between understanding and action for large, complicated documents. The generative AI-powered tool’s summary feature automatically generates an overview to give readers a quick understanding of the content. A conversational interface allows employees to “chat” with their documents and provides a list of suggested questions to help them get started. To get more details, employees can ask the assistant to generate top takeaways or surface only the information on a specific topic. At Adobe, our R&D teams used to spend more than 10 hours a week reading and analyzing technical white papers and industry reports. With generative AI, they’ve been able to nearly halve that time by asking questions and getting answers about exactly what they need to know and instantly identifying trends or surfacing inconsistencies across multiple documents.
  2. Easy navigation and verification
    AI-powered chat is gaining ground on traditional search when it comes to navigating the internet. However, there are still challenges when it comes to accuracy and connecting responses to the source. Acrobat AI Assistant takes a more focused approach, applying generative AI to the set of documents employees select and providing hot links and clickable citations along with responses. So instead of using the search function to locate random words or trying to scan through dozens of pages for the information they need, AI Assistant generates both responses and clickable citations and links, allowing employees to navigate quickly to the source where they can quickly verify the information and move on, or spend time deep diving to learn more. One example of where generative AI is having a huge productivity impact is with our sales teams who spend hours researching prospects by reading materials like annual reports as well as responding to RFPs. Consuming that information and finding just the right details for RPFs can cost each salesperson more than eight hours a week. Armed with AI Assistant, sales associates quickly navigate pages of documents and identify critical intelligence to personalize pitch decks and instantly find and verify technical details for RFPs, cutting the time they spend down to about four hours.
  3. Creating business content
    One of the most interesting use cases we helped validate is taking information in documents and formatting and repurposing that information into business content. With nearly 30,000 employees dispersed across regions, we have a lot of employees who work asynchronously and depend on technology and colleagues to keep them up to date. Using generative AI, employees can now summarize meeting transcripts, surface action items, and instantly format the information into an email for sharing with their teams or a report for their manager. Before starting the beta, our communications teams reported spending a full workday (seven to 10 hours) per week transforming documents like white papers and research reports into derivative content like media briefing decks, social media posts, blogs, and other thought leadership content. Today they’re saving more than five hours a week by instantly generating first drafts with the help of generative AI.

Simple, safe, and responsible

CIOs love learning about and testing new technologies, but at times they can require lengthy evaluations and implementation processes. Acrobat AI Assistant can be deployed in minutes on the desktop, web, or mobile apps employees already know and use every day. Acrobat AI Assistant leverages a variety of processes, protocols, and technologies so our customers’ data remains their data and they can deploy the features with confidence. No document content is stored or used to train AI Assistant without customers’ consent, and the features only deliver insights from documents users provide. For more information about Adobe is deploying generative AI safely, visit here.

Generative AI is an incredibly exciting technology with incredible potential to help every knowledge worker work smarter and more productively. By having the right guardrails in place, identifying high-value use cases, and providing ongoing training and education to encourage successful adoption, technology leaders can support their workforce and companies to be wildly successful in our AI-accelerated world.  

This content was produced by Adobe. It was not written by MIT Technology Review’s editorial staff.

Scaling individual impact: Insights from an AI engineering leader

Traditionally, moving up in an organization has meant leading increasingly large teams of people, with all the business and operational duties that entails. As a leader of large teams, your contributions can become less about your own work and more about your team’s output and impact. There’s another path, though. The rapidly evolving fields of artificial intelligence (AI) and machine learning (ML) have increased demand for engineering leaders who drive impact as individual contributors (ICs). An IC has more flexibility to move across different parts of the organization, solve problems that require expertise from different technical domains, and keep their skill set aligned with the latest developments (hopefully with the added benefit of fewer meetings).

In an executive IC role as a technical leader, I have a deep impact by looking at the intersections of systems across organizational boundaries, prioritize the problems that really need solving, then assemble stakeholders from across teams to create the best solutions.

Driving influence through expertise

People leaders typically have the benefit of an organization that scales with them. As an IC, you scale through the scope, complexity, and impact of the problems you help solve. The key to being effective is getting really good at identifying and structuring problems. You need to proactively identify the most impactful problems to solve—the ones that deliver the most value but that others aren’t focusing on—and structure them in a way that makes them easier to solve.

People skills are still important because building strong relationships with colleagues is fundamental. When consensus is clear, solving problems is straightforward, but when the solution challenges the status quo, it’s crucial to have established technical credibility and organizational influence.

And then there’s the fun part: getting your hands dirty. Choosing the IC path has allowed me to spend more time designing and building AI/ML systems than other management roles would—prototyping, experimenting with new tools and techniques, and thinking deeply about our most complex technical challenges.

A great example I’ve been fortunate to work on involved designing the structure of a new ML-driven platform. It required significant knowledge at the cutting edge and touched multiple other parts of the organization. The freedom to structure my time as an IC allowed me to dive deep in the domain, understand the technical needs of the problem space, and scope the approach. At the same time, I worked across multiple enterprise and line-of-business teams to align appropriate resources and define solutions that met the business needs of our partners. This allowed us to deliver a cutting-edge solution on a very short timescale to help the organization safely scale a new set of capabilities.

Being an IC lets you operate more like a surgeon than a general. You focus your efforts on precise, high-leverage interventions. Rapid, iterative problem-solving is what makes the role impactful and rewarding.

The keys to success as an IC executive

In an IC executive role, there are key skills that are essential. First is maintaining deep technical expertise. I usually have a couple of different lines of study going on at any given time, one that’s closely related to the problems I’m currently working on, and another that takes a long view on foundational knowledge that will help me in the future.

Second is the ability to proactively identify and structure high-impact problems. That means developing a strong intuition for where AI/ML can drive the most business value, and leveraging the problem in a way that achieves the highest business results.

Determining how the problem will be formulated means considering what specific problem you are trying to solve and what you are leaving off the table. This intentional approach aligns the right complexity level to the problem to meet the organization’s needs with the minimum level of effort. The next step is breaking down the problem into chunks that can be solved by the people or teams aligned to the effort.

Doing this well requires building a diverse network across the organization. Building and nurturing relationships in different functional areas is crucial to IC success, giving you the context to spot impactful problems and the influence to mobilize resources to address them.

Finally, you have to be an effective communicator who can translate between technical and business audiences. Executives need you to contextualize system design choices in terms of business outcomes and trade-offs. And engineers need you to provide crisp problem statements and solution sketches.

It’s a unique mix of skills, but if you can cultivate that combination of technical depth, organizational savvy, and business-conscious communication, ICs can drive powerful innovations. And you can do it while preserving the hands-on problem-solving abilities that likely drew you to engineering in the first place.

Empowering IC Career Paths

As the fields of AI/ML evolve, there’s a growing need for senior ICs who can provide technical leadership. Many organizations are realizing that they need people who can combine deep expertise with strategic thinking to ensure these technologies are being applied effectively.

However, many companies are still figuring out how to empower and support IC career paths. I’m fortunate that Capital One has invested heavily in creating a strong Distinguished Engineer community. We have mentorship, training, and knowledge-sharing structures in place to help senior ICs grow and drive innovation.

ICs have more freedom than most to craft their own job description around their own preferences and skill sets. Some ICs may choose to focus on hands-on coding, tackling deeply complex problems within an organization. Others may take a more holistic approach, examining how teams intersect and continually collaborating in different areas to advance projects. Either way, an IC needs to be able to see the organization from a broad perspective, and know how to spot the right places to focus their attention.

Effective ICs also need the space and resources to stay on the bleeding edge of their fields. In a domain like AI/ML that’s evolving so rapidly, continuous learning and exploration are essential. It’s not a nice-to-have feature, but a core part of the job, and since your time as an individual doesn’t scale, it requires dedication to time management.

Shaping the future

The role of an executive IC in engineering is all about combining deep technical expertise with a strategic mindset. That’s a key ingredient in the kind of transformational change that AI is driving, but realizing this potential will require a shift in the way many organizations think about leadership.

I’m excited to see more engineers pursue an IC path and bring their unique mix of skills to bear on the toughest challenges in AI/ML. With the right organizational support, I believe a new generation of IC leaders will emerge and help shape the future of the field. That’s the opportunity ahead of us, and I’m looking forward to leading by doing.

This content was produced by Capital One. It was not written by MIT Technology Review’s editorial staff.

Modernizing data with strategic purpose

Data modernization is squarely on the corporate agenda. In our survey of 350 senior data and technology executives, just over half say their organization has either undertaken a modernization project in the past two years or is implementing one today. An additional one-quarter plan to do so in the next two years. Other studies also consistently point to businesses’ increased investment in modernizing their data estates.

It is no coincidence that this heightened attention to improving data capabilities coincides with interest in AI, especially generative AI, reaching a fever pitch. Indeed, supporting the development of AI models is among the top reasons the organizations in our research seek to modernize their data capabilities. But AI is not the only reason, or even the main one.

This report seeks to understand organizations’ objectives for their data modernization projects and how they are implementing such initiatives. To do so, it surveyed senior data and technology executives across industries. The research finds that many have made substantial progress and investment in data modernization. Alignment on data strategy and the goals of modernization appear to be far from complete in many organizations, however, leaving a disconnect between data and technology teams and the rest of the business. Data and technology executives and their teams can still do more to understand their colleagues’ data needs and actively seek their input on how to meet them.

Following are the study’s key findings:

AI isn’t the only reason companies are modernizing the data estate. Better decision-making is the primary aim of data modernization, with nearly half (46%) of executives citing this among their three top drivers. Support for AI models (40%) and for decarbonization (38%) are also major drivers of modernization, as are improving regulatory compliance (33%) and boosting operational efficiency (32%).

Data strategy is too often siloed from business strategy. Nearly all surveyed organizations recognize the importance of taking a strategic approach to data. Only 22% say they lack a fully developed data strategy. When asked if their data strategy is completely aligned with key business objectives, however, only 39% agree. Data teams can also do more to bring other business units and functions into strategy discussions: 42% of respondents say their data strategy was developed exclusively by the data or technology team.

Data strategy paves the road to modernization. It is probably no coincidence that most organizations (71%) that have embarked on data modernization in the past two years have had a data strategy in place for longer than that. Modernization goals require buy-in from the business, and implementation decisions need strategic guidance, lest they lead to added complexity or duplication.

Top data pain points are data quality and timeliness. Executives point to substandard data (cited by 41%) and untimely delivery (33%) as the facets of their data operations most in need of improvement. Incomplete or inaccurate data leads enterprise users to question data trustworthiness. This helps explain why the most common modernization measure taken by our respondents’ organizations in the past two years has been to review and upgrade data governance (cited by 45%).

Cross-functional teams and DataOps are key levers to improve data quality. Modern data engineering practices are taking root in many businesses. Nearly half of organizations (48%) are empowering cross-functional data teams to enforce data quality standards, and 47% are prioritizing implementing DataOps (cited by 47%). These sorts of practices, which echo the agile methodologies and product thinking that have become standard in software engineering, are only starting to make their way into the data realm.

Compliance and security considerations often hinder modernization. Compliance and security concerns are major impediments to modernization, each cited by 44% of the respondents. Regulatory compliance is mentioned particularly frequently by those working in energy, public sector, transport, and financial services organizations. High costs are another oft-cited hurdle (40%), especially among the survey’s smaller organizations.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Taking AI to the next level in manufacturing

Few technological advances have generated as much excitement as AI. In particular, generative AI seems to have taken business discourse to a fever pitch. Many manufacturing leaders express optimism: Research conducted by MIT Technology Review Insights found ambitions for AI development to be stronger in manufacturing than in most other sectors.

image of the report cover

Manufacturers rightly view AI as integral to the creation of the hyper-automated intelligent factory. They see AI’s utility in enhancing product and process innovation, reducing cycle time, wringing ever more efficiency from operations and assets, improving maintenance, and strengthening security, while reducing carbon emissions. Some manufacturers that have invested to develop AI capabilities are still striving to achieve their objectives.

This study from MIT Technology Review Insights seeks to understand how manufacturers are generating benefits from AI use cases—particularly in engineering and design and in factory operations. The survey included 300 manufacturers that have begun working with AI. Most of these (64%) are currently researching or experimenting with AI. Some 35% have begun to put AI use cases into production. Many executives that responded to the survey indicate they intend to boost AI spending significantly during the next two years. Those who haven’t started AI in production are moving gradually. To facilitate use-case development and scaling, these manufacturers must address challenges with talents, skills, and data.

Following are the study’s key findings:

  • Talent, skills, and data are the main constraints on AI scaling. In both engineering and design and factory operations, manufacturers cite a deficit of talent and skills as their toughest challenge in scaling AI use cases. The closer use cases get to production, the harder this deficit bites. Many respondents say inadequate data quality and governance also hamper use-case development. Insufficient access to cloud-based compute power is another oft-cited constraint in engineering and design.
  • The biggest players do the most spending, and have the highest expectations. In engineering and design, 58% of executives expect their organizations to increase AI spending by more than 10% during the next two years. And 43% say the same when it comes to factory operations. The largest manufacturers are far more likely to make big increases in investment than those in smaller—but still large—size categories.
  • Desired AI gains are specific to manufacturing functions. The most common use cases deployed by manufacturers involve product design, conversational AI, and content creation. Knowledge management and quality control are those most frequently cited at pilot stage. In engineering and design, manufacturers chiefly seek AI gains in speed, efficiency, reduced failures, and security. In the factory, desired above all is better innovation, along with improved safety and a reduced carbon footprint.
  • Scaling can stall without the right data foundations. Respondents are clear that AI use-case development is hampered by inadequate data quality (57%), weak data integration (54%), and weak governance (47%). Only about one in five manufacturers surveyed have production assets with data ready for use in existing AI models. That figure dwindles as manufacturers put use cases into production. The bigger the manufacturer, the greater the problem of unsuitable data is.
  • Fragmentation must be addressed for AI to scale. Most manufacturers find some modernization of data architecture, infrastructure, and processes is needed to support AI, along with other technology and business priorities. A modernization strategy that improves interoperability of data systems between engineering and design and the factory, and between operational technology (OT) and information technology (IT), is a sound priority.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Open-sourcing generative AI

The views expressed in this video are those of the speakers, and do not represent any endorsement or sponsorship.

Is the open-source approach, which has democratized access to software, ensured transparency, and improved security for decades, now poised to have a similar impact on AI? We dissect the balance between collaboration and control, legal ramifications, ethical considerations, and innovation barriers as the AI industry seeks to democratize the development of large language models.

Explore more from Booz Allen Hamilton on the future of AI


About the speakers

Alison Smith, Director of Generative AI, Booz Allen Hamilton

Alison Smith is a Director of Generative AI at Booz Allen Hamilton where she helps clients address their missions with innovative solutions. Leading Booz Allen’s investments in Generative AI and grounding them in real business needs, Alison employs a pragmatic approach to designing, implementing, and deploying Generative AI that blends existing tools with additional customization. She is also responsible for disseminating best practices and key solutions throughout the firm to ensure that all teams are up-to-date on the latest available tools, solutions, and approaches to common client problems.

In addition to her role at Booz Allen which balances technical solutions and business growth, Alison also enjoys staying connected to and serving her local community. From 2017-2021, Alison served on the board of a non-profit, DC Open Government Coalition (DCOGC), a group that seeks to enhance public access to government information and ensure transparent government operations; in November 2021, Alison was recognized as a Power Woman in Code by DCFemTech.

Alison has an MBA from The University of Chicago Booth School of Business and a BA from Middlebury College.

Tackling AI risks: Your reputation is at stake

Forget Skynet: One of the biggest risks of AI is your organization’s reputation. That means it’s time to put science-fiction catastrophizing to one side and begin thinking seriously about what AI actually means for us in our day-to-day work.

This isn’t to advocate for navel-gazing at the expense of the bigger picture: It’s to urge technologists and business leaders to recognize that if we’re to address the risks of AI as an industry—maybe even as a society—we need to closely consider its immediate implications and outcomes. If we fail to do that, taking action will be practically impossible.

Risk is all about context

Risk is all about context. In fact, one of the biggest risks is failing to acknowledge or understand your context: That’s why you need to begin there when evaluating risk.

This is particularly important in terms of reputation. Think, for instance, about your customers and their expectations. How might they feel about interacting with an AI chatbot? How damaging might it be to provide them with false or misleading information? Maybe minor customer inconvenience is something you can handle, but what if it has a significant health or financial impact?

Even if implementing AI seems to make sense, there are clearly some downstream reputation risks that need to be considered. We’ve spent years talking about the importance of user experience and being customer-focused: While AI might help us here, it could also undermine those things as well.

There’s a similar question to be asked about your teams. AI may have the capacity to drive efficiency and make people’s work easier, but used in the wrong way it could seriously disrupt existing ways of working. The industry is talking a lot about developer experience recently—it’s something I wrote about for this publication—and the decisions organizations make about AI need to improve the experiences of teams, not undermine them.

In the latest edition of the Thoughtworks Technology Radar—a biannual snapshot of the software industry based on our experiences working with clients around the world—we talk about precisely this point. We call out AI team assistants as one of the most exciting emerging areas in software engineering, but we also note that the focus has to be on enabling teams, not individuals. “You should be looking for ways to create AI team assistants to help create the ‘10x team,’ as opposed to a bunch of siloed AI-assisted 10x engineers,” we say in the latest report.

Failing to heed the working context of your teams could cause significant reputational damage. Some bullish organizations might see this as part and parcel of innovation—it’s not. It’s showing potential employees—particularly highly technical ones—that you don’t really understand or care about the work they do.

Tackling risk through smarter technology implementation

There are lots of tools that can be used to help manage risk. Thoughtworks helped put together the Responsible Technology Playbook, a collection of tools and techniques that organizations can use to make more responsible decisions about technology (not just AI).

However, it’s important to note that managing risks—particularly those around reputation—requires real attention to the specifics of technology implementation. This was particularly clear in work we did with an assortment of Indian civil society organizations, developing a social welfare chatbot that citizens can interact with in their native languages. The risks here were not unlike those discussed earlier: The context in which the chatbot was being used (as support for accessing vital services) meant that inaccurate or “hallucinated” information could stop people from getting the resources they depend on.

This contextual awareness informed technology decisions. We implemented a version of something called retrieval-augmented generation to reduce the risk of hallucinations and improve the accuracy of the model the chatbot was running on.

Retrieval-augmented generation features on the latest edition of the Technology Radar. It might be viewed as part of a wave of emerging techniques and tools in this space that are helping developers tackle some of the risks of AI. These range from NeMo Guardrails—an open-source tool that puts limits on chatbots to increase accuracy—to the technique of running large language models (LLMs) locally with tools like Ollama, to ensure privacy and avoid sharing data with third parties. This wave also includes tools that aim to improve transparency in LLMs (which are notoriously opaque), such as Langfuse.

It’s worth pointing out, however, that it’s not just a question of what you implement, but also what you avoid doing. That’s why, in this Radar, we caution readers about the dangers of overenthusiastic LLM use and rushing to fine-tune LLMs.

Rethinking risk

A new wave of AI risk assessment frameworks aim to help organizations consider risk. There is also legislation (including the AI Act in Europe) that organizations must pay attention to. But addressing AI risk isn’t just a question of applying a framework or even following a static set of good practices. In a dynamic and changing environment, it’s about being open-minded and adaptive, paying close attention to the ways that technology choices shape human actions and social outcomes on both a micro and macro scale.

One useful framework is Dominique Shelton Leipzig’s traffic light framework. A red light signals something prohibited—such as discriminatory surveillance—while a green light signals low risk and a yellow light signals caution. I like the fact it’s so lightweight: For practitioners, too much legalese or documentation can make it hard to translate risk to action.

However, I also think it’s worth flipping the framework, to see risks as embedded in contexts, not in the technologies themselves. That way, you’re not trying to make a solution adapt to a given situation, you’re responding to a situation and addressing it as it actually exists. If organizations take that approach to AI—and, indeed, to technology in general—that will ensure they’re meeting the needs of stakeholders and keep their reputations safe.

This content was produced by Thoughtworks. It was not written by MIT Technology Review’s editorial staff.