Stop worrying about your AI footprint. Look at the big picture instead.

Picture it: I’m minding my business at a party, parked by the snack table (of course). A friend of a friend wanders up, and we strike up a conversation. It quickly turns to work, and upon learning that I’m a climate technology reporter, my new acquaintance says something like: “Should I be using AI? I’ve heard it’s awful for the environment.” 

This actually happens pretty often now. Generally, I tell people not to worry—let a chatbot plan your vacation, suggest recipe ideas, or write you a poem if you want. 

That response might surprise some people, but I promise I’m not living under a rock, and I have seen all the concerning projections about how much electricity AI is using. Data centers could consume up to 945 terawatt-hours annually by 2030. (That’s roughly as much as Japan.) 

But I feel strongly about not putting the onus on individuals, partly because AI concerns remind me so much of another question: “What should I do to reduce my carbon footprint?” 

That one gets under my skin because of the context: BP helped popularize the concept of a carbon footprint in a marketing campaign in the early 2000s. That framing effectively shifts the burden of worrying about the environment from fossil-fuel companies to individuals. 

The reality is, no one person can address climate change alone: Our entire society is built around burning fossil fuels. To address climate change, we need political action and public support for researching and scaling up climate technology. We need companies to innovate and take decisive action to reduce greenhouse-gas emissions. Focusing too much on individuals is a distraction from the real solutions on the table. 

I see something similar today with AI. People are asking climate reporters at barbecues whether they should feel guilty about using chatbots too frequently when we need to focus on the bigger picture. 

Big tech companies are playing into this narrative by providing energy-use estimates for their products at the user level. A couple of recent reports put the electricity used to query a chatbot at about 0.3 watt-hours, the same as powering a microwave for about a second. That’s so small as to be virtually insignificant.

But stopping with the energy use of a single query obscures the full truth, which is that this industry is growing quickly, building energy-hungry infrastructure at a nearly incomprehensible scale to satisfy the AI appetites of society as a whole. Meta is currently building a data center in Louisiana with five gigawatts of computational power—about the same demand as the entire state of Maine at the summer peak.  (To learn more, read our Power Hungry series online.)

Increasingly, there’s no getting away from AI, and it’s not as simple as choosing to use or not use the technology. Your favorite search engine likely gives you an AI summary at the top of your search results. Your email provider’s suggested replies? Probably AI. Same for chatting with customer service while you’re shopping online. 

Just as with climate change, we need to look at this as a system rather than a series of individual choices. 

Massive tech companies using AI in their products should be disclosing their total energy and water use and going into detail about how they complete their calculations. Estimating the burden per query is a start, but we also deserve to see how these impacts add up for billions of users, and how that’s changing over time as companies (hopefully) make their products more efficient. Lawmakers should be mandating these disclosures, and we should be asking for them, too. 

That’s not to say there’s absolutely no individual action that you can take. Just as you could meaningfully reduce your individual greenhouse-gas emissions by taking fewer flights and eating less meat, there are some reasonable things that you can do to reduce your AI footprint. Generating videos tends to be especially energy-intensive, as does using reasoning models to engage with long prompts and produce long answers. Asking a chatbot to help plan your day, suggest fun activities to do with your family, or summarize a ridiculously long email has relatively minor impact. 

Ultimately, as long as you aren’t relentlessly churning out AI slop, you shouldn’t be too worried about your individual AI footprint. But we should all be keeping our eye on what this industry will mean for our grid, our society, and our planet. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

DeepSeek may have found a new way to improve AI’s ability to remember

<div data-chronoton-summary="

  • Memory Through Images: DeepSeek’s new OCR model stores information as visual rather than text tokens, a technique that allows it to retain more data. This approach could drastically reduce computing costs and carbon footprint while improving AI’s ability to ‘remember’.
  • Addressing Context Rot: The model works a bit like human memory, storing older or less critical information in slightly blurred form to save space. This could help address the fact current AI systems forget or muddle information over long conversations, a problem dubbed “context rot.”
  • DeepSeek Disruption: DeepSeek shocked the AI industry with its efficient DeepSeek-R1 reasoning model in January, and is again pushing boundaries. The OCR system can generate over 200,000 training data pages daily on a single GPU, potentially addressing the industry’s severe shortage of quality training text.

” data-chronoton-post-id=”1126932″ data-chronoton-expand-collapse=”1″ data-chronoton-analytics-enabled=”1″>

An AI model released by the Chinese AI company DeepSeek uses new techniques that could significantly improve AI’s ability to “remember.”

Released last week, the optical character recognition (OCR) model works by extracting text from an image and turning it into machine-readable words. This is the same technology that powers scanner apps, translation of text in photos, and many accessibility tools. 

OCR is already a mature field with numerous high-performing systems, and according to the paper and some early reviews, DeepSeek’s new model performs on par with top models on key benchmarks.

But researchers say the model’s main innovation lies in how it processes information—specifically, how it stores and retrieves memories. Improving how AI models “remember” information could reduce the computing power they need to run, thus mitigating AI’s large (and growing) carbon footprint. 

Currently, most large language models break text down into thousands of tiny units called tokens. This turns the text into representations that models can understand. However, these tokens quickly become expensive to store and compute with as conversations with end users grow longer. When a user chats with an AI for lengthy periods, this challenge can cause the AI to forget things it’s been told and get information muddled, a problem some call “context rot.”

The new methods developed by DeepSeek (and published in its latest paper) could help to overcome this issue. Instead of storing words as tokens, its system packs written information into image form, almost as if it’s taking a picture of pages from a book. This allows the model to retain nearly the same information while using far fewer tokens, the researchers found. 

Essentially, the OCR model is a test bed for these new methods that permit more information to be packed into AI models more efficiently. 

Besides using visual tokens instead of just text tokens, the model is built on a type of tiered compression that is not unlike how human memories fade: Older or less critical content is stored in a slightly more blurry form in order to save space. Despite that, the paper’s authors argue, this compressed content can still remain accessible in the background while maintaining a high level of system efficiency.

Text tokens have long been the default building block in AI systems. Using visual tokens instead is unconventional, and as a result, DeepSeek’s model is quickly capturing researchers’ attention. Andrej Karpathy, the former Tesla AI chief and a founding member of OpenAI, praised the paper on X, saying that images may ultimately be better than text as inputs for LLMs. Text tokens might be “wasteful and just terrible at the input,” he wrote. 

Manling Li, an assistant professor of computer science at Northwestern University, says the paper offers a new framework for addressing the existing challenges in AI memory. “While the idea of using image-based tokens for context storage isn’t entirely new, this is the first study I’ve seen that takes it this far and shows it might actually work,” Li says.

The method could open up new possibilities in AI research and applications, especially in creating more useful AI agents, says Zihan Wang, a PhD candidate at Northwestern University. He believes that since conversations with AI are continuous, this approach could help models remember more and assist users more effectively.

The technique can also be used to produce more training data for AI models. Model developers are currently grappling with a severe shortage of quality text to train systems on. But the DeepSeek paper says that the company’s OCR system can generate over 200,000 pages of training data a day on a single GPU.

The model and paper, however, are only an early exploration of using image tokens rather than text tokens for AI memorization. Li says she hopes to see visual tokens applied not just to memory storage but also to reasoning. Future work, she says, should explore how to make AI’s memory fade in a more dynamic way, akin to how we can recall a life-changing moment from years ago but forget what we ate for lunch last week. Currently, even with DeepSeek’s methods, AI tends to forget and remember in a very linear way—recalling whatever was most recent, but not necessarily what was most important, she says. 

Despite its attempts to keep a low profile, DeepSeek, based in Hangzhou, China, has built a reputation for pushing the frontier in AI research. The company shocked the industry at the start of this year with the release of DeepSeek-R1, an open-source reasoning model that rivaled leading Western systems in performance despite using far fewer computing resources. 

An AI adoption riddle

A few weeks ago, I set out on what I thought would be a straightforward reporting journey. 

After years of momentum for AI—even if you didn’t think it would be good for the world, you probably thought it was powerful enough to take seriously—hype for the technology had been slightly punctured. First there was the underwhelming release of GPT-5 in August. Then a report released two weeks later found that 95% of generative AI pilots were failing, which caused a brief stock market panic. I wanted to know: Which companies are spooked enough to scale back their AI spending?

I searched and searched for them. As I did, more news fueled the idea of an AI bubble that, if popped, would spell doom economy-wide. Stories spread about the circular nature of AI spending, layoffs, the inability of companies to articulate what exactly AI will do for them. Even the smartest people building modern AI systems were saying the tech has not progressed as much as its evangelists promised. 

But after all my searching, companies that took these developments as a sign to perhaps not go all in on AI were nowhere to be found. Or, at least, none that were willing to admit it. What gives? 

There are several interpretations of this one reporter’s quest (which, for the record, I’m presenting as an anecdote and not a representation of the economy), but let’s start with the easy ones. First is that this is a huge score for the “AI is a bubble” believers. What is a bubble if not a situation where companies continue to spend relentlessly even in the face of worrying news? The other is that underneath the bad headlines, there’s not enough genuinely troubling news about AI to convince companies they should pivot.

But it could also be that the unbelievable speed of AI progress and adoption has made me think industries are more sensitive to news than they perhaps should be. I spoke with Martha Gimbel, who leads the Yale Budget Lab and coauthored a report finding that AI has not yet changed anyone’s jobs. What I gathered is that Gimbel, like many economists, thinks on a longer time scale than anyone in the AI world is used to. 

“It would be historically shocking if a technology had had an impact as quickly as people thought that this one was going to,” she says. In other words, perhaps most of the economy is still figuring out what the hell AI even does, not deciding whether to abandon it. 

The other reaction I heard—particularly from the consultant crowd—is that when executives hear that so many AI pilots are failing, they indeed take it very seriously. They’re just not reading it as a failure of the technology itself. They instead point to pilots not moving quickly enough, companies lacking the right data to build better AI, or a host of other strategic reasons.

Even if there is incredible pressure, especially on public companies, to invest heavily in AI, a few have taken big swings on the technology only to pull back. The buy now, pay later company Klarna laid off staff and paused hiring in 2024, claiming it could use AI instead. Less than a year later it was hiring again, explaining that “AI gives us speed. Talent gives us empathy.” 

Drive-throughs, from McDonald’s to Taco Bell, ended pilots testing the use of AI voice assistants. The vast majority of Coca-Cola advertisements, according to experts I spoke with, are not made with generative AI, despite the company’s $1 billion promise. 

So for now, the question remains unanswered: Are there companies out there rethinking how much their bets on AI will pay off, or when? And if there are, what’s keeping them from talking out loud about it? (If you’re out there, email me!)