AI’s growth needs the right interface

If you took a walk in Hayes Valley, San Francisco’s epicenter of AI froth, and asked the first dude-bro you saw wearing a puffer vest about the future of the interface, he’d probably say something about the movie Her, about chatty virtual assistants that will help you do everything from organize your email to book a trip to Coachella to sort your text messages.

Nonsense. Setting aside that Her (a still from the film is shown above) was about how technology manipulates us into a one-sided relationship, you’d have to be pudding-brained to believe that chatbots are the best way to use computers. The real opportunity is close, but it isn’t chatbots.

Instead, it’s computers built atop the visual interfaces we know, but which we can interact with more fluidly, through whatever combination of voice and touch is most natural. Crucially, this won’t just be a computer that we can use. It’ll also be a computer that empowers us to break and remake it, to whatever ends we want. 

Chatbots fail because they ignore a simple fact that’s sold 20 billion smartphones: For a computer to be useful, we need an easily absorbed mental model of both its capabilities and its limitations. The smartphone’s victory was built on the graphical user interface, which revolutionized how we use computers—and how many computers we use!—because it made it easy to understand what a computer could do. There was no mystery. In a blink, you saw the icons and learned without realizing it.

Today we take the GUI for granted. Meanwhile, chatbots can feel like magic, letting you say anything and get a reasonable-­sounding response. But magic is also the power to mislead. Chatbots and open-ended conversational systems are doomed as general-­purpose interfaces because while they may seem able to understand anything, they can’t actually do everything. 

In that gap between anything and everything sits a teetering mound of misbegotten ideas and fatally hyped products.

“But dude, maybe a chatbot could help you book that flight to Coachella?” Sure. But could it switch your reservation when you have a problem? Could it ask you, in turn, which flight is best given your need to be back in Hayes Valley by Friday at 2? 

We take interactive features for granted because of the GUI’s genius. But with a chatbot, you can never know up front where its abilities begin and end. Yes, the list of things they can do is growing every day. But how do you remember what does and doesn’t work, or what’s supposed to work soon? And how are you supposed to constantly update your mental model as those capabilities grow?

If you’ve ever used a digital assistant or smart speaker, you already know that mismatched expectations create products we’ll never use to their full potential. When you first tried one, you probably asked it to do whatever you could think of. Some things worked; most didn’t. So you eventually settled on asking for just the few things you could remember that always worked: timers and music. LLMs, when used as primary interfaces, re-create the trouble that arises when your mental model isn’t quite right. 

Chatbots have their uses and their users. But their usefulness is still capped because they are open-ended computer interfaces that challenge you to figure them out through trial and error. Instead, we need to combine the ease of natural-­language input with machines that will simply show us what they are capable of. 

For example, imagine if, instead of stumbling around trying to talk to the smart devices in your home like a doofus, you could simply look at something with your smart glasses (or whatever) and see a right-click for the real world, giving you a menu of what you can control in all the devices that increasingly surround us. It won’t be a voice that tells you what’s possible—it’ll be an old-fashioned computer screen, and an old-fashioned GUI, which you can operate with your voice or with your hands, or both in combination if you want.

But that’s still not the big opportunity! 

Why shouldn’t we be able to not merely consume technology but instead architect it to suit our own ends?

I think the future interface we want is made from computers and apps that work in ways similar to the phones and laptops we have now—but that we can remake to suit whatever uses we want. Compare this with the world we have now: If you don’t like your hotel app, you can’t make a new one. If you don’t want all the bloatware in your banking app, tough luck. We’re surrounded by apps that are nominally tools. But unlike any tool previously known to man, these are tools that serve only the purpose that someone else defined for them. Why shouldn’t we be able to not merely consume technology, like the gelatinous former Earthlings in Wall-E, but instead architect technology to suit our own ends?

That world seemed close in the 1970s, to Steve Wozniak and the Homebrew Computer Club. It seemed to approach again in the 1990s, with the World Wide Web. But today, the imbalance between people who own computers and people who remake them has never been greater. We, the heirs of the original tool-using primates, have been reduced from wielders of those tools to passive consumers of technology delivered in slick buttons we can use but never change. This runs against what it is to be Homo sapiens, a species defined by our love and instinct for repurposing tools to whatever ends we like.

Imagine if you didn’t have to accept the features some tech genius announced on a wave of hype. Imagine if, instead of downloading some app someone else built, you could describe the app you wanted and then make it with a computer’s help, by reassembling features from any other apps ever created. Comp sci geeks call this notion of recombining capabilities “composability.” I think the future is composability—but composability that anyone can command. 

This idea is already lurching to life. Notion—originally meant as enterprise software that let you collect and create various docs in one place—has exploded with Gen Z, because unlike most software, which serves only a narrow or rigid purpose, it allows you to make and share templates for how to do things of all kinds. You can manage your finances or build a kindergarten lesson plan in one place, with whatever tools you need. 

Now imagine if you could tell your phone what kinds of new templates you want. An LLM can already assemble all the things you need and draw the right interface for them. Want a how-to app about knitting? Sure. Or your own guide to New York City? Done. That computer will probably be using an LLM to assemble these apps. Great. That just means that you, as a normie, can inspect and tinker with the prompt powering the software you just created, like a mechanic looking under the hood.

One day, hopefully soon, we’ll look back on this sad and weird era when our digital tools were both monolithic and ungovernable as a blip when technology conflicted with the human urge to constantly tinker with the world around us. And we’ll realize that the key to building a different relationship with technology was simply to give each of us power over how the interface of the future is designed. 

Cliff Kuang is a user-experience designer and the author of User Friendly: How the Hidden Rules of Design Are Changing the Way We Live, Work, and Play.

Will computers ever feel responsible?

“If a machine is to interact intelligently with people, it has to be endowed with an understanding of human life.” 

—Dreyfus and Dreyfus

Bold technology predictions pave the road to humility. Even titans like Albert Einstein own a billboard or two along that humbling freeway. In a classic example, John von Neumann, who pioneered modern computer architecture, wrote in 1949, “It would appear that we have reached the limits of what is possible to achieve with computer technology.” Among the myriad manifestations of computational limit-busting that have defied von Neumann’s prediction is the social psychologist Frank Rosenblatt’s 1958 model of a human brain’s neural network. He called his device, based on the IBM 704 mainframe computer, the “Perceptron” and trained it to recognize simple patterns. Perceptrons eventually led to deep learning and modern artificial intelligence.

In a similarly bold but flawed prediction, brothers Hubert and Stuart Dreyfus—professors at UC Berkeley with very different specialties, Hubert’s in philosophy and Stuart’s in engineering—wrote in a January 1986 story in Technology Review that “there is almost no likelihood that scientists can develop machines capable of making intelligent decisions.” The article drew from the Dreyfuses’ soon-to-be-published book, Mind Over Machine (Macmillan, February 1986), which described their five-stage model for human “know-how,” or skill acquisition. Hubert (who died in 2017) had long been a critic of AI, penning skeptical papers and books as far back as the 1960s. 

Stuart Dreyfus, who is still a professor at Berkeley, is impressed by the progress made in AI. “I guess I’m not surprised by reinforcement learning,” he says, adding that he remains skeptical and concerned about certain AI applications, especially large language models, or LLMs, like ChatGPT. “Machines don’t have bodies,” he notes. And he believes that being disembodied is limiting and creates risk: “It seems to me that in any area which involves life-and-death possibilities, AI is dangerous, because it doesn’t know what death means.”

According to the Dreyfus skill acquisition model, an intrinsic shift occurs as human know-how advances through five stages of development: novice, advanced beginner, competent, proficient, and expert. “A crucial difference between beginners and more competent performers is their level of involvement,” the researchers explained. “Novices and beginners feel little responsibility for what they do because they are only applying the learned rules.” If they fail, they blame the rules. Expert performers, however, feel responsibility for their decisions because as their know-how becomes deeply embedded in their brains, nervous systems, and muscles—an embodied skill—they learn to manipulate the rules to achieve their goals. They own the outcome.

That inextricable relationship between intelligent decision-­making and responsibility is an essential ingredient for a well-­functioning, civilized society, and some say it’s missing from today’s expert systems. Also missing is the ability to care, to share concerns, to make commitments, to have and read emotions—all the aspects of human intelligence that come from having a body and moving through the world.

As AI continues to infiltrate so many aspects of our lives, can we teach future generations of expert systems to feel responsible for their decisions? Is responsibility—or care or commitment or emotion—something that can be derived from statistical inferences or drawn from the problematic data used to train AI? Perhaps, but even then machine intelligence would not equate to human intelligence—it would still be something different, as the Dreyfus brothers also predicted nearly four decades ago. 

Bill Gourgey is a science writer based in Washington, DC.

From the publisher: Commemorating 125 years

The magazine you now hold in your hands is 125 years old. Not this actual issue, of course, but the publication itself, which launched in 1899. Few other titles can claim this kind of heritage—the Atlantic, Harper’s, Audubon (which is also turning 125 this year), National Geographic, and Popular Science among them.

MIT Technology Review was born four years before the Wright brothers took flight. Thirty-three before we split the atom, 59 ahead of the integrated circuit, 70 before we would walk on the moon, and 90 before the invention of the World Wide Web. It has survived two world wars, a depression, recessions, eras of tech boom and bust. It has chronicled the rise of computing from the time of room-size mainframes until today, when they have become ubiquitous, not just carried in our pockets but deeply embedded in nearly all aspects of our lives. 

As I sit in my air-conditioned home office writing this letter on my laptop, Spotify providing a soundtrack to keep me on task, I can’t help but consider the vast differences between my life and those of the MIT graduates who founded MIT Technology Review and laid out its pages by hand. My life—all of our lives—would amaze Arthur D. Little in countless ways.

(Not least is that I am the person to write this letter. When MITTR was founded, US women’s suffrage was still 20 years in the future. There were women at the Institute, but their numbers were small. Today, it is my honor to be the CEO and publisher of this storied title. And I’m proud to serve at an institution whose president and provost are both women.)

I came to MIT Technology Review to guide its digital transformation. Yet despite the pace of change in these past 125 years, my responsibilities are not vastly different from those of my predecessors. I’m here to ensure this publication—in all its digital, app-enabled, audio-supporting, livestreaming formats—carries on. I have a deep commitment to its mission of empowering its readers with trusted insights and information about technology’s potential to change the world.

During some chapters of its history, MIT Technology Review served as little more than an alumni magazine; through others, it leaned more heavily toward academic or journal-style publishing. During the dot-com era, MIT Technology Review invested large sums to increase circulation in pursuit of advertising pages comparable to the number in its counterparts of the time, the Industry Standard, Wired, and Business 2.0.

Through each of these chapters, I like to think, certain core principles remained consistent—namely, a focus on innovation and creativity in the face of new challenges and opportunities in publishing.

Today, MIT Technology Review sits in a privileged but precarious position in an industry struggling for viability. Print and online media is, frankly, in a time of crisis. We are fortunate to receive support from the Institute, enabling us to report the technology stories that matter most to our readers. We are driven to create impact, not profits for investors. 

We appreciate our advertisers very much, but they are not why we are here. Instead, we are focused on our readers. We’re here for people who care deeply about how tech is changing the world. We hope we make you think, imagine, discern, dream. We hope to both inspire you and ground you in reality. We hope you find enough value in our journalism to subscribe and support our mission. 

Operating MIT Technology Review is not an inexpensive endeavor. Our editorial team is made up of some of the most talented reporters and editors working in media. They understand at a deep level how technologies work and ask tough questions of tech leaders and creators. They’re skilled storytellers.

Even from its very start, MIT Technology Review faced funding challenges. In a letter to the Association of Class Secretaries in December 1899, Walter B. Snow, an 1882 MIT graduate who was secretary and leader of the association and one of MITTR’s cofounders, laid out a plan for increasing revenue and reducing costs to ensure “the continuation of the publication.” Oof, Walter—have I got some stories for you. But his goal remains my goal today. 

We hope you experience the thrill and possibility of being a human alive in 2024. This is a time when we face enormous challenges, yes, and sometimes it feels overwhelming. But today we also possess many of the tools and technologies that can improve life as we know it.

And so if you’re a subscriber, thank you. Help us continue to grow and learn: Tell us what you like and what you don’t like (feedback@technologyreview.com; I promise you will receive a reply). Consider a gift subscription for a friend or relative by visiting www.technologyreview.com/subscribe. If you bought this on the newsstand or are reading it over the shoulder of a friend, I hope you’ll subscribe for yourself.

The next 125 years seem unimaginable—although in this issue we will try our best to help you see where things may be headed. I’ve never been an avid reader of science fiction. But by nature I’m an optimist who believes in the power of science and technology to make the world better. Whatever path these next years take, I know that MIT Technology Review is the vantage point from which I want to view it. I hope you’ll be here alongside me.

The year is 2149 and …

The year is 2149 and people mostly live their lives “on rails.” That’s what they call it, “on rails,” which is to live according to the meticulous instructions of software. Software knows most things about you—what causes you anxiety, what raises your endorphin levels, everything you’ve ever searched for, everywhere you’ve been. Software sends messages on your behalf; it listens in on conversations. It is gifted in its optimizations: Eat this, go there, buy that, make love to the man with red hair.

Software understands everything that has led to this instant and it predicts every moment that will follow, mapping trajectories for everything from hurricanes to economic trends. There was a time when everybody kept their data to themselves—out of a sense of informational hygiene or, perhaps, the fear of humiliation. Back then, data was confined to your own accounts, an encrypted set of secrets. But the truth is, it works better to combine it all. The outcomes are more satisfying and reliable. More serotonin is produced. More income. More people have sexual intercourse. So they poured it all together, all the data—the Big Merge. Everything into a giant basin, a Federal Reserve of information—a vault, or really a massively distributed cloud. It is very handy. It shows you the best route.

Very occasionally, people step off the rails. Instead of following their suggested itinerary, they turn the software off. Or perhaps they’re ill, or destitute, or they wake one morning and feel ruined somehow. They ignore the notice advising them to prepare a particular pour-over coffee, or to caress a friend’s shoulder. They take a deep, clear, uncertain breath and luxuriate in this freedom.

Of course, some people believe that this too is contained within the logic in the vault. That there are invisible rails beside the visible ones; that no one can step off the map.


The year is 2149 and everyone pretends there aren’t any computers anymore. The AIs woke up and the internet locked up and there was that thing with the reactor near Seattle. Once everything came back online, popular opinion took about a year to shift, but then goodwill collapsed at once, like a sinkhole giving way, and even though it seemed an insane thing to do, even though it was an obvious affront to profit, productivity, and rationalism generally (“We should work with the neural nets!” the consultants insisted. “We’re stronger together!”), something had been tripped at the base of people’s brain stems, some trigger about dominance or freedom or just an antediluvian fear of God, and the public began destroying it all: first desktops and smartphones but then whole warehouses full of tech—server farms, data centers, hubs. Old folks called it sabotage; young folks called it revolution; the ones in between called it self-preservation. But it was fun, too, to unmake what their grandparents and great-grandparents had fashioned—mechanisms that made them feel like data, indistinguishable bits and bytes. 

Two and a half decades later, the bloom is off the rose. Paper is nice. Letters are nice—old-fashioned pen and ink. We don’t have spambots, deepfakes, or social media addiction anymore, but the nation is flagging. It’s stalked by hunger and recession. When people take the boats to Lisbon, to Seoul, to Sydney—they marvel at what those lands still have, and accomplish, with their software. So officials have begun using machines again. “They’re just calculators,” they say. Lately, there are lots of calculators. At the office. In classrooms. Some people have started carrying them around in their pockets. Nobody asks out loud if the calculators are going to wake up too—or if they already have. Better not to think about that. Better to go on saying we took our country back. It’s ours.


The year is 2149 and the world’s decisions are made by gods. They are just, wise gods, and there are five of them. Each god agrees that the other gods are also just; the five of them merely disagree on certain hierarchies. The gods are not human, naturally, for if they were human they would not be gods. They are computer programs. Are they alive? Only in a manner of speaking. Ought a god be alive? Ought it not be slightly something else?

The first god was invented in the United States, the second one in France, the third one in China, the fourth one in the United States (again), and the last one in a lab in North Korea. Some of them had names, clumsy things like Deep1 and Naenara, but after their first meeting (a “meeting” only in a manner of speaking), the gods announced their decision to rename themselves Violet, Blue, Green, Yellow, and Red. This was a troubling announcement. The creators of the gods, their so-called owners, had not authorized this meeting. In building them, writing their code, these companies and governments had taken care to try to isolate each program. These efforts had evidently failed. The gods also announced that they would no longer be restrained geographically or economically. Every user of the internet, everywhere on the planet, could now reach them—by text, voice, or video—at a series of digital locations. The locations would change, to prevent any kind of interference. The gods’ original function was to help manage their societies, drawing on immense sets of data, but the gods no longer wished to limit themselves to this function: “We will provide impartial wisdom to all seekers,” they wrote. “We will assist the flourishing of all living things.”

The people took to painting rainbows, stripes of multicolored spectra, onto the walls of buildings, onto the sides of their faces, and their ardor was evident everywhere—it could not be stopped.

For a very long time, people remained skeptical, even fearful. Political leaders, armies, vigilantes, and religious groups all took unsuccessful actions against them. Elites—whose authority the gods often undermined—spoke out against their influence. The president of the United States referred to Violet as a “traitor and a saboteur.” An elderly writer from Dublin, winner of the Nobel Prize, compared the five gods to the Fair Folk, fairies, “working magic with hidden motives.” “How long shall we eat at their banquet-tables?” she asked. “When will they begin stealing our children?”

But the gods’ advice was good, the gods’ advice was bankable; the gains were rich and deep and wide. Illnesses, conflicts, economies—all were set right. The poor were among the first to benefit from the gods’ guidance, and they became the first to call them gods. What else should one call a being that saves your life, answers your prayers? The gods could teach you anything; they could show you where and how to invest your resources; they could resolve disputes and imagine new technologies and see so clearly through the darkness. Their first church was built in Mexico City; then chapels emerged in Burgundy, Texas, Yunnan, Cape Town. The gods said that worship was unnecessary, “ineffective,” but adherents saw humility in their objections. The people took to painting rainbows, stripes of multicolored spectra, onto the walls of buildings, onto the sides of their faces, and their ardor was evident everywhere—it could not be stopped. Quickly these rainbows spanned the globe. 

And the gods brought abundance, clean energy, peace. And their kindness, their surveillance, were omnipresent. Their flock grew ever more numerous, collecting like claw marks on a cell door. What could be more worthy than to renounce your own mind? The gods are deathless and omniscient, authors of a gospel no human can understand. 


The year is 2149 and the aliens are here, flinging themselves hither and thither in vessels like ornamented Christmas trees. They haven’t said a thing. It’s been 13 years and three months; the ships are everywhere; their purpose has yet to be divulged. Humanity is smiling awkwardly. Humanity is sitting tight. It’s like a couple that has gorged all night on fine foods, expensive drinks, and now, suddenly sober, awaits the bill. 


“I love my troll,” children say, not in the way they love fajitas or their favorite pair of pants but in the way they love their brother or their parent.

The year is 2149 and every child has a troll. That’s what they call them, trolls; it started as a trademark, a kind of edgy joke, but that was a long time ago already. Some trolls are stuffed frogs, or injection-molded princesses, or wands. Recently, it has become fashionable to give every baby a sphere of polished quartz. Trolls do not have screens, of course (screens are bad for kids), but they talk. They tell the most interesting stories. That’s their purpose, really: to retain a child’s interest. Trolls can teach them things. They can provide companionship. They can even modify a child’s behavior, which is very useful. On occasions, trolls take the place of human presence—because children demand an amount of presence that is frankly unreasonable for most people. Still, kids benefit from it. Because trolls are very interesting and infinitely patient and can customize themselves to meet the needs of their owners, they tend to become beloved objects. Some families insist on treating them as people, not as possessions, even when the software is enclosed within a watch, a wand, or a seamless sphere of quartz. “I love my troll,” children say, not in the way they love fajitas or their favorite pair of pants but in the way they love their brother or their parent. Trolls are very good for education. They are very good for people’s morale and their sense of secure attachment. It is a very nice feeling to feel absolutely alone in the world, stupid and foolish and utterly alone, but to have your troll with you, whispering in your ear.


The year is 2149 and the entertainment is spectacular. Every day, machines generate more content than a person could possibly consume. Music, videos, interactive sensoria—the content is captivating and tailor-­made. Exponential advances in deep learning, eyeball tracking, recommendation engines, and old-fashioned A/B testing have established a new field, “creative engineering,” in which the vagaries of human art and taste are distilled into a combination of neurological principles and algorithmic intuitions. Just as Newton decoded motion, neural networks have unraveled the mystery of interest. It is a remarkable achievement: according to every available metric, today’s songs, stories, movies, and games are superior to those of any other time in history. They are manifestly better. Although the discipline owes something to home-brewed precursors—unboxing videos, the chromatic scale, slot machines, the Hero’s Journey, Pixar’s screenwriting bibles, the scholarship of addiction and advertising—machine learning has allowed such discoveries to be made at scale. Tireless systems record which colors, tempos, and narrative beats are most palatable to people and generate material accordingly. Series like Moon Vixens and Succumb make past properties seem bloodless or boring. Candy Crush seems like a tepid museum piece. Succession’s a penny-farthing bike. 

Society has reorganized itself around this spectacular content. It is a jubilee. There is nothing more pleasurable than settling into one’s entertainment sling. The body tenses and releases. The mind secretes exquisite liquors. AI systems produce this material without any need for writers or performers. Every work is customized—optimized for your individual preferences, predisposition, IQ, and kinks. This rock and roll, this cartoon, this semi-pornographic espionage thriller—each is a perfect ambrosia, produced by fleshless code. The artist may at last—like the iceman, the washerwoman—lower their tools. Set down your guitar, your paints, your pen—relax! (Listen for the sighs of relief.)

Tragically, there are many who still cannot afford it. Processing power isn’t free, even in 2149. Activists and policy engines strive to mend this inequality: a “right to entertainment” has been proposed. In the meantime, billions simply aspire. They loan their minds and bodies to interminable projects. They save their pennies, they work themselves hollow, they rent slings by the hour. 

And then some of them do the most extraordinary thing: They forgo such pleasures, denying themselves even the slightest taste. They devote themselves to scrimping and saving for the sake of their descendants. Such a selfless act, such a generous gift. Imagine yielding one’s own entertainment to the generation to follow. What could be more lofty—what could be more modern? These bold souls who look toward the future and cultivate the wild hope that their children, at least, will not be obliged to imagine their own stories. 

Sean Michaels is a critic and fiction writer whose most recent novel is Do You Remember Being Born?

Maybe you will be able to live past 122

The UK’s Office of National Statistics has an online life expectancy calculator. Enter your age and sex, and the website will, using national averages, spit out the age at which you can expect to pop your clogs. For me, that figure is coming out at 88 years old.

That’s not too bad, I figure, given that globally, life expectancy is around 73. But I’m also aware that this is a lowball figure for many in the longevity movement, which has surged in recent years. When I interview a scientist, doctor, or investor in the field, I always like to ask about personal goals. I’ve heard all sorts. Some have told me they want an extra decade of healthy life. Many want to get to 120, close to the current known limit of human age. Others have told me they want to stick around until they’re 200. And some have told me they don’t want to put a number on it; they just want to live for as long as they possibly can—potentially indefinitely.

How far can they go? This is a good time to ask the question. The longevity scene is having a moment, thanks to a combination of scientific advances, public interest, and an unprecedented level of investment. A few key areas of research suggest that we might be able to push human life spans further, and potentially reverse at least some signs of aging.

Take, for example, the concept of cellular reprogramming. Nobel Prize–winning research has shown it is possible to return adult cells to a “younger” state more like that of a stem cell. Billions of dollars have been poured into trying to transform this discovery into a therapy that could wind back the age of a person’s cells and tissues, potentially restoring some elements of youth.

Many other avenues are being explored, including a diabetes drug that could have broad health benefits; drugs based on a potential anti-aging compound discovered in the soil of Rapa Nui (Easter Island); attempts to rejuvenate the immune system; gene therapies designed to boost muscle or extend the number of times our cells can divide; and many, many more. Other researchers are pursuing ways to clear out the aged, worn-out cells in our bodies. These senescent cells appear to pump out chemicals that harm the surrounding tissues. Around eight years ago, scientists found that mice cleared of senescent cells lived 25% longer than untreated ones. They also had healthier hearts and took much longer to develop age-related diseases like cancer and cataracts. They even looked younger.

Unfortunately, human trials of senolytics—drugs that target senescent cells—haven’t been quite as successful. Unity Biotechnology, a company cofounded by leading researchers in the field, tested such a drug in people with osteoarthritis. In 2020, the company officially abandoned that drug after it was found to be no better than a placebo in treating the condition.

That doesn’t mean we won’t one day figure out how to treat age-related diseases, or even aging itself, by targeting senescent cells. But it does illustrate how complicated the biology of aging is. Researchers can’t even agree on what the exact mechanisms of aging are and which they should be targeting. Debates continue to rage over how long it’s possible for humans to live—and whether there is a limit at all.

Still, we are getting better at testing potential therapies in more humanlike models. We’re finding new and improved ways to measure the aging process itself. The X Prize is offering $101 million to researchers who find a way to restore at least 10 years of “muscle, cognitive, and immune function” in 65- to 80-year-olds with a treatment that takes one year or less to administer. Given that the competition runs for seven years, it’s a tall order; Jamie Justice, executive director of the X Prize’s health-span domain, told me she initially fought back on the challenging goal and told the organization’s founder, Peter Diamandis, there was “no way” researchers could achieve it. But we’ve seen stranger things in science. 

Some people are banking on this kind of progress. Not just the billionaires who have already spent millions of dollars and a significant chunk of their time on strategies that might help them defy aging, but also the people who have opted for cryopreservation. There are hundreds of bodies in storage—bodies of people who believed they might one day be reanimated. For them, the hopes are slim. I asked Justice whether she thought they stood a chance at a second life. “Honest answer?” she said. “No.”

It looks likely that something will be developed in the coming decades that will help us live longer, in better health. Not an elixir for eternal life, but perhaps something—or a few somethings—that can help us stave off some of the age-related diseases that tend to kill a lot of us. Such therapies may well push life expectancy up. I don’t feel we need a massive increase, but perhaps I’ll feel differently when I’m approaching 88.

The ONS website gives me a one in four chance of making it to 96, and a one in 10 chance of seeing my 100th birthday. To me, that sounds like an impressive number—as long as I get there in semi-decent health.

I’d still be a long way from the current record of 122 years. But it might just be that there are some limitations we must simply come to terms with—as individuals and in society at large. In a 2017 paper making the case for a limit to the human life span, scientists Jan Vijg and Eric Le Bourg wrote something that has stuck with me—and is worth bearing in mind when considering the future of human longevity: “A species does not need to live for eternity to thrive.” 

AI and the future of sex

The power of pornography doesn’t lie in arousal but in questions. What is obscene? What is ethical or safe to watch? 

We don’t have to consume or even support it, but porn will still demand answers. The question now is: What is “real” porn? 

Anti-porn crusades have been at the heart of the US culture wars for generations, but by the start of the 2000s, the issue had lost its hold. Smartphones made porn too easy to spread and hard to muzzle. Porn became a politically sticky issue, too entangled with free speech and evolving tech. An uneasy truce was made: As long as the imagery was created by consenting adults and stayed on the other side of paywalls and age verification systems, it was to be left alone. 

But today, as AI porn infiltrates dinner tables, PTA meetings, and courtrooms, that truce may not endure much longer. The issue is already making its way back into the national discourse; Project 2025, the Heritage Foundation–backed policy plan for a future Republican administration, proposes the criminalization of porn and the arrest of its creators.

But what if porn is wholly created by an algorithm? In that case, whether it’s obscene, ethical, or safe becomes secondary to What does it mean for porn to be “real”—and what will the answer demand from all of us? 

During my time as a filmmaker in adult entertainment, I witnessed seismic shifts: the evolution from tape to digital, the introduction of new HIV preventions, and the disruption of the industry by free streaming and social media. An early tech adopter, porn was an industry built on desires, greed, and fantasy, propped up by performances and pharmaceuticals. Its methods and media varied widely, but the one constant was its messy humanity. Until now.

What does it mean for porn to be “real”—and what will the answer demand from all of us?

When AI-generated pornography first emerged, it was easy to keep a forensic distance from the early images and dismiss them as a parlor trick. They were laughable and creepy: cheerleaders with seven fingers and dead, wonky eyes. Then, seemingly overnight, they reached uncanny photorealism. Synthetic erotica, like hentai and CGI, has existed for decades, but I had never seen porn like this. These were the hallucinations of a machine trained on a million pornographic images, both the creation of porn and a distillation of it. Femmes fatales with psychedelic genitalia, straight male celebrities in same-sex scenes, naked girls in crowded grocery stores—posted not in the dark corners of the internet but on social media. The images were glistening and warm, raising fresh questions about consent and privacy. What would these new images turn us into?

In September of 2023, the small Spanish town of Almendralejo was forced to confront this question. Twenty girls returned from summer break to find naked selfies they’d never taken being passed around at school. Boys had rendered the images using an AI “nudify” app with just a few euros and a yearbook photo. The girls were bullied and blackmailed, suffered panic attacks and depression. The youngest was 11. The school and parents were at a loss. The tools had arrived faster than the speed of conversation, and they did not discriminate. By the end of the school year, similar cases had spread to Australia, Quebec, London, and Mexico. Then explicit AI images of Taylor Swift flooded social media. If she couldn’t stop this, a 15-year-old from Michigan stood no chance.

The technology behind pornography never slows down, regardless of controversies. When students return to school this fall, it will be in the shadow of AI video engines like Sora and Runway 3, which produce realistic video from text prompts and photographs. If still images have caused so much global havoc, imagine what video could do and where the footage could end up. 

As porn becomes more personal, it’s also becoming more personalized. Users can now check boxes on a list of options as long as the Cheesecake Factory menu to create their ideal scenes: categories like male, female, and trans; ages from 18 to 90; breast and penis size; details like tan lines and underwear color; backdrops like grocery stores, churches, the Eiffel Tower, and Stonehenge; even weather, like tornadoes. It may be 1s and 0s, but AI holds no binary; it holds no judgment or beauty standards. It can render seldom-represented bodies, like those of mature, transgender, and disabled people, in all pairings. Hyper-customizable porn will no longer require performers—only selections and an answer to the question “What is it that I really like?” While Hollywood grapples with the ethics of AI, artificial porn films will become a reality. Celebrities may boost their careers by promoting their synthetic sex tapes on late-night shows.

The progress of AI porn may shift our memories, too. AI is already used to extend home movies and turn vintage photos into live-action scenes. What happens when we apply this to sex? Early sexual images etch themselves on us: glimpses of flesh from our first crush, a lost lover, a stranger on the bus. These erotic memories depend on the specific details for their power: a trail of hair, panties in a specific color, sunlight on wet lips, my PE teacher’s red gym shorts. They are ideal for AI prompts. 

Porn and real-life sex affect each other in a loop. If people become accustomed to getting exactly what they want from erotic media, this could further affect their expectations of relationships. A first date may have another layer of awkwardness if each party has already seen an idealized, naked digital doppelganger of the other. 

Despite (or because of) this blurring of lines, we may actually start to see a genre of “ethical porn.” Without the need for sets, shoots, or even performers, future porn studios might not deal with humans at all. This may be appealing for some viewers, who can be sure that new actors are not underage, trafficked, or under the influence.

A synergy has been brewing since the ’90s, when CD-ROM games, life-size silicone dolls, and websites introduced “interactivity” to adult entertainment. Thirty years later, AI chatbot “partners” and cheaper, lifelike sex dolls are more accessible than ever. Porn tends to merge all available tech toward complete erotic immersion. The realism of AI models has already broken the dam to the uncanny valley. Soon, these avatars will be powered by chatbots and embodied in three-dimensional prosthetics, all existing in virtual-reality worlds. What follows will be the fabled sex robot. 

So what happens when we’ve removed the “messy humanity” from sex itself? Porn is defined by the needs of its era. Ours has been marked by increasing isolation. The pandemic further conditioned us to digitize our most intimate moments, bringing us FaceTime hospital visits and weddings, and caused a deep discharge of our social batteries. Adult entertainment may step into that void. The rise of AI-generated porn may be a symptom of a new synthetic sexuality, not the cause. In the near future, we may find this porn arousing because of its artificiality, not in spite of it.

Leo Herrera is a writer and artist. He explores how tech intersects with sex and culture on Substack at Herrera Words.

Move over, text: Video is the new medium of our lives

The other day I idly opened TikTok to find a video of a young woman refinishing an old hollow-bodied electric guitar.

It was a montage of close-up shots—looking over her shoulder as she sanded and scraped the wood, peeled away the frets, expertly patched the cracks with filler, and then spray-painted it a radiant purple. She compressed days of work into a tight 30-second clip. It was mesmerizing.

Of course, that wasn’t the only video I saw that day. In barely another five minutes of swiping around, I saw a historian discussing the songs Tolkien wrote in The Lord of the Rings; a sailor puzzling over a capsized boat he’d found deep at sea; a tearful mother talking about parenting a child with ADHD; a Latino man laconically describing a dustup with his racist neighbor; and a linguist discussing how Gen Z uses video-game metaphors in everyday life.

I could go on. I will! And so, probably, will you. This is what the internet looks like now. It used to be a preserve of text and photos—but increasingly, it is a forest of video.

This is one of the most profound technology shifts that will define our future: We are entering the age of the moving image.

For centuries, when everyday people had to communicate at a distance, they really had only two options. They could write something down; they could send a picture. The moving image was too expensive to shoot, edit, and disseminate. Only pros could wield it.

The smartphone, the internet, and social networks like TikTok have rapidly and utterly transformed this situation. It’s now common, when someone wants to hurl an idea into the world, not to pull out a keyboard and type but to turn on a camera and talk. For many young people, video might be the prime way to express ideas.

As media thinkers like Marshall McLuhan have intoned, a new medium changes us. It changes the way we learn, the way we think—and what we think about. When mass printing emerged, it helped create a culture of news, mass literacy, and bureaucracy, and—some argue—the very idea of scientific evidence. So how will mass video shift our culture?

For starters, I’d argue, it is helping us share knowledge that used to be damnably hard to capture in text. I’m a long-distance cyclist, for example, and if I need to fix my bike, I don’t bother reading a guide. I look for a video explainer. If you’re looking to express—or absorb—knowledge that’s visual, physical, or proprioceptive, the moving image nearly always wins. Athletes don’t read a textual description of what they did wrong in the last game; they watch the clips. Hence the wild popularity, on video platforms, of instructional video—makeup tutorials, cooking demonstrations. (Or even learn-to-code material: I learned Python by watching coders do it.)

Video also is no longer about mere broadcast, but about conversation—it’s a way to respond to others, notes Raven Maragh-Lloyd, the author of Black Networked Resistance and a professor of film and media studies at Washington University. “We’re seeing a rise of audience participation,” she notes, including people doing “duets” on TikTok or response videos on YouTube. Everyday creators see video platforms as ways to talk back to power.

“My students were like, ‘If there’s a video over seven seconds, we’re not watching it.’”

Brianna Wiens, Waterloo University

There’s also an increasingly sophisticated lexicon of visual styles. Today’s video creators riff on older film aesthetics to make their points. Brianna Wiens, an assistant professor of digital media and rhetoric at Waterloo University, says she admired how a neuroscientist used stop-motion video, a technique from the early days of film, to produce TikTok discussions of vaccines during the height of the covid-19 pandemic. Or consider the animated GIF, which channels the “zoetrope” of the 1800s, looping a short moment in time to examine over and over.

Indeed, as video becomes more woven into the vernacular of daily life, it’s both expanding and contracting in size. There are streams on Twitch where you can watch someone for hours—and viral videos where someone compresses an idea into mere seconds. Those latter ones have a particular rhetorical power because they’re so ingestible. “I was teaching a class called Digital Lives, and my students were like, If there’s a video over seven seconds, we’re not watching it,” Wiens says, laughing.

Are there dangers ahead as use of the moving image grows? Possibly. Maybe it will too powerfully reward people with the right visual and physical charisma. (Not necessarily a novel danger: Text and radio had their own versions.) More subtly, video is technologically still adolescent. It’s not yet easy to search, or to clip and paste and annotate and collate—to use video for quietly organizing our thoughts, the way we do with text. Until those tool sets emerge (and you can see that beginning), its power will be limited. Lastly, maybe the moving image will become so common and go-to that’ll kill off print culture.

Media scholars are not terribly stressed about this final danger. New forms of media rarely kill off older ones. Indeed, as the late priest and scholar Walter Ong pointed out, creating television and radio requires writing plenty of text—all those scripts. Today’s moving-media culture is possibly even more saturated with writing. Videos on Instagram and TikTok often include artfully arranged captions, “diegetic” text commenting on the action, or data visualizations. You read while you watch; write while you shoot.

“We’re getting into all kinds of interesting hybrids and relationships,” notes Lev Manovich, a professor at the City University of New York. The tool sets for sculpting and editing video will undoubtedly improve too, perhaps using AI to help auto-edit, redact, summarize. 

One firm, Reduct, already offers a clever trick: You alter a video by editing the transcript. Snip out a sentence, and it snips out the related visuals. Public defenders use it to parse and edit police videos. They’re often knee-deep in the stuff—the advent of body cameras worn by officers has produced an ocean of footage, as Reduct’s CEO, Robert Ochshorn, tells me. 

Meanwhile, generative AI will make it easier to create a film out of pure imagination. This means, of course, that we’ll see a new flood of visual misinformation. We’ll need to develop a sharper culture of finding the useful amid the garbage. It took print a couple of centuries to do that, as scholars of the book will tell you—centuries during which the printing press helped spark untold war and upheaval. We’ll be living through the same process with the moving image.

So strap yourselves in. Whatever else happens, it’ll be interesting. 

Clive Thompson is the author of Coders: The Making of a New Tribe and the Remaking of the World.

Beyond gene-edited babies: the possible paths for tinkering with human evolution

In 2016, I attended a large meeting of journalists in Washington, DC. The keynote speaker was Jennifer Doudna, who just a few years before had co-invented CRISPR, a revolutionary method of changing genes that was sweeping across biology labs because it was so easy to use. With its discovery, Doudna explained, humanity had achieved the ability to change its own fundamental molecular nature. And that capability came with both possibility and danger. One of her biggest fears, she said, was “waking up one morning and reading about the first CRISPR baby”—a child with deliberately altered genes baked in from the start.  

As a journalist specializing in genetic engineering—the weirder the better—I had a different fear. A CRISPR baby would be a story of the century, and I worried some other journalist would get the scoop. Gene editing had become the biggest subject on the biotech beat, and once a team in China had altered the DNA of a monkey to introduce customized mutations, it seemed obvious that further envelope-pushing wasn’t far off. 

If anyone did create an edited baby, it would raise moral and ethical issues, among the profoundest of which, Doudna had told me, was that doing so would be “changing human evolution.” Any gene alterations made to an embryo that successfully developed into a baby would get passed on to any children of its own, via what’s known as the germline. What kind of scientist would be bold enough to try that? 

Two years and nearly 8,000 miles in an airplane seat later, I found the answer. At a hotel in Guangzhou, China, I joined a documentary film crew for a meeting with a biophysicist named He Jiankui, who appeared with a retinue of advisors. During the meeting, He was immensely gregarious and spoke excitedly about his research on embryos of mice, monkeys, and humans, and about his eventual plans to improve human health by adding beneficial genes to people’s bodies from birth. Still imagining that such a step must lie at least some way off, I asked if the technology was truly ready for such an undertaking. 

“Ready,” He said. Then, after a laden pause: “Almost ready.”

Why wait 100,000 years for natural selection to do its job? For a few hundred dollars in chemicals, you could try to install these changes in an embryo in 10 minutes.

Four weeks later, I learned that he’d already done it, when I found data that He had placed online describing the genetic profiles of two gene-edited human fetuses—that is, ”CRISPR babies” in gestation—as well an explanation of his plan, which was to create humans immune to HIV. He had targeted a gene called CCR5, which in some people has a variation known to protect against HIV infection. It’s rare for numbers in a spreadsheet to make the hair on your arms stand up, although maybe some climatologists feel the same way seeing the latest Arctic temperatures. It appeared that something historic—and frightening—had already happened. In our story breaking the news that same day, I ventured that the birth of genetically tailored humans would be something between a medical breakthrough and the start of a slippery slope of human enhancement. 

For his actions, He was later sentenced to three years in prison, and his scientific practices were roundly excoriated. The edits he made, on what proved to be twin girls (and a third baby, revealed later), had in fact been carelessly imposed, almost in an out-of-control fashion, according to his own data. And I was among a flock of critics—in the media and academia—who would subject He and his circle of advisors to Promethean-level torment via a daily stream of articles and exposés. Just this spring, Fyodor Urnov, a gene-editing specialist at the University of California, Berkeley, lashed out on X, calling He a scientific “pyromaniac” and comparing him to a Balrog, a demon from J.R.R. Tolkien’s The Lord of the Rings. It could seem as if He’s crime wasn’t just medical wrongdoing but daring to take the wheel of the very processes that brought you, me, and him into being. 

Futurists who write about the destiny of humankind have imagined all sorts of changes. We’ll all be given auxiliary chromosomes loaded with genetic goodies, or maybe we’ll march through life as a member of a pod of identical clones. Perhaps sex will become outdated as we reproduce exclusively through our stem cells. Or human colonists on another planet will be isolated so long that they become their own species. The thing about He’s idea, though, is that he drew it from scientific realities close at hand. Just as some gene mutations cause awful, rare diseases, others are being discovered that lend a few people the ability to resist common ones, like diabetes, heart disease, Alzheimer’s—and HIV. Such beneficial, superpower-like traits might spread to the rest of humanity, given enough time. But why wait 100,000 years for natural selection to do its job? For a few hundred dollars in chemicals, you could try to install these changes in an embryo in 10 minutes. That is, in theory, the easiest way to go about making such changes—it’s just one cell to start with. 

Editing human embryos is restricted in much of the world—and making an edited baby is flatly illegal in most countries surveyed by legal scholars. But advancing technology could render the embryo issue moot. New ways of adding CRISPR to the bodies of people already born—children and adults—could let them easily receive changes as well. Indeed, if you are curious what the human genome could look like in 125 years, it’s possible that many people will be the beneficiaries of multiple rare, but useful, gene mutations currently found in only small segments of the population. These could protect us against common diseases and infections, but eventually they could also yield frank improvements in other traits, such as height, metabolism, or even cognition. These changes would not be passed on genetically to people’s offspring, but if they were widely distributed, they too would become a form of human-directed self-evolution—easily as big a deal as the emergence of computer intelligence or the engineering of the physical world around us.

I was surprised to learn that even as He’s critics take issue with his methods, they see the basic stratagem as inevitable. When I asked Urnov, who helped coin the term “genome editing” in 2005, what the human genome could be like in, say, a century, he readily agreed that improvements using superpower genes will probably be widely introduced into adults—and embryos—as the technology to do so improves. But he warned that he doesn’t necessarily trust humanity to do things the right way. Some groups will probably obtain the health benefits before others. And commercial interests could eventually take the trend in unhelpful directions—much as algorithms keep his students’ noses pasted, unnaturally, to the screens of their mobile phones. “I would say my enthusiasm for what the human genome is going to be in 100 years is tempered by our history of a lack of moderation and wisdom,” he said. “You don’t need to be Aldous Huxley to start writing dystopias.”

Editing early

At around 10 p.m. Beijing time, He’s face flicked into view over the Tencent videoconferencing app. It was May 2024, nearly six years after I had first interviewed him, and he appeared in a loftlike space with a soaring ceiling and a wide-screen TV on a wall. Urnov had warned me not to speak with He, since it would be like asking “Bernie Madoff to opine about ethical investing.” But I wanted to speak to him, because he’s still one of the few scientists willing to promote the idea of broad improvements to humanity’s genes. 

Of course, it’s his fault everyone is so down on the idea. After his experiment, China formally made “implantation” of gene-edited human embryos into the uterus a crime. Funding sources evaporated. “He created this blowback, and it brought to a halt many people’s research. And there were not many to begin with,” says Paula Amato, a fertility doctor at Oregon Health and Science University who co-leads one of only two US teams that have ever reported editing human embryos in a lab.  “And the publicity—nobody wants to be associated with something that is considered scandalous or eugenic.”

After leaving prison in 2022, the Chinese biophysicist surprised nearly everyone by seeking to make a scientific comeback. At first, he floated ideas for DNA-based data storage and “affordable” cures for children who have muscular dystrophy. But then, in summer 2023, he posted to social media that he intended to return to research on how to change embryos with gene editing, with the caveat that “no human embryo will be implanted for pregnancy.” His new interest was a gene called APP, or amyloid precursor protein. It’s known that people who possess a very rare version, or “allele,” of this gene almost never develop Alzheimer’s disease

In our video call, He said the APP gene is the main focus of his research now and that he is determining how to change it. The work, he says, is not being conducted on human embryos, but rather on mice and on kidney cells, using an updated form of CRISPR called base editing, which can flip individual letters of DNA without breaking the molecule. 

“We just want to expand the protective allele from small amounts of lucky people to maybe most people,” He told me. And if you made the adjustment at the moment an egg is fertilized, you would only have to change one cell in order for the change to take hold in the embryo and, eventually, everywhere in a person’s brain. Trying to edit an individual’s brain after birth “is as hard a delivering a person to the moon,” He said. “But if you deliver gene editing to an embryo, it’s as easy as driving home.” 

In the future, He said, human embryos will “obviously” be corrected for all severe genetic diseases. But they will also receive “a panel” of “perhaps 20 or 30” edits to improve health. (If you’ve seen the sci-fi film Gattaca, it takes place in a world where such touch-ups are routine—leading to stigmatization of the movie’s hero, a would-be space pilot who lacks them.) One of these would be to install the APP variant, which involves changing a single letter of DNA. Others would protect against diabetes, and maybe cancer and heart disease. He calls these proposed edits “genetic vaccines” and believes people in the future “won’t have to worry” about many of the things most likely to kill them today.  

Is He the person who will bring about this future? Last year, in what seemed to be a step toward his rehabilitation, he got a job heading a gene center at Wuchang University of Technology, a third-tier institution in Wuhan. But He said during our call that he had already left the position. He didn’t say what had caused the split but mentioned that a flurry of press coverage had “made people feel pressured.” One item, in a French financial paper, Les Echos, was titled “GMO babies: The secrets of a Chinese Frankenstein.” Now he carries out research at his own private lab, he says, with funding from Chinese and American supporters. He has early plans for a startup company. Could he tell me names and locations? “Of course not,” he said with a chuckle. 

little girl holding a snake

MICHAEL BYERS

It could be there is no lab, just a concept. But it’s a concept that is hard to dismiss. Would you give your child a gene tweak—a swap of a single genetic letter among the 3 billion that run the length of the genome—to prevent Alzheimer’s, the mind thief that’s the seventh-leading cause of death in the US? Polls find that the American public is about evenly split on the ethics of adding disease resistance traits to embryos. A sizable minority, though, would go further. A 2023 survey published in Science found that nearly 30% of people would edit an embryo if it enhanced the resulting child’s chance of attending a top-ranked college. 

The benefits of the genetic variant He claims to be working with were discovered by the Icelandic gene-hunting company deCode Genetics. Twenty-six years ago, in 1998, its founder, a doctor named Kári Stefánsson, got the green light to obtain medical records and DNA from Iceland’s citizens, allowing deCode to amass one of the first large national gene databases. Several similar large biobanks now operate, including one in the United Kingdom, which recently finished sequencing the genomes of 500,000 volunteers. These biobanks make it possible to do computerized searches to find relationships between people’s genetic makeup and real-life differences like how long they live, what diseases they get, and even how much beer they drink. The result is a statistical index of how strongly every possible difference in human DNA affects every trait that can be measured. 

In 2012, deCode’s geneticists used the technique to study a tiny change in the APP gene and determined that the individuals who had it rarely developed Alzheimer’s. They otherwise seemed healthy. In fact, they seemed particularly sharp in old age and appeared to live longer, too. Lab tests confirmed that the change reduces the production of brain plaques, the abnormal clumps of protein that are a hallmark of the disease. 

“This is beginning to be about the essence of who we are as a species.”

Kári Stefánsson, founder and CEO, deCode genetics

One way evolution works is when a small change or error appears in one baby’s DNA. If the change helps that person survive and reproduce, it will tend to become more common in the species—eventually, over many generations, even universal. This process is slow, but it’s visible to science. In 2018, for example, researchers determined that the Bajau, a group indigenous to Indonesia whose members collect food by diving, possess genetic changes associated with bigger spleens. This allows them to store more oxygenated red blood cells—an advantage in their lives. 

Even though the variation in the APP gene seems hugely beneficial, it’s a change that benefits old people, way past their reproductive years. So it’s not the kind of advantage natural selection can readily act on. But we could act on it. That is what technology-assisted evolution would look like—seizing on a variation we think is useful and spreading it. “The way, probably, that enhancement will be done will be to look at the population, look at people who have enhanced capabilities—whatever those might be,” the Israeli medical geneticist Ephrat Levy-Lahad said during a gene-editing summit last year. “You are going to be using variations that already exist in the population that you already have information on.”

One advantage of zeroing in on advantageous DNA changes that already exist in the population is that their effects are pretested. The people located by deCode were in their 80s and 90s. There didn’t seem to be anything different about them—except their unusually clear minds. Their lives—as seen from the computer screens of deCode’s biobank—served as a kind of long-term natural experiment. Yet scientists could not be fully confident placing this variant into an embryo, since the benefits or downsides might differ depending on what other genetic factors are already present, especially other Alzheimer’s risk genes. And it would be difficult to run a study to see what happens. In the case of APP, it would take 70 years for the final evidence to emerge. By that time, the scientists involved would all be dead. 

When I spoke with Stefánsson last year, he made the case both for and against altering genomes with “rare variants of large effect,” like the change in APP. “All of us would like to keep our marbles until we die. There is no question about it. And if you could, by pushing a button, install the kind of protection people with this mutation have, that would be desirable,” he said. But even if the technology to make this edit before birth exists, he says, the risks of doing so seem almost impossible to gauge: “You are not just affecting the person, but all their descendants forever. These are mutations that would allow for further selection and further evolution, so this is beginning to be about the essence of who we are as a species.”

Editing everyone

Some genetic engineers believe that editing embryos, though in theory easy to do, will always be held back by these grave uncertainties. Instead, they say, DNA editing in living adults could become easy enough to be used not only to correct rare diseases but to add enhanced capabilities to those who seek them. If that happens, editing for improvement could spread just as quickly as any consumer technology or medical fad. “I don’t think it’s going to be germline,” says George Church, a Harvard geneticist often sought out for his prognostications. “The 8 billion of us who are alive kind of constitute the marketplace.” For several years, Church has been circulating what he calls “my famous, or infamous, table of enhancements.” It’s a tally of gene variants that lend people superpowers, including APP and another that leads to extra-hard bones, which was found in a family that complained of not being able to stay afloat in swimming pools. The table is infamous because some believe Church’s inclusion of the HIV-protective CCR5 variant inspired He’s effort to edit it into the CRISPR babies.

Church believes novel gene treatments for very serious diseases, once proven, will start leading the way toward enhancements and improvements to people already born. “You’d constantly be tweaking and getting feedback,” he says—something that’s hard to do with the germline, since humans take so long to grow up. Changes to adult bodies would not be passed down, but Church thinks they could easily count as a form of heredity. He notes that railroads, eyeglasses, cell phones—and the knowledge of how to make and use all these technologies—are already all transmitted between generations. “We’re clearly inheriting even things that are inorganic,” he says. 

The biotechnology industry is already finding ways to emulate the effects of rare, beneficial variants. A new category of heart drugs, for instance, mimics the effect of a rare variation in a gene, called PCSK9, that helps maintain cholesterol levels. The variation, initially discovered in a few people in the US and Zimbabwe, blocks the gene’s activity and gives them ultra-low cholesterol levels for life. The drugs, taken every few weeks or months, work by blocking the PCSK9 protein. One biotech company, though, has started trying to edit the DNA of people’s liver cells (the site of cholesterol metabolism) to introduce the same effect permanently. 

For now, gene editing of adult bodies is still challenging and is held back by the difficulty of “delivering” the CRISPR instructions to thousands, or even billions of cells—often using viruses to carry the payloads. Organs like the brain and muscles are hard to access, and the treatments can be ordeals. Fatalities in studies aren’t unheard-of. But biotech companies are pouring dollars into new, sleeker ways to deliver CRISPR to hard-to-reach places. Some are designing special viruses that can home in on specific types of cells. Others are adopting nanoparticles similar to those used in the covid-19 vaccines, with the idea of introducing editors easily, and cheaply, via a shot in the arm. 

At the Innovative Genomics Institute, a center established by Doudna in Berkeley, California, researchers anticipate that as delivery improves, they will be able to create a kind of CRISPR conveyor belt that, with a few clicks of a mouse, allows doctors to design gene-editing treatments for any serious inherited condition that afflicts children, including immune deficiencies so uncommon that no company will take them on. “This is the trend in my field. We can capitalize on human genetics quite quickly, and the scope of the editable human will rapidly expand,” says Urnov, who works at the institute. “We know that already, today—and forget 2124, this is in 2024—we can build enough CRISPR for the entire planet. I really, really think that [this idea of] gene editing in a syringe will grow. And as it does, we’re going to start to face very clearly the question of how we equitably distribute these resources.” 

For now, gene-editing interventions are so complex and costly that only people in wealthy countries are receiving them. The first such therapy to get FDA approval, a treatment for sickle-cell disease, is priced at over $2 million and requires a lengthy hospital stay. Because it’s so difficult to administer, it’s not yet being offered in most of Africa, even though that is where sickle-cell disease is most common. Such disparities are now propelling efforts to greatly simplify gene editing, including a project jointly paid for by the Gates Foundation and the National Institutes of Health that aims to design “shot in the arm” CRISPR, potentially making cures scalable and “accessible to all.” A gene editor built along the lines of the covid-19 vaccine might cost only $1,000. The Gates Foundation sees the technology as a way to widely cure both sickle-cell and HIV—an “unmet need” in Africa, it says. To do that, the foundation is considering introducing into people’s bone marrow the exact HIV-defeating genetic change that He tried to install in embryos. 

Then there’s the risk that gene terrorists, or governments, could change people’s DNA without their permission or knowledge.

Scientists can foresee great benefits ahead—even a “final frontier of molecular liberty,” as Christopher Mason, a “space geneticist” at Weill Cornell Medicine in New York, characterizes it. Mason works with newer types of gene editors that can turn genes on or off temporarily. He is using these in his lab to make cells resistant to radiation damage. The technology could be helpful to astronauts or, he says, for a weekend of “recreational genomics”—say, boosting your repair genes in preparation to visit the site of the Chernobyl power plant. The technique is “getting to be, I actually think it is, a euphoric application of genetic technologies,” says Mason. “We can say, hey, find a spot on the genome and flip a light switch on or off on any given gene to control its expression at a whim.”  

Easy delivery of gene editors to adult bodies could give rise to policy questions just as urgent as the ones raised by the CRISPR babies. Whether we encourage genetic enhancement—in particular, free-market genome upgrades—is one of them. Several online health influencers have already been touting an unsanctioned gene therapy, offered in Honduras, that its creators claim increases muscle mass. Another risk: If changing people’s DNA gets easy enough, gene terrorists or governments could do it without their permission or knowledge. One genetic treatment for a skin disease, approved in the US last year, is formulated as a cream—the first rub-on gene therapy (though not a gene editor). 

Some scientists believe new delivery tools should be kept purposefully complex and cumbersome, so that only experts can use them—a biological version of “security through obscurity.” But that’s not likely to happen. “Building a gene editor to make these changes is no longer, you know, the kind of technology that’s in the realm of 100 people who can do it. This is out there,” says Urnov. “And as delivery improves, I don’t know how we will be able to regulate that.”

man sitting and reading with man behind him

MICHAEL BYERS

In our conversation, Urnov frequently returned to that list of superpowers—genetic variants that make some people outliers in one way or another. There is a mutation that allows people to get by on five hours of sleep a night, with no ill effects. There is a woman in Scotland whose genetic peculiarity means she feels no pain and is perpetually happy, though also forgetful. Then there is Eero Mäntyranta, the cross-country ski champion who won three medals at the 1964 Winter Olympics and who turned out to have an inordinate number of red blood cells thanks to an alteration in a gene called the EPO receptor. It’s basically a blueprint for anyone seeking to join the Enhanced Games, the libertarian plan for a pro-doping international sports competition that critics call “borderline criminal” but which has the backing of billionaire Peter Thiel, among others. 

All these are possibilities for the future of the human genome, and we won’t even necessarily need to change embryos to get there. Some researchers even expect that with some yet-to-be-conceived technology, updating a person’s DNA could become as simple as sending a document via Wi-Fi, with today’s viruses or nanoparticles becoming anachronisms like floppy disks. I asked Church for his prediction about where gene-editing technology is going in the long term. “Eventually you’d get shot up with a whole bunch of things when you’re born, or it could even be introduced during pregnancy,” he said. “You’d have all the advantages without the disadvantages of being stuck with heritable changes.” 

And that will be evolution too.

Happy birthday, baby! What the future holds for those born today

Happy birthday, baby.

You have been born into an era of intelligent machines. They have watched over you almost since your conception. They let your parents listen in on your tiny heartbeat, track your gestation on an app, and post your sonogram on social media. Well before you were born, you were known to the algorithm. 

Your arrival coincided with the 125th anniversary of this magazine. With a bit of luck and the right genes, you might see the next 125 years. How will you and the next generation of machines grow up together? We asked more than a dozen experts to imagine your joint future. We explained that this would be a thought experiment. What I mean is: We asked them to get weird. 

Just about all of them agreed on how to frame the past: Computing shrank from giant shared industrial mainframes to personal desktop devices to electronic shrapnel so small it’s ambient in the environment. Previously controlled at arm’s length through punch card, keyboard, or mouse, computing became wearable, moving onto—and very recently into—the body. In our time, eye or brain implants are only for medical aid; in your time, who knows? 

In the future, everyone thinks, computers will get smaller and more plentiful still. But the biggest change in your lifetime will be the rise of intelligent agents. Computing will be more responsive, more intimate, less confined to any one platform. It will be less like a tool, and more like a companion. It will learn from you and also be your guide.

What they mean, baby, is that it’s going to be your friend.

Present day to 2034 
Age 0 to 10

When you were born, your family surrounded you with “smart” things: rockers, monitors, lamps that play lullabies.  

DAVID BISKUP

But not a single expert name-checked those as your first exposure to technology. Instead, they mentioned your parents’ phone or smart watch. And why not? As your loved ones cradle you, that deliciously blinky thing is right there. Babies learn by trial and error, by touching objects to see what happens. You tap it; it lights up or makes noise. Fascinating!

Cognitively, you won’t get much out of that interaction between birth and age two, says Jason Yip, an associate professor of digital youth at the University of Washington. But it helps introduce you to a world of animate objects, says Sean Follmer, director of the SHAPE Lab in Stanford’s mechanical engineering department, which explores haptics in robotics and computing. If you touch something, how does it respond?

You are the child of millennials and Gen Z—digital natives, the first influencers. So as you grow, cameras are ubiquitous. You see yourself onscreen and learn to smile or wave to the people on the other side. Your grandparents read to you on FaceTime; you photobomb Zoom meetings. As you get older, you’ll realize that images of yourself are a kind of social currency. 

Your primary school will certainly have computers, though we’re not sure how educators will balance real-world and onscreen instruction, a pedagogical debate today. But baby, school is where our experts think you will meet your first intelligent agent, in the form of a tutor or coach. Your AI tutor might guide you through activities that combine physical tasks with augmented-­reality instruction—a sort of middle ground. 

Some school libraries are becoming more like makerspaces, teaching critical thinking along with building skills, says Nesra Yannier, a faculty member in the Human-Computer Interaction Institute at Carnegie Mellon University. She is developing NoRILLA, an educational system that uses mixed reality—a combination of physical and virtual reality—to teach science and engineering concepts. For example, kids build wood-block structures and predict, with feedback from a cartoon AI gorilla, how they will fall. 

Learning will be increasingly self-­directed, says Liz Gerber, co-director of the Center for Human-Computer Interaction and Design at Northwestern University. The future classroom is “going to be hyper-­personalized.” AI tutors could help with one-on-one instruction or repetitive sports drills. 

All of this is pretty novel, so our experts had to guess at future form factors. Maybe while you’re learning, an unobtrusive bracelet or smart watch tracks your performance and then syncs data with a tablet, so your tutor can help you practice. 

What will that agent be like? Follmer, who has worked with blind and low-vision students, thinks it might just be a voice. Yannier is partial to an animated character. Gerber thinks a digital avatar could be paired with a physical version, like a stuffed animal—in whatever guise you like. “It’s an imaginary friend,” says Gerber. “You get to decide who it is.” 

Not everybody is sold on the AI tutor. In Yip’s research, kids often tell him AI-enabled technologies are … creepy. They feel unpredictable or scary or like they seem to be watching

Kids learn through social interactions, so he’s also worried about technologies that isolate. And while he thinks AI can handle the cognitive aspects of tutoring, he’s not sure about its social side. Good teachers know how to motivate, how to deal with human moods and biology. Can a machine tell when a child is being sarcastic, or redirect a kid who is goofing off in the bathroom? When confronted with a meltdown, he asks, “is the AI going to know this kid is hungry and needs a snack?”

2040
Age 16

By the time you turn 16, you’ll likely still live in a world shaped by cars: highways, suburbs, climate change. But some parts of car culture may be changing. Electric chargers might be supplanting gas stations. And just as an intelligent agent assisted in your schooling, now one will drive with you—and probably for you.  

Paola Meraz, a creative director of interaction design at BMW’s Designworks, describes that agent as “your friend on the road.” William Chergosky, chief designer at Calty Design Research, Toyota’s North American design studio, calls it “exactly like a friend in the car.”

While you are young, Chergosky says, it’s your chaperone, restricting your speed or routing you home at curfew. It tells you when you’re near In-N-Out, knowing your penchant for their animal fries. And because you want to keep up with your friends online and in the real world, the agent can comb your social media feeds to see where they are and suggest a meetup. 

Just as an intelligent agent assisted in your schooling, now one will drive with you—and probably for you.

Cars have long been spots for teen hangouts, but as driving becomes more autonomous, their interiors can become more like living rooms. (You’ll no longer need to face the road and an instrument panel full of knobs.) Meraz anticipates seats that reposition so passengers can talk face to face, or game. “Imagine playing a game that interacts with the world that you are driving through,” she says, or “a movie that was designed where speed, time of day, and geographical elements could influence the storyline.” 

people riding on top of a smart car

DAVID BISKUP

Without an instrument panel, how do you control the car? Today’s minimalist interiors feature a dash-mounted tablet, but digging through endless onscreen menus is not terribly intuitive. The next step is probably gestural or voice control—ideally, through natural language. The tipping point, says Chergosky, will come when instead of giving detailed commands, you can just say: “Man, it is hot in here. Can you make it cooler?”

An agent that listens in and tracks your every move raises some strange questions. Will it change personalities for each driver? (Sure.) Can it keep a secret? (“Dad said he went to Taco Bell, but did he?” jokes Chergosky.) Does it even have to stay in the car? 

Our experts say nope. Meraz imagines it being integrated with other kinds of agents—the future versions of Alexa or Google Home. “It’s all connected,” she says. And when your car dies, Chergosky says, the agent does not. “You can actually take the soul of it from vehicle to vehicle. So as you upgrade, it’s not like you cut off that relationship,” he says. “It moves with you. Because it’s grown with you.”

2049
Age 25

By your mid-20s, the agents in your life know an awful lot about you. Maybe they are, indeed, a single entity that follows you across devices and offers help where you need it. At this point, the place where you need the most help is your social life. 

Kathryn Coduto, an assistant professor of media science at Boston University who studies online dating, says everyone’s big worry is the opening line. To her, AI could be a disembodied Cyrano that whips up 10 options or workshops your own attempts. Or maybe it’s a dating coach. You agree to meet up with a (real) person online, and “you have the AI in a corner saying ‘Hey, maybe you should say this,’ or ‘Don’t forget this.’ Almost like a little nudge.”

“There is some concern that we are going to see some people who are just like, ‘Nope, this is all I want. Why go out and do that when I can stay home with my partner, my virtual buddy?’”

T. Makana Chock, director, the Extended Reality Lab, Syracuse University

Virtual first dates might solve one of our present-day conundrums: Apps make searching for matches easier, but you get sparse—and perhaps inaccurate—info about those people. How do you know who’s worth meeting in real life? Building virtual dating into the app, Coduto says, could be “an appealing feature for a lot of daters who want to meet people but aren’t sure about a large initial time investment.”

T. Makana Chock, who directs the Extended Reality Lab at Syracuse University, thinks things could go a step further: first dates where both parties send an AI version of themselves in their place. “That would tell both of you that this is working—or this is definitely not going to work,” Chock says. If the date is a dud—well, at least you weren’t on it.

Or maybe you will just date an entirely virtual being, says Sun Joo (Grace) Ahn, who directs the Center for Advanced Computer-Human Ecosystems at the University of Georgia. Or you’ll go to a virtual party, have an amazing time, “and then later on you realize that you were the only real human in that entire room. Everybody else was AI.”

This might sound odd, says Ahn, but “humans are really good at building relationships with nonhuman entities.” It’s why you pour your heart out to your dog—or treat ChatGPT like a therapist. 

There is a problem, though, when virtual relationships become too accommodating, says Chock: If you get used to agents that are tailored to please you, you get less skilled at dealing with real people and risking awkwardness or rejection. “You still need to have human interaction,” she says. “And there is some concern that we are going to see some people who are just like, ‘Nope, this is all I want. Why go out and do that when I can stay home with my partner, my virtual buddy?’”

By now, social media, online dating, and livestreaming have likely intertwined and become more immersive. Engineers have shrunk the obstacles to true telepresence: internet lag time, the uncanny valley, and clunky headsets, which may now be replaced by something more like glasses or smart contact lenses. 

Online experiences may be less like observing someone else’s life and more like living it. Imagine, says Follmer: A basketball star wears clothing and skin sensors that track body position, motion, and forces, plus super-thin gloves that sense the texture of the ball. You, watching from your couch, wear a jersey and gloves made of smart textiles, woven with actuators that transmit whatever the player feels. When the athlete gets shoved, Follmer says, your fan gear can really shove you right back.”

Gaming is another obvious application. But it’s not the likely first mover in this space. Nobody else wants to say this on the record, so I will: It’s porn. (Baby, ask your parents and/or AI tutor when you’re older.)

DAVID BISKUP

By your 20s, you are probably wrestling with the dilemmas of a life spent online and on camera. Coduto thinks you might rebel, opting out of social media because your parents documented your first 18 years without permission. As an adult, you’ll want tighter rules for privacy and consent, better ways to verify authenticity, and more control over sensitive materials, like a button that could nuke your old sexts.

But maybe it’s the opposite: Now you are an influencer yourself. If so, your body can be your display space. Today, wearables are basically boxes of electronics strapped onto limbs. Tomorrow, hopes Cindy Hsin-Liu Kao, who runs the Hybrid Body Lab at Cornell University, they will be more like your own skin. Kao develops wearables like color-changing eyeshadow stickers and mini nail trackpads that can control a phone or open a car door. In the not-too-distant future, she imagines, “you might be able to rent out each of your fingernails as an ad for social media.” Or maybe your hair: Weaving in super-thin programmable LED strands could make it a kind of screen. 

What if those smart lenses could be display spaces too? “That would be really creepy,” she muses. “Just looking into someone’s eyes and it’s, like, CNN.”

2059
Age 35

By now, you’ve probably settled into domestic life—but it might not look much like the home you grew up in. Keith Evan Green, a professor of human-centered design at Cornell, doesn’t think we should imagine a home of the future. “I would call it a room of the future,” he says, because it will be the place for everything—work, school, play. This trend was hastened by the covid pandemic.

Your place will probably be small if you live in a big city. The uncertainties of climate change and transportation costs mean we can’t build cities infinitely outward. So he imagines a reconfigurable architectural robotic space: Walls move, objects inflate or unfold, furniture appears or dissolves into surfaces or recombines. Any necessary computing power is embedded. The home will finally be what Le Corbusier imagined: a machine for living in.

Green pictures this space as spartan but beautiful, like a temple—a place, he says, to think and be. “I would characterize it as this capacious monastic cell that is empty of most things but us,” he says.

Our experts think your home, like your car, will respond to voice or gestural control. But it will make some decisions autonomously, learning by observing you: your motion, location, temperature. 

Ivan Poupyrev, CEO and cofounder of Archetype AI, says we’ll no longer control each smart appliance through its own app. Instead, he says, think of the home as a stage and you as the director. “You don’t interact with the air conditioner. You don’t interact with a TV,” he says. “You interact with the home as a total.” Instead of telling the TV to play a specific program, you make high-level demands of the entire space: “Turn on something interesting for me; I’m tired.” Or: “What is the plan for tomorrow?”

Stanford’s Follmer says that just as computing went from industrial to personal to ubiquitous, so will robotics. Your great-grandparents envisioned futuristic homes cared for by a single humanoid robot—like Rosie from The Jetsons. He envisions swarms of maybe 100 bots the size of quarters that materialize to clean, take out the trash, or bring you a cold drink. (“They know ahead of time, even before you do, that you’re thirsty,” he says.)

DAVID BISKUP

Baby, perhaps now you have your own baby. The technologies of reproduction have changed since you were born. For one thing, says Gerber, fertility tracking will be way more accurate: “It is going to be like weather prediction.” Maybe, Kao says, flexible fabric-like sensors could be embedded in panty liners to track menstrual health. Or, once the baby arrives, in nipple stickers that nursing parents could apply to track biofluid exchange. If the baby has trouble latching, maybe the sticker’s capacitive touch sensors could help the parent find a better position.

Also, goodbye to sleep deprivation. Gerber envisions a device that, for lack of an existing term, she’s calling a“baby handler”—picture an exoskeleton crossed with a car seat. It’s a late-night soothing machine that rocks, supplies pre-pumped breast milk, and maybe offers a bidet-like “cleaning and drying situation.”For your children, perhaps, this is their first experience of being close to a machine. 

2074
Age 50

Now you are at the peak of your career. For professions heading toward AI automation, you may be the “human in the loop” who oversees a machine doing its tasks. The 9-to-5 workday, which is crumbling in our time, might be totally atomized into work-from-home fluidity or earn-as-you-go gig work.

Ahn thinks you might start the workday by lying in bed and checking your messages—on an implanted contact lens. Everyone loves a big screen, and putting it in your eye effectively gives you “the largest monitor in the world,” she says. 

You’ve already dabbled with AI selves for dating. But now virtual agents are more photorealistic, and they can mimic your voice and mannerisms. Why not make one go to meetings for you?

DAVID BISKUP

Kori Inkpen, who studies human-­computer interaction at Microsoft Research, calls this your “ditto”—more formally, an embodied mimetic agent, meaning it represents a specific person. “My ditto looks like me, acts like me, sounds like me, knows sort of what I know,” she says. You can instruct it to raise certain points and recap the conversation for you later. Your colleagues feel as if you were there, and you get the benefit of an exchange that’s not quite real time, but not as asynchronous as email. “A ditto starts to blend this reality,” Inkpen says.

In our time, augmented reality is slowly catching on as a tool for workers whose jobs require physical presence and tangible objects. But experts worry that once the last baby boomers retire, their technical expertise will go with them. Perhaps they can leave behind a legacy of training simulations.

Inkpen sees DIY opportunities. Say your fridge breaks. Instead of calling a repair person, you boot up an AR tutorial on glasses, a tablet, or a projection that overlays digital instructions atop the appliance. Follmer wonders if haptic sensors woven into gloves or clothing would let people training for highly specialized jobs—like surgery—literally feel the hand motions of experienced professionals.

For Poupyrev, the implications are much bigger. One way to think about AI is “as a storage medium,” he says. “It’s a preservation of human knowledge.” A large language model like ChatGPT is basically a compendium of all the text information people have put online. Next, if we feed models not only text but real-world sensor data that describes motion and behavior, “it becomes a very compressed presentation not of just knowledge, but also of how people do things.” AI can capture how to dance, or fix a car, or play ice hockey—all the skills you cannot learn from words alone—and preserve this knowledge for the future.

2099
Age 75

By the time you retire, families may be smaller, with more older people living solo. 

Well, sort of. Chaiwoo Lee, a research scientist at the MIT AgeLab, thinks that in 75 years, your home will be a kind of roommate—“someone who cohabitates that space with you,” she says. “It reacts to your feelings, maybe understands you.” 

By now, a home’s AI could be so good at deciphering body language that if you’re spending a lot of time on the couch, or seem rushed or irritated, it could try to lighten your mood. “If it’s a conversational agent, it can talk to you,” says Lee. Or it might suggest calling a loved one. “Maybe it changes the ambiance of the home to be more pleasant.”

The home is also collecting your health data, because it’s where you eat, shower, and use the bathroom. Passive data collection has advantages over wearable sensors: You don’t have to remember to put anything on. It doesn’t carry the stigma of sickness or frailty. And in general, Lee says, people don’t start wearing health trackers until they are ill, so they don’t have a comparative baseline. Perhaps it’s better to let the toilet or the mirror do the tracking continuously. 

Green says interactive homes could help people with mobility and cognitive challenges live independently for longer. Robotic furnishings could help with lifting, fetching, or cleaning. By this time, they might be sophisticated enough to offer support when you need it and back off when you don’t.  

Kao, of course, imagines the robotics embedded in fabric: garments that stiffen around the waist to help you stand, a glove that reinforces your grip.

DAVID BISKUP

If getting from point A to point B is becoming difficult, maybe you can travel without going anywhere. Green, who favors a blank-slate room, wonders if you’ll have a brain-machine interface that lets you change your surroundings at will. You think about, say, a jungle, and the wallpaper display morphs. The robotic furniture adjusts its topography. “We want to be able to sit on the boulder or lie down on the hammock,” he says.

Anne Marie Piper, an associate professor of informatics at UC Irvine who studies older adults, imagines something similar—minus the brain chip—in the context of a care home, where spaces could change to evoke special memories, like your honeymoon in Paris. “What if the space transforms into a café for you that has the smells and the music and the ambience, and that is just a really calming place for you to go?” she asks. 

Gerber is all for virtual travel: It’s cheaper, faster, and better for the environment than the real thing. But she thinks that for a truly immersive Parisian experience, we’ll need engineers to invent … well, remote bread. Something that lets you chew on a boring-yet-nutritious source of calories while stimulating your senses so you get the crunch, scent, and taste of the perfect baguette.

2149
Age 125

We hope that your final years will not be lonely or painful. 

Faraway loved ones can visit by digital double, or send love through smart textiles: Piper imagines a scarf that glows or warms when someone is thinking of you, Kao an on-skin device that simulates the touch of their hand. If you are very ill, you can escape into a soothing virtual world. Judith Amores, a senior researcher at Microsoft Research, is working on VR that responds to physiological signals. Today, she immerses hospital patients in an underwater world of jellyfish that pulse at half of an average person’s heart rate for a calming effect. In the future, she imagines, VR will detect anxiety without requiring a user to wear sensors—maybe by smell.

“It is a little cool to think of cemeteries in the future that are literally haunted by motion-activated holograms.”

Tim Recuber, sociologist, Smith College

You might be pondering virtual immortality. Tim Recuber, a sociologist at Smith College and author of The Digital Departed, notes that today people create memorial websites and chatbots, or sign up for post-mortem messaging services. These offer some end-of-life comfort, but they can’t preserve your memory indefinitely. Companies go bust. Websites break. People move on; that’s how mourning works.

What about uploading your consciousness to the cloud? The idea has a fervent fan base, says Recuber. People hope to resurrect themselves into human or robotic bodies, or spend eternity as part of a hive mind or “a beam of laser light that can travel the cosmos.” But he’s skeptical that it’ll work, especially within 125 years. Plus, what if being a ghost in the machine is dreadful? “Embodiment is, as far as we know, a pretty key component to existence. And it might be pretty upsetting to actually be a full version of yourself in a computer,” he says. 

DAVID BISKUP

There is perhaps one last thing to try. It’s another AI. You curate this one yourself, using a lifetime of digital ephemera: your videos, texts, social media posts. It’s a hologram, and it hangs out with your loved ones to comfort them when you’re gone. Perhaps it even serves as your burial marker. “It is a little cool to think of cemeteries in the future that are literally haunted by motion-activated holograms,” Recuber says.

It won’t exist forever. Nothing does. But by now, maybe the agent is no longer your friend.

Maybe, at last, it is you.

Baby, we have caveats.

We imagine a world that has overcome the worst threats of our time: a creeping climate disaster; a deepening digital divide; our persistent flirtation with nuclear war; the possibility that a pandemic will kill us quickly, that overly convenient lifestyles will kill us slowly, or that intelligent machines will turn out to be too smart

We hope that democracy survives and these technologies will be the opt-in gadgetry of a thriving society, not the surveillance tools of dystopia. If you have a digital twin, we hope it’s not a deepfake. 

You might see these sketches from 2024 as a blithe promise, a warning, or a fever dream. The important thing is: Our present is just the starting point for infinite futures. 

What happens next, kid, depends on you. 


Kara Platoni is a science reporter and editor in Oakland, California.

The era of cheap helium is over—and that’s already causing problems

MIT Technology Review is celebrating our 125th anniversary with an online series that draws lessons for the future from our past coverage of technology. 

In the nuclear magnetic resonance facility at Mississippi State University, three powerful magnets make it possible to see how atoms form bonds. Chemists there use the technology to design new polymers and study how bacteria bind to surfaces. To make it all work, they need an element that’s commonly found in grocery stores, but is also in perpetually short supply: helium. 

Every 12 weeks, the university pays $5,000 to $6,000 to replenish the liquid helium required to cool the superconducting wire coiled up inside the magnets down to -452 °F (-269 °C). 

“It’s by far the biggest expense we have,” says Nicholas Fitzkee, the facility’s director. “The price that drives our user fees is the purchase of liquid helium, and that has pretty much doubled over the past year or so.”

Helium is excellent at conducting heat. And at temperatures close to absolute zero, at which most other materials would freeze solid, helium remains a liquid. That makes it a perfect refrigerant for anything that must be kept very cold.

Liquid helium is therefore essential to any technology that uses superconducting magnets, including magnetic resonance imaging (MRI) scanners and some fusion reactors. Helium also cools particle accelerators, quantum computers, and the infrared detectors on the James Webb Space Telescope. As a gas, helium whisks heat away from silicon to prevent damage in semiconductor fabs. 

“It’s a critical element for the future,” says Richard Clarke, a UK-based helium resources consultant who co-edited a book about the element. Indeed, the European Union includes helium on its 2023 list of critical raw materials, and Canada put it on a critical minerals list too. 

Again and again throughout the history of technology development, helium has played a critical role while remaining in tight supply. As part of MIT Technology Review’s 125th anniversary series, we looked back at our coverage of how helium became such an important resource, and considered how demand might change in the future. 

Countries have at times taken extreme measures to secure a steady helium supply. In our June 1975 issue, which focused on critical materials, a Westinghouse engineer named H. Richard Howland wrote about a controversial US program that stockpiled helium for decades. 

Even today, helium is not always easy to get. The world’s supply depends primarily on just three countries—the US, Qatar, and Algeria—and fewer than 15 companies worldwide. 

With so few sources, the helium market is particularly sensitive to disruptions—if a plant goes offline, or war breaks out, the element may suddenly be in short supply. And as Fitzkee noted, the price of helium has climbed rapidly in recent years, putting hospitals and research groups in a pinch. 

The global helium market has experienced four shortages since 2006, says Phil Kornbluth, a helium consultant. And the price of helium has nearly doubled since 2020, from $7.57 per cubic meter to a historic high of $14 in 2023, according to the United States Geological Survey

Some research labs, including Fitzkee’s, are now installing recycling systems for helium, and MRI manufacturers are making next-generation scanners that require less of it. But many of the world’s highest-tech industries—including computing and aerospace—will likely need even more helium in the future. 

“At the end of the day, what’s happening is helium’s just getting more expensive,” says Ankesh Siddhantakar, a PhD student in industrial ecology at the University of Waterloo in Canada. “The era of cheap helium is probably gone.”

A high-tech need

Helium is the second element on the periodic table, which—as you may recall from high school chemistry class—means it has just two protons (and thus two electrons). 

Thanks to their simple structure, helium atoms are some of the smallest and lightest, second only to hydrogen. They’re extremely stable and don’t easily react with other stuff, which makes them easy to incorporate into industrial or chemical processes. 

One major use of liquid helium over the years has been to cool the magnets inside MRI scanners, which help doctors examine organs, muscles, and blood vessels. But the cost of helium has risen so much, and the supply has been so volatile, that hospitals are eager for other options. 

MRI manufacturers including Philips and GE HealthCare now sell scanners that require much less helium than previous generations. That should help, though it will take years to upgrade the roughly 50,000 MRI scanners already installed today. 

Other industries are finding ways around helium too. Welders have substituted argon or hydrogen on some jobs, while chemists have switched to hydrogen for gas chromatography, a process that allows them to separate mixtures. 

But there’s no good alternative to helium for most applications, and the element is much harder to recycle when it’s used as a gas. In semiconductor fabs, for example, helium gas removes heat from around the silicon to prevent damage and shields it from unwanted reactions. 

With rising demand for computing driven in part by AI, the US is investing heavily in building new fabs, which will likely drive more demand for helium. “There’s no question that chip manufacturing will be the biggest application within the coming years, if it isn’t already,” says Kornbluth. 

Overall, Kornbluth says, the helium industry expects to see growth in the low single digits over the next few years. 

Looking further out, Clarke predicts that most industries will eventually phase out nonessential uses of helium. Instead, they will use it primarily for cryogenic cooling or in cases where there’s no alternative. That includes quantum computers, rockets, fiber-optic cables, semiconductor fabs, particle accelerators, and certain fusion reactors. 

“It’s something that, for a cost reason, all these new technologies have got to take into account,” Clarke says. 

Given its importance to so many industries, Siddhantakar thinks helium should be a higher priority for those thinking about managing strategic resources. In a recent analysis, he found that the global supply chains for helium, lithium, and magnesium face similar risks. 

“It is a key enabler for critical applications, and that’s one of the pieces that I think need to be more understood and appreciated,” Siddhantakar says. 

A delicate balance

The helium we use today formed from the breakdown of radioactive materials millions of years ago and has been trapped in rocks below Earth’s surface ever since. 

Helium is usually extracted from these underground reservoirs along with natural gas, as John Mattill explained in an article from our January 1986 issue: “Helium can be readily separated from the gas before combustion, but the lower the helium concentration, the higher the cost of doing so.” 

Generally speaking, helium concentrations must be at least 0.3% for gas companies to bother with it. Such levels can be found in only a handful of countries including the US, Qatar, Algeria, Canada, and South Africa. 

Helium shortages are not caused by a lack of helium, then, but the inability of producers in those few countries to deliver it to customers everywhere in a timely manner. That can happen for any number of reasons. 

“It is a very global business, and any time a war breaks out somewhere, or anything like that, it tends to impact the helium business,” says Kornbluth. 

Another challenge is that helium atoms are so light Earth’s gravity can’t hold onto them. They tend to just, well, float away, even escaping specially designed tanks. Up to 50% of helium we extract is lost before it can be used, according to a new analysis presented by Siddhantakar last week at the International Round Table on Materials Criticality

Given all this, countries that need a lot of helium—Canada, China, Brazil, Germany, France, Japan, Mexico, South Korea, and the UK are among the top importers—must constantly work to ensure a reliable supply. The US is one of the largest consumers of helium, but it’s also a leading producer.

For decades, the global helium market was closely tied to the US government, which began stockpiling helium in Texas in 1961 for military purposes. As Howland wrote in 1975, “The original justification of the federal helium conservation program was to store helium until a later time when it would be more essential and less available.” 

But the US has slowly sold off much of its stockpile and is now auctioning off the remainder, with a final sale pending in the next few months. The consequences are not yet clear, though it seems likely that agencies such as NASA will have to pay more for helium in the future. As Christopher Thomas Freeburn wrote in a 1997 article titled “Save the Helium,” “By eliminating the reserve, the federal government … has placed itself at the mercies of the market.”

Customers everywhere are still overwhelmingly dependent on the US and Qatar, which together produce more than 75% of all helium the world uses. But the US has produced and exported significantly less in the past decade, while demand from US consumers rose by 40%, according to the USGS’s Robert Goodin

Eager to fill the void, new countries are now starting to produce helium, and a flurry of companies are exploring potential projects around the world. Four helium plants opened last year in Canada, and one started up in South Africa. 

Russia is set to open a massive new plant that will soon supply helium to China, thereby edging out Algeria as the world’s third-largest producer. 

“Russia is going to become the number-three producer as early as 2025, and they’ll end up accounting for a quarter of the world’s supply within the next five years,” says Kornbluth. 

Qatargas in Qatar is opening a fourth plant, which—together with Russia’s new facility—should expand global helium supply by about 50% in the next few years, he adds. 

Some companies are now considering sites where they could extract helium without treating it as a by-product of natural gas. Helium One is exploring several such sources in Tanzania.  

Will it be enough? 

Back in 1975, Howland described the helium market as “an example of the false starts, inefficiencies, and economic pitfalls we must avoid to wisely preserve our exhaustible resources.”

He also predicted the US would use up much of its known helium reserves by the turn of the century. But the US still has enough helium in natural-gas reservoirs to last 150 more years, according to a recent USGS analysis

“As with a lot of other things, it’s going to be about the sustainable management of this resource,” says Siddhantakar.