This giant microwave may change the future of war

Imagine: China deploys hundreds of thousands of autonomous drones in the air, on the sea, and under the water—all armed with explosive warheads or small missiles. These machines descend in a swarm toward military installations on Taiwan and nearby US bases, and over the course of a few hours, a single robotic blitzkrieg overwhelms the US Pacific force before it can even begin to fight back. 

Maybe it sounds like a new Michael Bay movie, but it’s the scenario that keeps the chief technology officer of the US Army up at night.

“I’m hesitant to say it out loud so I don’t manifest it,” says Alex Miller, a longtime Army intelligence official who became the CTO to the Army’s chief of staff in 2023.

Even if World War III doesn’t break out in the South China Sea, every US military installation around the world is vulnerable to the same tactics—as are the militaries of every other country around the world. The proliferation of cheap drones means just about any group with the wherewithal to assemble and launch a swarm could wreak havoc, no expensive jets or massive missile installations required. 

While the US has precision missiles that can shoot these drones down, they don’t always succeed: A drone attack killed three US soldiers and injured dozens more at a base in the Jordanian desert last year. And each American missile costs orders of magnitude more than its targets, which limits their supply; countering thousand-dollar drones with missiles that cost hundreds of thousands, or even millions, of dollars per shot can only work for so long, even with a defense budget that could reach a trillion dollars next year.

The US armed forces are now hunting for a solution—and they want it fast. Every branch of the service and a host of defense tech startups are testing out new weapons that promise to disable drones en masse. There are drones that slam into other drones like battering rams; drones that shoot out nets to ensnare quadcopter propellers; precision-guided Gatling guns that simply shoot drones out of the sky; electronic approaches, like GPS jammers and direct hacking tools; and lasers that melt holes clear through a target’s side.

Then there are the microwaves: high-powered electronic devices that push out kilowatts of power to zap the circuits of a drone as if it were the tinfoil you forgot to take off your leftovers when you heated them up. 

That’s where Epirus comes in. 

When I went to visit the HQ of this 185-person startup in Torrance, California, earlier this year, I got a behind-the-scenes look at its massive microwave, called Leonidas, which the US Army is already betting on as a cutting-edge anti-drone weapon. The Army awarded Epirus a $66 million contract in early 2023, topped that up with another $17 million last fall, and is currently deploying a handful of the systems for testing with US troops in the Middle East and the Pacific. (The Army won’t get into specifics on the location of the weapons in the Middle East but published a report of a live-fire test in the Philippines in early May.) 

Up close, the Leonidas that Epirus built for the Army looks like a two-foot-thick slab of metal the size of a garage door stuck on a swivel mount. Pop the back cover, and you can see that the slab is filled with dozens of individual microwave amplifier units in a grid. Each is about the size of a safe-deposit box and built around a chip made of gallium nitride, a semiconductor that can survive much higher voltages and temperatures than the typical silicon. 

Leonidas sits on top of a trailer that a standard-issue Army truck can tow, and when it is powered on, the company’s software tells the grid of amps and antennas to shape the electromagnetic waves they’re blasting out with a phased array, precisely overlapping the microwave signals to mold the energy into a focused beam. Instead of needing to physically point a gun or parabolic dish at each of a thousand incoming drones, the Leonidas can flick between them at the speed of software.

Leonidas device in a warehouse with the United States flag
The Leonidas contains dozens of microwave amplifier units and can pivot to direct waves at incoming swarms of drones.
EPIRUS

Of course, this isn’t magic—there are practical limits on how much damage one array can do, and at what range—but the total effect could be described as an electromagnetic pulse emitter, a death ray for electronics, or a force field that could set up a protective barrier around military installations and drop drones the way a bug zapper fizzles a mob of mosquitoes.

I walked through the nonclassified sections of the Leonidas factory floor, where a cluster of engineers working on weaponeering—the military term for figuring out exactly how much of a weapon, be it high explosive or microwave beam, is necessary to achieve a desired effect—ran tests in a warren of smaller anechoic rooms. Inside, they shot individual microwave units at a broad range of commercial and military drones, cycling through waveforms and power levels to try to find the signal that could fry each one with maximum efficiency. 

On a live video feed from inside one of these foam-padded rooms, I watched a quadcopter drone spin its propellers and then, once the microwave emitter turned on, instantly stop short—first the propeller on the front left and then the rest. A drone hit with a Leonidas beam doesn’t explode—it just falls.

Compared with the blast of a missile or the sizzle of a laser, it doesn’t look like much. But it could force enemies to come up with costlier ways of attacking that reduce the advantage of the drone swarm, and it could get around the inherent limitations of purely electronic or strictly physical defense systems. It could save lives.

Epirus CEO Andy Lowery, a tall guy with sparkplug energy and a rapid-fire southern Illinois twang, doesn’t shy away from talking big about his product. As he told me during my visit, Leonidas is intended to lead a last stand, like the Spartan from whom the microwave takes its name—in this case, against hordes of unmanned aerial vehicles, or UAVs. While the actual range of the Leonidas system is kept secret, Lowery says the Army is looking for a solution that can reliably stop drones within a few kilometers. He told me, “They would like our system to be the owner of that final layer—to get any squeakers, any leakers, anything like that.”

Now that they’ve told the world they “invented a force field,” Lowery added, the focus is on manufacturing at scale—before the drone swarms really start to descend or a nation with a major military decides to launch a new war. Before, in other words, Miller’s nightmare scenario becomes reality. 

Why zap?

Miller remembers well when the danger of small weaponized drones first appeared on his radar. Reports of Islamic State fighters strapping grenades to the bottom of commercial DJI Phantom quadcopters first emerged in late 2016 during the Battle of Mosul. “I went, ‘Oh, this is going to be bad,’ because basically it’s an airborne IED at that point,” he says.

He’s tracked the danger as it’s built steadily since then, with advances in machine vision, AI coordination software, and suicide drone tactics only accelerating. 

Then the war in Ukraine showed the world that cheap technology has fundamentally changed how warfare happens. We have watched in high-definition video how a cheap, off-the-shelf drone modified to carry a small bomb can be piloted directly into a faraway truck, tank, or group of troops to devastating effect. And larger suicide drones, also known as “loitering munitions,” can be produced for just tens of thousands of dollars and launched in massive salvos to hit soft targets or overwhelm more advanced military defenses through sheer numbers. 

As a result, Miller, along with large swaths of the Pentagon and DC policy circles, believes that the current US arsenal for defending against these weapons is just too expensive and the tools in too short supply to truly match the threat.

Just look at Yemen, a poor country where the Houthi military group has been under constant attack for the past decade. Armed with this new low-tech arsenal, in the past 18 months the rebel group has been able to bomb cargo ships and effectively disrupt global shipping in the Red Sea—part of an effort to apply pressure on Israel to stop its war in Gaza. The Houthis have also used missiles, suicide drones, and even drone boats to launch powerful attacks on US Navy ships sent to stop them.

The most successful defense tech firm selling anti-drone weapons to the US military right now is Anduril, the company started by Palmer Luckey, the inventor of the Oculus VR headset, and a crew of cofounders from Oculus and defense data giant Palantir. In just the past few months, the Marines have chosen Anduril for counter-drone contracts that could be worth nearly $850 million over the next decade, and the company has been working with Special Operations Command since 2022 on a counter-drone contract that could be worth nearly a billion dollars over a similar time frame. It’s unclear from the contracts what, exactly, Anduril is selling to each organization, but its weapons include electronic warfare jammers, jet-powered drone bombs, and propeller-driven Anvil drones designed to simply smash into enemy drones.

In this arsenal, the cheapest way to stop a swarm of drones is electronic warfare: jamming the GPS or radio signals used to pilot the machines. But the intense drone battles in Ukraine have advanced the art of jamming and counter-jamming close to the point of stalemate. As a result, a new state of the art is emerging: unjammable drones that operate autonomously by using onboard processors to navigate via internal maps and computer vision, or even drones connected with 20-kilometer-long filaments of fiber-optic cable for tethered control.

But unjammable doesn’t mean unzappable. Instead of using the scrambling method of a jammer, which employs an antenna to block the drone’s connection to a pilot or remote guidance system, the Leonidas microwave beam hits a drone body broadside. The energy finds its way into something electrical, whether the central flight controller or a tiny wire controlling a flap on a wing, to short-circuit whatever’s available. (The company also says that this targeted hit of energy allows birds and other wildlife to continue to move safely.)

Tyler Miller, a senior systems engineer on Epirus’s weaponeering team, told me that they never know exactly which part of the target drone is going to go down first, but they’ve reliably seen the microwave signal get in somewhere to overload a circuit. “Based on the geometry and the way the wires are laid out,” he said, one of those wires is going to be the best path in. “Sometimes if we rotate the drone 90 degrees, you have a different motor go down first,” he added.

The team has even tried wrapping target drones in copper tape, which would theoretically provide shielding, only to find that the microwave still finds a way in through moving propeller shafts or antennas that need to remain exposed for the drone to fly. 

EPIRUS

Leonidas also has an edge when it comes to downing a mass of drones at once. Physically hitting a drone out of the sky or lighting it up with a laser can be effective in situations where electronic warfare fails, but anti-drone drones can only take out one at a time, and lasers need to precisely aim and shoot. Epirus’s microwaves can damage everything in a roughly 60-degree arc from the Leonidas emitter simultaneously and keep on zapping and zapping; directed energy systems like this one never run out of ammo.

As for cost, each Army Leonidas unit currently runs in the “low eight figures,” Lowery told me. Defense contract pricing can be opaque, but Epirus delivered four units for its $66 million initial contract, giving a back-of-napkin price around $16.5 million each. For comparison, Stinger missiles from Raytheon, which soldiers shoot at enemy aircraft or drones from a shoulder-mounted launcher, cost hundreds of thousands of dollars a pop, meaning the Leonidas could start costing less (and keep shooting) after it downs the first wave of a swarm.

Raytheon’s radar, reversed

Epirus is part of a new wave of venture-capital-backed defense companies trying to change the way weapons are created—and the way the Pentagon buys them. The largest defense companies, firms like Raytheon, Boeing, Northrop Grumman, and Lockheed Martin, typically develop new weapons in response to research grants and cost-plus contracts, in which the US Department of Defense guarantees a certain profit margin to firms building products that match their laundry list of technical specifications. These programs have kept the military supplied with cutting-edge weapons for decades, but the results may be exquisite pieces of military machinery delivered years late and billions of dollars over budget.

Rather than building to minutely detailed specs, the new crop of military contractors aim to produce products on a quick time frame to solve a problem and then fine-tune them as they pitch to the military. The model, pioneered by Palantir and SpaceX, has since propelled companies like Anduril, Shield AI, and dozens of other smaller startups into the business of war as venture capital piles tens of billions of dollars into defense.

Like Anduril, Epirus has direct Palantir roots; it was cofounded by Joe Lonsdale, who also cofounded Palantir, and John Tenet, Lonsdale’s colleague at the time at his venture fund, 8VC. (Tenet, the son of former CIA director George Tenet, may have inspired the company’s name—the elder Tenet’s parents were born in the Epirus region in the northwest of Greece. But the company more often says it’s a reference to the pseudo-mythological Epirus Bow from the 2011 fantasy action movie Immortals, which never runs out of arrows.) 

While Epirus is doing business in the new mode, its roots are in the old—specifically in Raytheon, a pioneer in the field of microwave technology. Cofounded by MIT professor Vannevar Bush in 1922, it manufactured vacuum tubes, like those found in old radios. But the company became synonymous with electronic defense during World War II, when Bush spun up a lab to develop early microwave radar technology invented by the British into a workable product, and Raytheon then began mass-producing microwave tubes—known as magnetrons—for the US war effort. By the end of the war in 1945, Raytheon was making 80% of the magnetrons powering Allied radar across the world.

From padded foam chambers at the Epirus HQ, Leonidas devices can be safely tested on drones.
EPIRUS

Large tubes remained the best way to emit high-power microwaves for more than half a century, handily outperforming silicon-based solid-state amplifiers. They’re still around—the microwave on your kitchen counter runs on a vacuum tube magnetron. But tubes have downsides: They’re hot, they’re big, and they require upkeep. (In fact, the other microwave drone zapper currently in the Pentagon pipeline, the Tactical High-power Operational Responder, or THOR, still relies on a physical vacuum tube. It’s reported to be effective at downing drones in tests but takes up a whole shipping container and needs a dish antenna to zap its targets.)

By the 2000s, new methods of building solid-state amplifiers out of materials like gallium nitride started to mature and were able to handle more power than silicon without melting or shorting out. The US Navy spent hundreds of millions of dollars on cutting-edge microwave contracts, one for a project at Raytheon called Next Generation Jammer—geared specifically toward designing a new way to make high-powered microwaves that work at extremely long distances.

Lowery, the Epirus CEO, began his career working on nuclear reactors on Navy aircraft carriers before he became the chief engineer for Next Generation Jammer at Raytheon in 2010. There, he and his team worked on a system that relied on many of the same fundamentals that now power the Leonidas—using the same type of amplifier material and antenna setup to fry the electronics of a small target at much closer range rather than disrupting the radar of a target hundreds of miles away. 

The similarity is not a coincidence: Two engineers from Next Generation Jammer helped launch Epirus in 2018. Lowery—who by then was working at the augmented-reality startup RealWear, which makes industrial smart glasses—joined Epirus in 2021 to run product development and was asked to take the top spot as CEO in 2023, as Leonidas became a fully formed machine. Much of the founding team has since departed for other projects, but Raytheon still runs through the company’s collective CV: ex-Raytheon radar engineer Matt Markel started in January as the new CTO, and Epirus’s chief engineer for defense, its VP of engineering, its VP of operations, and a number of employees all have Raytheon roots as well.

Markel tells me that the Epirus way of working wouldn’t have flown at one of the big defense contractors: “They never would have tried spinning off the technology into a new application without a contract lined up.” The Epirus engineers saw the use case, raised money to start building Leonidas, and already had prototypes in the works before any military branch started awarding money to work on the project.

Waiting for the starting gun

On the wall of Lowery’s office are two mementos from testing days at an Army proving ground: a trophy wing from a larger drone, signed by the whole testing team, and a framed photo documenting the Leonidas’s carnage—a stack of dozens of inoperative drones piled up in a heap. 

Despite what seems to have been an impressive test show, it’s still impossible from the outside to determine whether Epirus’s tech is ready to fully deliver if the swarms descend. 

The Army would not comment specifically on the efficacy of any new weapons in testing or early deployment, including the Leonidas system. A spokesperson for the Army’s Rapid Capabilities and Critical Technologies Office, or RCCTO, which is the subsection responsible for contracting with Epirus to date, would only say in a statement that it is “committed to developing and fielding innovative Directed Energy solutions to address evolving threats.” 

But various high-ranking officers appear to be giving Epirus a public vote of confidence. The three-star general who runs RCCTO and oversaw the Leonidas testing last summer told Breaking Defense that “the system actually worked very well,” even if there was work to be done on “how the weapon system fits into the larger kill chain.”

And when former secretary of the Army Christine Wormuth, then the service’s highest-ranking civilian, gave a parting interview this past January, she mentioned Epirus in all but name, citing “one company” that is “using high-powered microwaves to basically be able to kill swarms of drones.” She called that kind of capability “critical for the Army.” 

The Army isn’t the only branch interested in the microwave weapon. On Epirus’s factory floor when I visited, alongside the big beige Leonidases commissioned by the Army, engineers were building a smaller expeditionary version for the Marines, painted green, which it delivered in late April. Videos show that when it put some of its microwave emitters on a dock and tested them out for the Navy last summer, the microwaves left their targets dead in the water—successfully frying the circuits of outboard motors like the ones propelling Houthi drone boats. 

Epirus is also currently working on an even smaller version of the Leonidas that can mount on top of the Army’s Stryker combat vehicles, and it’s testing out attaching a single microwave unit to a small airborne drone, which could work as a highly focused zapper to disable cars, data centers, or single enemy drones. 

Epirus' drone defense unit
Epirus’s microwave technology is also being tested in devices smaller than the traditional Leonidas.
EPIRUS

While neither the Army nor the Navy has yet to announce a contract to start buying Epirus’s systems at scale, the company and its investors are actively preparing for the big orders to start rolling in. It raised $250 million in a funding round in early March to get ready to make as many Leonidases as possible in the coming years, adding to the more than $300 million it’s raised since opening its doors in 2018.

“If you invent a force field that works,” Lowery boasts, “you really get a lot of attention.”

The task for Epirus now, assuming that its main customers pull the trigger and start buying more Leonidases, is ramping up production while advancing the tech in its systems. Then there are the more prosaic problems of staffing, assembly, and testing at scale. For future generations, Lowery told me, the goal is refining the antenna design and integrating higher-powered microwave amplifiers to push the output into the tens of kilowatts, allowing for increased range and efficacy. 

While this could be made harder by Trump’s global trade war, Lowery says he’s not worried about their supply chain; while China produces 98% of the world’s gallium, according to the US Geological Survey, and has choked off exports to the US, Epirus’s chip supplier uses recycled gallium from Japan. 

The other outside challenge may be that Epirus isn’t the only company building a drone zapper. One of China’s state-owned defense companies has been working on its own anti-drone high-powered microwave weapon called the Hurricane, which it displayed at a major military show in late 2024. 

It may be a sign that anti-electronics force fields will become common among the world’s militaries—and if so, the future of war is unlikely to go back to the status quo ante, and it might zag in a different direction yet again. But military planners believe it’s crucial for the US not to be left behind. So if it works as promised, Epirus could very well change the way that war will play out in the coming decade. 

While Miller, the Army CTO, can’t speak directly to Epirus or any specific system, he will say that he believes anti-drone measures are going to have to become ubiquitous for US soldiers. “Counter-UAS [Unmanned Aircraft System] unfortunately is going to be like counter-IED,” he says. “It’s going to be every soldier’s job to think about UAS threats the same way it was to think about IEDs.” 

And, he adds, it’s his job and his colleagues’ to make sure that tech so effective it works like “almost magic” is in the hands of the average rifleman. To that end, Lowery told me, Epirus is designing the Leonidas control system to work simply for troops, allowing them to identify a cluster of targets and start zapping with just a click of a button—but only extensive use in the field can prove that out.

Epirus CEO Andy Lowery sees the Leonidas as providing a last line of defense against UAVs.
EPIRUS

In the not-too-distant future, Lowery says, this could mean setting up along the US-Mexico border. But the grandest vision for Epirus’s tech that he says he’s heard is for a city-scale Leonidas along the lines of a ballistic missile defense radar system called PAVE PAWS, which takes up an entire 105-foot-tall building and can detect distant nuclear missile launches. The US set up four in the 1980s, and Taiwan currently has one up on a mountain south of Taipei. Fill a similar-size building full of microwave emitters, and the beam could reach out “10 or 15 miles,” Lowery told me, with one sitting sentinel over Taipei in the north and another over Kaohsiung in the south of Taiwan.

Riffing in Greek mythological mode, Lowery said of drones, “I call all these mischief makers. Whether they’re doing drugs or guns across the border or they’re flying over Langley [or] they’re spying on F-35s, they’re all like Icarus. You remember Icarus, with his wax wings? Flying all around—‘Nobody’s going to touch me, nobody’s going to ever hurt me.’”

“We built one hell of a wax-wing melter.” 

Sam Dean is a reporter focusing on business, tech, and defense. He is writing a book about the recent history of Silicon Valley returning to work with the Pentagon for Viking Press and covering the defense tech industry for a number of publications. Previously, he was a business reporter at the Los Angeles Times.

This piece has been updated to clarify that Alex Miller is a civilian intelligence official. 

What will power AI’s growth?

It’s been a little over a week since we published Power Hungry, a package that takes a hard look at the expected energy demands of AI. Last week in this newsletter, I broke down the centerpiece of that package, an analysis I did with my colleague James O’Donnell. (In case you’re still looking for an intro, you can check out this Roundtable discussion with James and our editor in chief Mat Honan, or this short segment I did on Science Friday.)

But this week, I want to talk about another story that I also wrote for that package, which focused on nuclear energy. I thought this was an important addition to the mix of stories we put together, because I’ve seen a lot of promises about nuclear power as a saving grace in the face of AI’s energy demand. My reporting on the industry over the past few years has left me a little skeptical. 

As I discovered while I continued that line of reporting, building new nuclear plants isn’t so simple or so fast. And as my colleague David Rotman lays out in his story for the package, the AI boom could wind up relying on another energy source: fossil fuels. So what’s going to power AI? Let’s get into it. 

When we started talking about this big project on AI and energy demand, we had a lot of conversations about what to include. And from the beginning, the climate team was really focused on examining what, exactly, was going to be providing the electricity needed to run data centers powering AI models. As we wrote in the main story: 

“A data center humming away isn’t necessarily a bad thing. If all data centers were hooked up to solar panels and ran only when the sun was shining, the world would be talking a lot less about AI’s energy consumption.” 

But a lot of AI data centers need to be available constantly. Those that are used to train models can arguably be more responsive to the changing availability of renewables, since that work can happen in bursts, any time. Once a model is being pinged with questions from the public, though, there needs to be computing power ready to run all the time. Google, for example, would likely not be too keen on having people be able to use its new AI Mode only during daylight hours.

Solar and wind power, then, would seem not to be a great fit for a lot of AI electricity demand, unless they’re paired with energy storage—and that increases costs. Nuclear power plants, on the other hand, tend to run constantly, outputting a steady source of power for the grid. 

As you might imagine, though, it can take a long time to get a nuclear power plant up and running. 

Large tech companies can help support plans to reopen shuttered plants or existing plants’ efforts to extend their operating lifetimes. There are also some existing plants that can make small upgrades to improve their output. I just saw this news story from the Tri-City Herald about plans to upgrade the Columbia Generating Station in eastern Washington—with tweaks over the next few years, it could produce an additional 162 megawatts of power, over 10% of the plant’s current capacity. 

But all that isn’t going to be nearly enough to meet the demand that big tech companies are claiming will materialize in the future. (For more on the numbers here and why new tech isn’t going to come online fast enough, check out my full story.) 

Instead, natural gas has become the default to meet soaring demand from data centers, as David lays out in his story. And since the lifetime of plants built today is about 30 years, those new plants could be running past 2050, the date the world needs to bring greenhouse-gas emissions to net zero to meet the goals set out in the Paris climate agreement. 

One of the bits I found most interesting in David’s story is that there’s potential for a different future here: Big tech companies, with their power and influence, could actually use this moment to push for improvements. If they reduced their usage during peak hours, even for less than 1% of the year, it could greatly reduce the amount of new energy infrastructure required. Or they could, at the very least, push power plant owners and operators to install carbon capture technology, or ensure that methane doesn’t leak from the supply chain.

AI’s energy demand is a big deal, but for climate change, how we choose to meet it is potentially an even bigger one. 

This startup wants to make more climate-friendly metal in the US

A California-based company called Magrathea just turned on a new electrolyzer that can make magnesium metal from seawater. The technology has the potential to produce the material, which is used in vehicles and defense applications, with net-zero greenhouse-gas emissions.

Magnesium is an incredibly light metal, and it’s used for parts in cars and planes, as well as in aluminum alloys like those in vehicles. The metal is also used in defense and industrial applications, including the production processes for steel and titanium.

Today, China dominates production of magnesium, and the most common method generates a lot of the emissions that cause climate change. If Magrathea can scale up its process, it could help provide an alternative source of the metal and clean up industries that rely on it, including automotive manufacturing.

The star of Magrathea’s process is an electrolyzer, a device that uses electricity to split a material into its constituent elements. Using an electrolyzer in magnesium production isn’t new, but Magrathea’s approach represents an update. “We really modernized it and brought it into the 21st century,” says Alex Grant, Magrathea’s cofounder and CEO.

The whole process starts with salty water. There are small amounts of magnesium in seawater, as well as in salt lakes and groundwater. (In seawater, the concentration is about 1,300 parts per million, so magnesium makes up about 0.1% of seawater by weight.) If you take that seawater or brine and clean it up, concentrate it, and dry it out, you get a solid magnesium chloride salt.

Magrathea takes that salt (which it currently buys from Cargill) and puts it into the electrolyzer. The device reaches temperatures of about 700 °C (almost 1,300 °F) and runs electricity through the molten salt to split the magnesium from the chlorine, forming magnesium metal.

Typically, running an electrolyzer in this process would require a steady source of electricity. The temperature is generally kept just high enough to maintain the salt in a molten state. Allowing it to cool down too much would allow it to solidify, messing up the process and potentially damaging the equipment. Heating it up more than necessary would just waste energy. 

Magrathea’s approach builds in flexibility. Basically, the company runs its electrolyzer about 100 °C higher than is necessary to keep the molten salt a liquid. It then uses the extra heat in inventive ways, including to dry out the magnesium salt that eventually goes into the reactor. This preparation can be done intermittently, so the company can take in electricity when it’s cheaper or when more renewables are available, cutting costs and emissions. In addition, the process will make a co-product, called magnesium oxide, that can be used to trap carbon dioxide from the atmosphere, helping to cancel out the remaining carbon pollution.

The result could be a production process with net-zero emissions, according to an independent life cycle assessment completed in January. While it likely won’t reach this bar at first, the potential is there for a much more climate-friendly process than what’s used in the industry today, Grant says.

Breaking into magnesium production won’t be simple, says Simon Jowitt, director of the Nevada Bureau of Mines and of the Center for Research in Economic Geology at the University of Nevada, Reno.

China produces roughly 95% of the global supply as of 2024, according to data from the US Geological Survey. This dominant position means companies there can flood the market with cheap metal, making it difficult for others to compete. “The economics of all this is uncertain,” Jowitt says.

The US has some trade protections in place, including an anti-dumping duty, but newer players with alternative processes can still face obstacles. US Magnesium, a company based in Utah, was the only company making magnesium in the US in recent years, but it shut down production in 2022 after equipment failures and a history of environmental concerns. 

Magrathea plans to start building a demonstration plant in Utah in late 2025 or early 2026, which will have a capacity of roughly 1,000 tons per year and should be running in 2027. In February the company announced that it signed an agreement with a major automaker, though it declined to share its name on the record. The automaker pre-purchased material from the demonstration plant and will incorporate it into existing products.

After the demonstration plant is running, the next step would be to build a commercial plant with a larger capacity of around 50,000 tons annually.

OpenAI: The power and the pride

In April, Paul Graham, the founder of the tech startup accelerator Y Combinator, sent a tweet in response to former YC president and current OpenAI CEO Sam Altman. Altman had just bid a public goodbye to GPT-4 on X, and Graham had a follow-up question. 

“If you had [GPT-4’s model weights] etched on a piece of metal in the most compressed form,” Graham wrote, referring to the values that determine the model’s behavior, “how big would the piece of metal have to be? This is a mostly serious question. These models are history, and by default digital data evaporates.” 

There is no question that OpenAI pulled off something historic with its release of ChatGPT 3.5 in 2022. It set in motion an AI arms race that has already changed the world in a number of ways and seems poised to have an even greater long-term effect than the short-term disruptions to things like education and employment that we are already beginning to see. How that turns out for humanity is something we are still reckoning with and may be for quite some time. But a pair of recent books both attempt to get their arms around it with accounts of what two leading technology journalists saw at the OpenAI revolution. 

In Empire of AI: Dreams and Nightmares in Sam Altman’s OpenAI, Karen Hao tells the story of the company’s rise to power and its far-reaching impact all over the world. Meanwhile, The Optimist: Sam Altman, OpenAI, and the Race to Invent the Future, by the Wall Street Journal’s Keach Hagey, homes in more on Altman’s personal life, from his childhood through the present day, in order to tell the story of OpenAI. Both paint complex pictures and show Altman in particular as a brilliantly effective yet deeply flawed creature of Silicon Valley—someone capable of always getting what he wants, but often by manipulating others. 

Hao, who was formerly a reporter with MIT Technology Review, began reporting on OpenAI while at this publication and remains an occasional contributor. One chapter of her book grew directly out of that reporting. And in fact, as Hao says in the acknowledgments of Empire of AI, some of her reporting for MIT Technology Review, a series on AI colonialism, “laid the groundwork for the thesis and, ultimately, the title of this book.” So you can take this as a kind of disclaimer that we are predisposed to look favorably on Hao’s work. 

With that said, Empire of AI is a powerful work, bristling not only with great reporting but also with big ideas. This comes across in service to two main themes. 

The first is simple: It is the story of ambition overriding ethics. The history of OpenAI as Hao tells it (and as Hagey does too) is very much a tale of a company that was founded on the idealistic desire to create a safety-focused artificial general intelligence but instead became more interested in winning. This is a story we’ve seen many times before in Big Tech. See Theranos, which was going to make diagnostics easier, or Uber, which was founded to break the cartel of “Big Taxi.” But the closest analogue might be Google, which went from “Don’t be evil” to (at least in the eyes of the courts) illegal monopolist. For that matter, consider how Google went from holding off on releasing its language model as a consumer product out of an abundance of caution to rushing a chatbot out the door to catch up with and beat OpenAI. In Silicon Valley, no matter what one’s original intent, it always comes back to winning.  

The second theme is more complex and forms the book’s thesis about what Hao calls AI colonialism. The idea is that the large AI companies act like traditional empires, siphoning wealth from the bottom rungs of society in the forms of labor, creative works, raw materials, and the like to fuel their ambition and enrich those at the top of the ladder. “I’ve found only one metaphor that encapsulates the nature of what these AI power players are: empires,” she writes.

“During the long era of European colonialism, empires seized and extracted resources that were not their own and exploited the labor of the people they subjugated to mine, cultivate, and refine those resources for the empires’ enrichment.” She goes on to chronicle her own growing disillusionment with the industry. “With increasing clarity,” she writes, “I realized that the very revolution promising to bring a better future was instead, for people on the margins of society, reviving the darkest remnants of the past.” 

To document this, Hao steps away from her desk and goes out into the world to see the effects of this empire as it sprawls across the planet. She travels to Colombia to meet with data labelers tasked with teaching AI what various images show, one of whom she describes sprinting back to her apartment for the chance to make a few dollars. She documents how workers in Kenya who performed data-labeling content moderation for OpenAI came away traumatized by seeing so much disturbing material. In Chile she documents how the industry extracts precious resources—water, power, copper, lithium—to build out data centers. 

She lands on the ways people are pushing back against the empire of AI across the world. Hao draws lessons from New Zealand, where Maori people are attempting to save their language using a small language model of their own making. Trained on volunteers’ voice recordings and running on just two graphics processing units, or GPUs, rather than the thousands employed by the likes of OpenAI, it’s meant to benefit the community, not exploit it. 

Hao writes that she is not against AI. Rather: “What I reject is the dangerous notion that broad benefit from AI can only be derived from—indeed will ever emerge from—a vision of the technology that requires the complete capitulation of our privacy, our agency, and our worth, including the value of our labor and art, toward an ultimately imperial centralization project … [The New Zealand model] shows us another way. It imagines how AI could be exactly the opposite. Models can be small and task-specific, their training data contained and knowable, ridding the incentives for widespread exploitative and psychologically harmful labor practices and the all-consuming extractivism of producing and running massive supercomputers.” 

Hagey’s book is more squarely focused on Altman’s ambition, which she traces back to his childhood. Yet interestingly, she also  zeroes in on the OpenAI CEO’s attempt to create an empire. Indeed, “Altman’s departure from YC had not slowed his civilization-building ambitions,” Hagey writes. She goes on to chronicle how Altman, who had previously mulled a run for governor of California, set up experiments with income distribution via Tools for Humanity, the parent company of Worldcoin. She quotes Altman saying of it, “I thought it would be interesting to see … just how far technology could accomplish some of the goals that used to be done by nation-states.” 

Overall, The Optimist is the more straightforward business biography of the two. Hagey has packed it full with scoops and insights and behind-the-scenes intrigue. It is immensely readable as a result, especially in the second half, when OpenAI really takes over the story. Hagey also seems to have been given far more access to Altman and his inner circles, personal and professional, than Hao did, and that allows for a fuller telling of the CEO’s story in places. For example, both writers cover the tragic story of Altman’s sister Annie, her estrangement from the family, and her accusations in particular about suffering sexual abuse at the hands of Sam (something he and the rest of the Altman family vehemently deny). Hagey’s telling provides a more nuanced picture of the situation, with more insight into family dynamics. 

Hagey concludes by describing Altman’s reckoning with his role in the long arc of human history and what it will mean to create a “superintelligence.” His place in that sweep is something that clearly has consumed the CEO’s thoughts. When Paul Graham asked about preserving GPT-4, for example, Altman had a response at the ready. He replied that the company had already considered this, and that the sheet of metal would need to be 100 meters square.

The AI Hype Index: College students are hooked on ChatGPT

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

Large language models confidently present their responses as accurate and reliable, even when they’re neither of those things. That’s why we’ve recently seen chatbots supercharge vulnerable people’s delusions, make citation mistakes in an important legal battle between music publishers and Anthropic, and (in the case of xAI’s Grok) rant irrationally about “white genocide.”

But it’s not all bad news—AI could also finally lead to a better battery life for your iPhone and solve tricky real-world problems that humans have been struggling to crack, if Google DeepMind’s new model is any indication. And perhaps most exciting of all, it could combine with brain implants to help people communicate when they have lost the ability to speak.

A new sodium metal fuel cell could help clean up transportation

A new type of fuel cell that runs on sodium metal could one day help clean up sectors where it’s difficult to replace fossil fuels, like rail, regional aviation, and short-distance shipping. The device represents a departure from technologies like lithium-based batteries and is more similar conceptually to hydrogen fuel cell systems. 

The sodium-air fuel cell was designed by a team led by Yet-Ming Chiang, a professor of materials science and engineering at MIT. It has a higher energy density than lithium-ion batteries and doesn’t require the super-cold temperatures or high pressures that hydrogen does, making it potentially more practical for transport. “I’m interested in sodium metal as an energy carrier of the future,” Chiang says.  

The device’s design, published today in Joule, is related to the technology behind one of Chiang’s companies, Form Energy, which is building iron-air batteries for large energy storage installations like those that could help store wind and solar power on the grid. Form’s batteries rely on water, iron, and air.

One technical challenge for metal-air batteries has historically been reversibility. A battery’s chemical reactions must be easily reversed so that in one direction they generate electricity, discharging the battery, and in the other electricity goes into the cell and the reverse reactions happen, charging it up.

When a battery’s reactions produce a very stable product, it can be difficult to recharge the battery without losing capacity. To get around this problem, the team at Form had discussions about whether their batteries could be refuelable rather than rechargeable, Chiang says. The idea was that rather than reversing the reactions, they could simply run the system in one direction, add more starting material, and repeat. 

Ultimately, Form chose a more traditional battery concept, but the idea stuck with Chiang, who decided to explore it with other metals and landed on the idea of a sodium-based fuel cell. 

In this fuel cell format, the device takes in chemicals and runs reactions that generate electricity, after which the products get removed. Then fresh fuel is put in to run the whole thing again—no electrical charging required. (You might recognize this concept from hydrogen fuel cell vehicles, like the Toyota Mirai.)

Chiang and his colleagues set out to build a fuel cell that runs on liquid sodium, which could have a much higher energy density than existing commercial technologies, so it would be small and light enough to be used for things like regional airplanes or short-distance shipping.

Gloved hands holding a small vial of sodium metal.
Sodium metal could be used to power regional planes or short distance shipping.
GRETCHEN ERTL/MITTR

The research team built small test cells to try out the concept and ran them to show that they could use the sodium-metal-based system to generate electricity. Since sodium becomes liquid at about 98 °C (208 °F), the cells operated at moderate temperatures of between 110 °C and 130 °C (or 230 °F and 266°F), which could be practical for use on planes or ships, Chiang says. 

From their work with these experimental devices, the researchers estimated that the energy density was about 1,200 watt-hours per kilogram (Wh/kg). That’s much higher than what commercial lithium-ion batteries can reach today (around 300 Wh/kg). Hydrogen fuel cells can achieve high energy density, but that requires the hydrogen to be stored at high pressures and often ultra-low temperatures.

“It’s an interesting cell concept,” says Jürgen Janek, a professor at the Institute of Physical Chemistry at the University of Giessen in Germany, who was not involved in the research. There’s been previous research on sodium-air batteries in the past, Janek says, but using this sort of chemistry in a fuel cell instead is new.

“One of the critical issues with this type of cell concept is the safety issue,” Janek says. Sodium metal reacts very strongly with water. (You may have seen videos where blocks of sodium metal get thrown into a lake, to dramatic effect). Asked about this issue, Chiang says the design of the cell ensures that water produced during reactions is continuously removed, so there’s not enough around to fuel harmful reactions. The solid electrolyte, a ceramic material, also helps prevent reactions between water and sodium, Chiang adds. 

Another question is what happens to one of the cell’s products, sodium hydroxide. Commonly known as lye, it’s an industrial chemical, used in products like liquid drain-cleaning solution. One of the researchers’ suggestions is to dilute the product and release it into the atmosphere or ocean, where it would react with carbon dioxide, capturing it in a stable form and preventing it from contributing to global warming. There are groups pursuing field trials using this exact chemical for ocean-based carbon removal, though some have been met with controversy. The researchers also laid out the potential for a closed system, where the chemical could be collected and sold as a by-product.

There are economic factors working in favor of sodium-based systems, though it would take some work to build up the necessary supply chains. Today, sodium metal isn’t produced at very high volumes. However, it can be made from sodium chloride (table salt), which is incredibly cheap. And it was produced more abundantly in the past, since it was used in the process of making leaded gasoline. So there’s a precedent for a larger supply chain, and it’s possible that scaling up production of sodium metal would make it cheap enough to use in fuel cell systems, Chiang says.

Chiang has cofounded a company called Propel Aero to commercialize the research. The project received funding from ARPA-E’s Propel-1K program, which aims to develop new forms of high-power energy storage for aircraft, trains, and ships.

The next step is to continue research to improve the cells’ performance and energy density, and to start designing small-scale systems. One potential early application is drones. “We’d like to make something fly within the next year,” Chiang says.

“If people don’t find it crazy, I’ll be rather disappointed,” Chiang says. “Because if an idea doesn’t sound crazy at the beginning, it probably isn’t as revolutionary as you think. Fortunately, most people think I’m crazy on this one.”

The FDA plans to limit access to covid vaccines. Here’s why that’s not all bad.

This week, two new leaders at the US Food and Drug Administration announced plans to limit access to covid vaccines, arguing that there is not much evidence to support the value of annual shots in healthy people. New vaccines will be made available only to the people who are most vulnerable—namely, those over 65 and others with conditions that make them more susceptible to severe disease.

Anyone else will have to wait. Covid vaccines will soon be required to go through more rigorous trials to ensure that they really are beneficial for people who aren’t at high risk.

The plans have been met with fear and anger in some quarters. But they weren’t all that shocking to me. In the UK, where I live, covid boosters have been offered only to vulnerable groups for a while now. And the immunologists I spoke to agree: The plans make sense.

They are still controversial. Covid hasn’t gone away. And while most people are thought to have some level of immunity to the virus, some of us still stand to get very sick if infected. The threat of long covid lingers, too. Given that people respond differently to both the virus and the vaccine, perhaps individuals should be able to choose whether they get a vaccine or not.

I should start by saying that covid vaccines have been a remarkable success story. The drugs were developed at record-breaking speed—they were given to people in clinical trials just 69 days after the virus had been identified. They are, on the whole, very safe. And they work remarkably well. They have saved millions of lives. And they rescued many of us from lockdowns.

But while many of us have benefited hugely from covid vaccinations in the past, there are questions over how useful continuing annual booster doses might be. That’s the argument being made by FDA head Marty Makary and Vinay Prasad, director of the agency’s Center for Biologics Evaluation and Research.

Both men have been critical of the FDA in the past. Makary has long been accused of downplaying the benefits of covid vaccines. He made incorrect assumptions about the coronavirus responsible for covid-19 and predicted that the disease would be “mostly gone” by April 2021. Most recently, he also testified in Congress that the theory that the virus came from a lab in China was a “no-brainer.” (The strongest evidence suggests the virus jumped from animals to humans in a market in Wuhan.)

Prasad has said “the FDA is a failure” and has called annual covid boosters “a public health disaster the likes of which we’ve never seen before,” because of a perceived lack of clinical evidence to support their use.

Makary and Prasad’s plans, which were outlined in the New England Journal of Medicine on Tuesday, don’t include such inflammatory language or unfounded claims, thankfully. In fact, they seem pretty measured: Annual covid booster shots will continue to be approved for vulnerable people but will have to be shown to benefit others before people outside the approved groups can access them.

There are still concerns being raised, though. Let’s address a few of the biggest ones.

Shouldn’t I get an annual covid booster alongside my flu vaccine?

At the moment, a lot of people in the US opt to get a covid vaccination around the time they get their annual flu jab. Each year, a flu vaccine is developed to protect against what scientists predict will be the dominant strain of virus circulating come flu season, which tends to run from October through March.

But covid doesn’t seem to stick to the same seasonal patterns, says Susanna Dunachie, a clinical doctor and professor of infectious diseases at the University of Oxford in the UK. “We seem to be getting waves of covid year-round,” she says.

And an annual shot might not offer the best protection against covid anyway, says Fikadu Tafesse, an immunologist and virologist at Oregon Health & Science University in Portland. His own research suggests that leaving more than a year between booster doses could enhance their effectiveness. “One year is really a random time,” he says. It might be better to wait five or 10 years between doses instead, he adds.

“If you are at risk [of a serious covid infection] you may actually need [a dose] every six months,” says Tafesse. “But for healthy individuals, it’s a very different conversation.”

What about children—shouldn’t we be protecting them?

There are reports that pediatricians are concerned about the impact on children, some of whom can develop serious cases of covid. “If we have safe and effective vaccines that prevent illness, we think they should be available,” James Campbell, vice chair of the committee on infectious diseases at the American Academy of Pediatrics, told STAT.

This question has been on my mind for a while. My two young children, who were born in the UK, have never been eligible for a covid vaccine in this country. I found this incredibly distressing when the virus started tearing through child-care centers—especially given that at the time, the US was vaccinating babies from the age of six months.

My kids were eventually offered a vaccine in the US, when we temporarily moved there a couple of years ago. But by that point, the equation had changed. They’d both had covid by then. I had a better idea of the general risks of the virus to children. I turned it down.

I was relieved to hear that Tafesse had made the same decision for his own children. “There are always exceptions, but in general, [covid] is not severe in kids,” he says. The UK’s Joint Committee on Vaccination and Immunology found that the benefits of vaccination are much smaller for children than they are for adults.

“Of course there are children with health problems who should definitely have it,” says Dunachie. “But for healthy children in healthy households, the benefits probably are quite marginal.”

Shouldn’t healthy people get vaccinated to help protect more vulnerable members of society?

It’s a good argument, says Tafesse. Research suggests that people who are vaccinated against covid-19 are less likely to end up transmitting the infection to the people around them. The degree of protection is not entirely clear, particularly with less-studied—and more contagious—variants of the virus and targeted vaccines. The safest approach is to encourage those at high risk to get the vaccine themselves, says Tafesse.

If the vaccines are safe, shouldn’t I be able to choose to get one?

Tafesse doesn’t buy this argument. “I know they are safe, but even if they’re safe, why do I need to get one?” People should know if they are likely to benefit from a drug they are taking, he says.

Having said that, the cost-benefit calculation will differ between individuals. Even a “mild” covid infection can leave some people bed-bound for a week. For them, it might make total sense to get the vaccine.

Dunachie thinks people should be able to make their own decisions. “Giving people a top-up whether they need it or not is a safe thing to do,” she says.

It is still not entirely clear who will be able to access covid vaccinations under the new plans, and how. Makary and Prasad’s piece includes a list of “medical conditions that increase a person’s risk of severe covid-19,” which includes several disorders, pregnancy, and “physical inactivity.” It covers a lot of people; research suggests that around 25% of Americans are physically inactive.

But I find myself agreeing with Dunachie. Yes, we need up-to-date evidence to support the use of any drugs. But taking vaccines away from people who have experience with them and feel they could benefit from them doesn’t feel like the ideal way to go about it.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Meet Cathy Tie, Bride of “China’s Frankenstein”

Since the Chinese biophysicist He Jiankui was released from prison in 2022, he has sought to make a scientific comeback and to repair his reputation after a three-year incarceration for illegally creating the world’s first gene-edited children. 

While he has bounced between cities, jobs, and meetings with investors, one area of visible success on his comeback trail has been his X.com account, @Jiankui_He, which has become his main way of spreading his ideas to the world. Starting in September 2022, when he joined the platform, the account stuck to the scientist’s main themes, including promising a more careful approach to his dream of creating more gene-edited children. “I will do it, only after society has accepted it,” he posted in August 2024. He also shared mundane images of his daily life, including golf games and his family.

But over time, it evolved and started to go viral. First came a series of selfies accompanied by grandiose statements (“Every pioneer or prophet must suffer”). Then, in April of this year, it became particularly outrageous and even troll-like, blasting out bizarre messages (“Good morning bitches. How many embryos have you gene edited today?”). This has left observers unsure what to take seriously.

Last month, in reply to MIT Technology Review’s questions about who was responsible for the account’s transformation into a font of clever memes, He emailed us back: “It’s thanks to Cathy Tie.”

You may not be familiar with Tie, but she’s no stranger to the public spotlight. A former Thiel fellow, she is a partner in the attention-grabbing Los Angeles Project, which promised to create glow-in-the-dark pets. Over the past several weeks, though, the 29-year-old Canadian entrepreneur has started to get more and more attention as the new wife to (and apparent social media mastermind behind) He Jiankui. On April 15, He announced a new venture, Cathy Medicine, that would take up his mission of editing human embryos to create people resistant to diseases like Alzheimer’s or cancer. Just a few days later, on April 18, He and Tie announced that they had married, posting pictures of themselves in traditional Chinese wedding attire.

But now Tie says that just a month after she married “the most controversial scientist in the world,” her plans to relocate from Los Angeles to Beijing to be with He are in disarray; she says she’s been denied entry to China and the two “may never see each other again,” as He’s passport is being held by Chinese authorities and he can’t leave the country.

Reached by phone in Manila, Tie said authorities in the Philippines had intercepted her during a layover on May 17 and told her she couldn’t board a plane to China, where she was born and where she says she has a valid 10-year visa. She claims they didn’t say why but told her she is likely “on a watch list.” (MIT Technology Review could not independently confirm Tie’s account.) 

“While I’m concerned about my marriage, I am more concerned about what this means for humanity and the future of science,” Tie posted to her own X account.

A match made in gene-editing heaven

The romance between He and Tie has been playing out in public over the past several weeks through a series of reveals on He’s X feed, which had already started going viral late last year thanks to his style of posting awkward selfies alongside maxims about the untapped potential of heritable gene editing, which involves changing people’s DNA when they’re just embryos in an IVF dish. 

“Human [sic] will no longer be controlled by Darwin’s evolution,” He wrote in March. That post, which showed him standing in an empty lab, gazing into the distance, garnered 9.7 million views. And then, a week later, he collected 13.3 million for this one: “Ethics is holding back scientific innovation and progress.” 

In April, the feed started to change even more drastically. 

He’s posts became increasingly provocative, with better English and a unique sensibility reflecting online culture. “Stop asking for cat girls. I’m trying to cure disease,” the account posted on April 15. Two days later, it followed up: “I literally went to prison for this shit.” 

This shift coincided with the development of his romance with Tie. Tie told us she has visited China three times this year, including a three-week stint in April when she and He got married after a whirlwind romance. She bought him a silver wedding ring made up of intertwined DNA strands. 

The odd behavior on He’s X feed and the sudden marriage have left followers wondering if they are watching a love story, a new kind of business venture, or performance art. It might be all three. 

A wedding photo posted by Tie on the Chinese social media platform Rednote shows the couple sitting at a table in a banquet hall, with a small number of guests. MIT Technology Review has been able to identify several people who attended: Cai Xilei, He’s criminal attorney; Liu Haiyan, an investor and former business partner of He; and Darren Zhu, an artist and Thiel fellow who is making a “speculative” documentary about the biophysicist that will blur the boundaries of fiction and reality.

In the phone interview, Tie declined to say if she and He are legally married. She also confirmed she celebrated a wedding less than one year ago with someone else in California, in July of 2024, but said they broke up after a few months; she also declined to describe the legal status of that marriage. In the phone call, Tie emphasized that her relationship with He is genuine: “I wouldn’t marry him if I wasn’t in love with him.”

An up-and-comer

Years before Tie got into a relationship with He, she was getting plenty of attention in her own right. She became a Thiel fellow in 2015, when she was just 18. That program, started by the billionaire Peter Thiel, gave her a grant of $100,000 to drop out of the University of Toronto and start a gene testing company, Ranomics. 

Soon, she began appearing on the entrepreneur circuit as a “wunderkind” who was featured on a Forbes30 Under 30” list in 2018 and presented as an up-and-coming venture capitalist on CNN that same year. In 2020, she started her second company, Locke Bio, which focuses on online telemedicine.

Like Thiel, Tie has staked out contrarian positions. She’s called mainstream genomics a scam and described entrepreneurship as a way to escape the hidebound practices of academia and bioethics. “Starting companies is my preferred form of art,” she posted in 2022, linking to an interview on CNBC

By February 2025, Tie was ready to announce another new venture: the Los Angeles Project, a stealth company she had incorporated in 2023 under her legal name, Cheng Cheng Tie. The company, started with the Texas-based biohacker and artist Josie Zayner, says it will try to modify animal embryos; one goal is to make fluorescent glow-in-the-dark rabbits as pets.

The Los Angeles Project revels in explicitly transgressive aims for embryo editing, including a plan to add horn genes to horse embryos to make a unicorn. That’s consistent with Zayner’s past stunts, which include injecting herself with CRISPR during a livestream. “This is a company that should not exist,” Zayner said in announcing the newly public project.

Although the Los Angeles Project has only a tiny staff with uncertain qualifications, it did raise $1 million from the 1517 Fund, a venture group that supports “dropouts” and whose managers previously ran the Thiel Fellowship. 

Asked for his assessment of Tie, Michael Gibson, a 1517 partner, said in an email that he thinks Tie is “not just exceptional, but profoundly exceptional.” He sent along a list of observations he’d jotted down about Tie before funding her company, which approvingly noted her “hyper-fluent competence” and “low need for social approval,” adding: “Thoughts & actions routinely unconventional.” 

A comeback story

He first gained notoriety in 2018, when he and coworkers at the Southern University of Science & Technology in Shenzhen injected the CRISPR gene editor into several viable human embryos and then transferred these into volunteers, leading to the birth of three girls who he claimed would be resistant to HIV. A subsequent Chinese investigation found he’d practiced medicine illegally while “pursuing fame and fortune.” A court later sentenced him to three years in prison.

He has never apologized for his experiments, except to say he acted “too quickly” and to express regret for the trouble he’d caused his former wife and two daughters. (According to a leaked WeChat post by his ex-wife, she divorced him in 2024 “because of a major fault on his side.”)

Since his release from prison, He has sought to restart his research and convince people that he should be recognized as the “Chinese Darwin,” not “China’s Frankenstein,” as the press once dubbed him. 

But his comeback has been bumpy. He lost a position at Wuchang University of Technology, a small private university in Hubei province, after some negative press. In February 2024, He posted that his application for funding from the Muscular Dystrophy Association was rejected. Last September, he even posted pictures of his torn shirt—which he said was the result of an assault by jealous rivals.

One area of clear success, though, was the growing reach of his X profile, which today has ballooned to more than 130,000 followers. And as his public profile rose, some started encouraging He to find ways to cash in. Andrew Hessel, a futurist and synthetic biologist active in US ethics debates, says he tried to get He invited to give a TED Talk. “His story is unique, and I wanted to see his story get more widespread attention, if only as a cautionary tale,” Hessel says. “I think he is a lightning rod for a generation of people working in life sciences.”

Later, Hessel says, he sent him information on how to join X’s revenue-sharing program. “I said, ‘You have a powerful voice. Have you looked into monetization?’” Hessel says.

By last fall, He was also welcoming visitors to what he called a new lab in Beijing. One person who took him up on the offer was Steve Hsu, a Michigan State physics professor who has started several genetics companies and was visiting Beijing. 

They ended up talking for hours. Hsu says that He expressed a desire to move to the US and start a company, and that he shared his idea for conducting a clinical trial of embryo editing in South Africa, possibly for the prevention of HIV. 

Hsu says he later arranged an invitation for He to give a lecture in the United States. “You are a little radioactive, but things are opening up,” Hsu told him. But He declined the offer because the Chinese government is holding his passport—a common tactic it uses to restrict the movement of sensitive or high-profile figures—and won’t return it to him. “He doesn’t even know why. He literally doesn’t know,” says Hsu. “According to the law, they should give it back to him.”

A curious triangle

Despite any plans by He and Tie to advance the idea, creating designer babies is currently illegal in most of the world, including China and the US. Some experts, however, fret that forbidding the technology will only drive it underground and make it attractive to biohackers or scientists outside the mainstream. 

That’s one reason Tie’s simultaneous connection to two notable biotech renegades—He and Zayner—is worth watching. “There is clearly a triangle forming in some way,” says Hessel.

With Tie stuck outside China and He being kept inside the country, their new gene-editing venture, Cathy Medicine, faces an uncertain future. Tie posted previously on Rednote that she was “helping Dr. He open up the U.S. market” and was planning to return to the US with him for scientific research. But when we spoke on the phone, she declined to disclose their next steps and said their predicament means the project is “out of the window now.”

Even as the couple remain separated, their social media game is stronger than ever. As she waited in Manila, Tie sought help from friends, followers, and the entire internet. She blasted out a tweet to “crypto people,” calling them “too pussy to stand up for things when it matters.” Within hours, someone had created a memecoin called $GENE as a way for the public to support the couple. 

On May 20, Tie posted on X claiming that the amount donated to them is now worth almost $2 million. “I may need to retract my last statement about crypto,” she wrote. 

He’s X account also retweeted to express support: “I only want to reunite with my wife @CathyTie, and continue my gene editing research.” He added the hashtag $GENE.

Three takeaways about AI’s energy use and climate impacts

This week, we published Power Hungry, a package all about AI and energy. At the center of this package is the most comprehensive look yet at AI’s growing power demand, if I do say so myself. 

This data-heavy story is the result of over six months of reporting by me and my colleague James O’Donnell (and the work of many others on our team). Over that time, with the help of leading researchers, we quantified the energy and emissions impacts of individual queries to AI models and tallied what it all adds up to, both right now and for the years ahead. 

There’s a lot of data to dig through, and I hope you’ll take the time to explore the whole story. But in the meantime, here are three of my biggest takeaways from working on this project. 

1. The energy demands of AI are anything but constant. 

If you’ve heard estimates of AI’s toll, it’s probably a single number associated with a query, likely to OpenAI’s ChatGPT. One popular estimate is that writing an email with ChatGPT uses 500 milliliters (or roughly a bottle) of water. But as we started reporting, I was surprised to learn just how much the details of a query can affect its energy demand. No two queries are the same—for several reasons, including their complexity and the particulars of the model being queried.

One key caveat here is that we don’t know much about “closed source” models—for these, companies hold back the details of how they work. (OpenAI’s ChatGPT and Google’s Gemini are examples.) Instead, we worked with researchers who measured the energy it takes to run open-source AI models, for which the source code is publicly available. 

But using open-source models, it’s possible to directly measure the energy used to respond to a query rather than just guess. We worked with researchers who generated text, images, and video and measured the energy required for the chips the models are based on to perform the task.  

Even just within the text responses, there was a pretty large range of energy needs. A complicated travel itinerary consumed nearly 10 times as much energy as a simple request for a few jokes, for example. An even bigger difference comes from the size of the model used. Larger models with more parameters used up to 70 times more energy than smaller ones for the same prompts. 

As you might imagine, there’s also a big difference between text, images, or video. Videos generally took hundreds of times more energy to generate than text responses. 

2. What’s powering the grid will greatly affect the climate toll of AI’s energy use. 

As the resident climate reporter on this project, I was excited to take the expected energy toll and translate it into an expected emissions burden. 

Powering a data center with a nuclear reactor or a whole bunch of solar panels and batteries will not affect our planet the same way as burning mountains of coal. To quantify this idea, we used a figure called carbon intensity, a measure of how dirty a unit of electricity is on a given grid. 

We found that the same exact query, with the same exact energy demand, will have a very different climate impact depending on what the data center is powered by, and that depends on the location and the time of day. For example, querying a data center in West Virginia could cause nearly twice the emissions of querying one in California, according to calculations based on average data from 2024.

This point shows why it matters where tech giants are building data centers, what the grid looks like in their chosen locations, and how that might change with more demand from the new infrastructure. 

3. There is still so much that we don’t know when it comes to AI and energy. 

Our reporting resulted in estimates that are some of the most specific and comprehensive out there. But ultimately, we still have no idea what many of the biggest, most influential models are adding up to in terms of energy and emissions. None of the companies we reached out to were willing to provide numbers during our reporting. Not one.

Adding up our estimates can only go so far, in part because AI is increasingly everywhere. While today you might generally have to go to a dedicated site and type in questions, in the future AI could be stitched into the fabric of our interactions with technology. (See my colleague Will Douglas Heaven’s new story on Google’s I/O showcase: “By putting AI into everything, Google wants to make it invisible.”)

AI could be one of the major forces that shape our society, our work, and our power grid. Knowing more about its consequences could be crucial to planning our future. 

To dig into our reporting, give the main story a read. And if you’re looking for more details on how we came up with our numbers, you can check out this behind-the-scenes piece.

There are also some great related stories in this package, including one from James Temple on the data center boom in the Nevada desert, one from David Rotman about how AI’s rise could entrench natural gas, and one from Will Douglas Heaven on a few technical innovations that could help make AI more efficient. Oh, and I also have a piece on why nuclear isn’t the easy answer some think it is

Find them, and the rest of the stories in the package, here

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

A new atomic clock in space could help us measure elevations on Earth

In 2003, engineers from Germany and Switzerland began building a bridge across the Rhine River simultaneously from both sides. Months into construction, they found that the two sides did not meet. The German side hovered 54 centimeters above the Swiss side.

The misalignment occurred because the German engineers had measured elevation with a historic level of the North Sea as its zero point, while the Swiss ones had used the Mediterranean Sea, which was 27 centimeters lower. We may speak colloquially of elevations with respect to “sea level,” but Earth’s seas are actually not level. “The sea level is varying from location to location,” says Laura Sanchez, a geodesist at the Technical University of Munich in Germany. (Geodesists study our planet’s shape, orientation, and gravitational field.) While the two teams knew about the 27-centimeter difference, they mixed up which side was higher. Ultimately, Germany lowered its side to complete the bridge. 

To prevent such costly construction errors, in 2015 scientists in the International Association of Geodesy voted to adopt the International Height Reference Frame, or IHRF, a worldwide standard for elevation. It’s the third-dimensional counterpart to latitude and longitude, says Sanchez, who helps coordinate the standardization effort. 

Now, a decade after its adoption, geodesists are looking to update the standard—by using the most precise clock ever to fly in space.

That clock, called the Atomic Clock Ensemble in Space, or ACES, launched into orbit from Florida last month, bound for the International Space Station. ACES, which was built by the European Space Agency, consists of two connected atomic clocks, one containing cesium atoms and the other containing hydrogen, combined to produce a single set of ticks with higher precision than either clock alone. 

Pendulum clocks are only accurate to about a second per day, as the rate at which a pendulum swings can vary with humidity, temperature, and the weight of extra dust. Atomic clocks in current GPS satellites will lose or gain a second on average every 3,000 years. ACES, on the other hand, “will not lose or gain a second in 300 million years,” says Luigi Cacciapuoti, an ESA physicist who helped build and launch the device. (In 2022, China installed a potentially stabler clock on its space station, but the Chinese government has not publicly shared the clock’s performance after launch, according to Cacciapuoti.) 

From space, ACES will link to some of the most accurate clocks on Earth to create a synchronized clock network, which will support its main purpose: to perform tests of fundamental physics. 

But it’s of special interest for geodesists because it can be used to make gravitational measurements that will help establish a more precise zero point from which to measure elevation across the world.

Alignment over this “zero point” (basically where you stick the end of the tape measure to measure elevation) is important for international collaboration. It makes it easier, for example, to monitor and compare sea-level changes around the world. It is especially useful for building infrastructure involving flowing water, such as dams and canals. In 2020, the international height standard even resolved a long-standing dispute between China and Nepal over Mount Everest’s height. For years, China said the mountain was 8,844.43 meters; Nepal measured it at 8,848. Using the IHRF, the two countries finally agreed that the mountain was 8,848.86 meters. 

Airbus worker performs critical tests on ACES in the Space Station Processing Facility cleanroom at the Kennedy Space Center.
A worker performs tests on ACES at a cleanroom at the Kennedy Space Center in Florida.
ESA-T. PEIGNIER

To create a standard zero point, geodesists create a model of Earth known as a geoid. Every point on the surface of this lumpy, potato-shaped model experiences the same gravity, which means that if you dug a canal at the height of the geoid, the water within the canal would be level and would not flow. Distance from the geoid establishes a global system for altitude.

However, the current model lacks precision, particularly in Africa and South America, says Sanchez. Today’s geoid has been built using instruments that directly measure Earth’s gravity. These have been carried on satellites, which excel at getting a global but low-resolution view, and have also been used to get finer details via expensive ground- and airplane-based surveys. But geodesists have not had the funding to survey Africa and South America as extensively as other parts of the world, particularly in difficult terrain such as the Amazon rainforest and Sahara Desert. 

To understand the discrepancy in precision, imagine a bridge that spans Africa from the Mediterranean coast to Cape Town, South Africa. If it’s built using the current geoid, the two ends of the bridge will be misaligned by tens of centimeters. In comparison, you’d be off by at most five centimeters if you were building a bridge spanning North America. 

To improve the geoid’s precision, geodesists want to create a worldwide network of clocks, synchronized from space. The idea works according to Einstein’s theory of general relativity, which states that the stronger the gravitational field, the more slowly time passes. The 2014 sci-fi movie Interstellar illustrates an extreme version of this so-called time dilation: Two astronauts spend a few hours in extreme gravity near a black hole to return to a shipmate who has aged more than two decades. Similarly, Earth’s gravity grows weaker the higher in elevation you are. Your feet, for example, experience slightly stronger gravity than your head when you’re standing. Assuming you live to be about 80 years old, over a lifetime your head will age tens of billionths of a second more than your feet. 

A clock network would allow geodesists to compare the ticking of clocks all over the world. They could then use the variations in time to map Earth’s gravitational field much more precisely, and consequently create a more precise geoid. The most accurate clocks today are precise enough to measure variations in time that map onto centimeter-level differences in elevation. 

“We want to have the accuracy level at the one-centimeter or sub-centimeter level,” says Jürgen Müller, a geodesist at Leibniz University Hannover in Germany. Specifically, geodesists would use the clock measurements to validate their geoid model, which they currently do with ground- and plane-based surveying techniques. They think that a clock network should be considerably less expensive.

ACES is just a first step. It is capable of measuring altitudes at various points around Earth with 10-centimeter precision, says Cacciapuoti. But the point of ACES is to prototype the clock network. It will demonstrate the optical and microwave technology needed to use a clock in space to connect some of the most advanced ground-based clocks together. In the next year or so, Müller plans to use ACES to connect to clocks on the ground, starting with three in Germany. Müller’s team could then make more precise measurements at the location of those clocks.

These early studies will pave the way for work connecting even more precise clocks than ACES to the network, ultimately leading to an improved geoid. The best clocks today are some 50 times more precise than ACES. “The exciting thing is that clocks are getting even stabler,” says Michael Bevis, a geodesist at Ohio State University, who was not involved with the project. A more precise geoid would allow engineers, for example, to build a canal with better control of its depth and flow, he says. However, he points out that in order for geodesists to take advantage of the clocks’ precision, they will also have to improve their mathematical models of Earth’s gravitational field. 

Even starting to build this clock network has required decades of dedicated work by scientists and engineers. It took ESA three decades to make a clock as small as ACES that is suitable for space, says Cacciapuoti. This meant miniaturizing a clock the size of a laboratory into the size of a small fridge. “It was a huge engineering effort,” says Cacciapuoti, who has been working on the project since he began at ESA 20 years ago. 

Geodesists expect they’ll need at least another decade to develop the clock network and launch more clocks into space. One possibility would be to slot the clocks onto GPS satellites. The timeline depends on the success of the ACES mission and the willingness of government agencies to invest, says Sanchez. But whatever the specifics, mapping the world takes time.