$8 billion of US climate tech projects have been canceled so far in 2025

This year has been rough for climate technology: Companies have canceled, downsized, or shut down at least 16 large-scale projects worth $8 billion in total in the first quarter of 2025, according to a new report.

That’s far more cancellations than have typically occurred in recent years, according to a new report from E2, a nonpartisan policy group. The trend is due to a variety of reasons, including drastically revised federal policies.

In recent months, the White House has worked to claw back federal investments, including some of those promised under the Inflation Reduction Act. New tariffs on imported goods, including those from China (which dominates supply chains for batteries and other energy technologies), are also contributing to the precarious environment. And demand for some technologies, like EVs, is lagging behind expectations. 

E2, which has been tracking new investments in manufacturing and large-scale energy projects, is now expanding its regular reports to include project cancellations, shutdowns, and downsizings as well.  From August 2022 to the end of 2024, 18 projects were canceled, closed, or downsized, according to E2’s data. The first three months of 2025 have already seen 16 projects canceled.

“I wasn’t sure it was going to be this clear,” says Michael Timberlake, communications director of E2. “What you’re really seeing is that there’s a lot of market uncertainty.”

Despite the big number, it is not comprehensive. The group only tracks large-scale investments, not smaller announcements that can be more difficult to follow. The list also leaves out projects that companies have paused.

“The incredible uncertainty in the clean energy sector is leading to a lot of projects being canceled or downsized, or just slowed down,” says Jay Turner, a professor of environmental studies at Wellesley College. Turner leads a team that also tracks the supply chain for clean energy in the US in a database called the Big Green Machine.

Some turnover is normal, and there have been a lot of projects announced since the Inflation Reduction Act was passed in 2022—so there are more in the pipeline to potentially be canceled, Turner says. So many battery and EV projects were announced that supply would have exceeded demand “even in a best-case scenario,” Turner says. So some of the project cancellations are a result of right-sizing, or getting supply and demand in sync.

Other projects are still moving forward, with hundreds of manufacturing facilities under construction or operational. But it’s not as many as we’d see in a more stable policy landscape, Turner says.

The cancellations include a factory in Georgia from Aspen Aerogels, which received a $670 million loan commitment from the US Department of Energy in October. The facility would have made materials that can help prevent or slow fires in battery packs. In a February earnings call, executives said the company plans to focus on an existing Rhode Island facility and projects in other countries, including China and Mexico. Aspen Aerogels didn’t respond to a request for further comment. 

Hundreds of projects that have been announced in just the last few years are under construction or operational despite the wave of cancellations. But it is an early sign of growing uncertainty for climate technology. 

 “You’re seeing a business environment that’s just unsure what’s next and is hesitant to commit one way or another,” Timberlake says.

Yahoo will give millions to a settlement fund for Chinese dissidents, decades after exposing user data

A lawsuit to hold Yahoo responsible for “willfully turning a blind eye” to the mismanagement of a human rights fund for Chinese dissidents was settled for $5.425 million last week, after an eight-year court battle. At least $3 million will go toward a new fund; settlement documents say it will “provide humanitarian assistance to persons in or from the [People’s Republic of China] who have been imprisoned in the PRC for exercising their freedom of speech.” 

This ends a long fight for accountability stemming from decisions by Yahoo, starting in the early 2000s, to turn over information on Chinese internet users to state security, leading to their imprisonment and torture. After the actions were exposed and the company was publicly chastised, Yahoo created the Yahoo Human Rights Fund (YHRF), endowed with $17.3 million, to support individuals imprisoned for exercising free speech rights online. 

But in the years that followed, its chosen nonprofit partner, the Laogai Research Foundation, badly mismanaged the fund, spending less than $650,000—or 4%—on direct support for the dissidents. Most of the money was, instead, spent by the late Harry Wu, the politically connected former Chinese dissident who led Laogai, on his own projects and interests. A group of dissidents sued in 2017, naming not just Laogai and its leadership but also Yahoo and senior members from its leadership team during the time in question; at least one person from Yahoo always sat on YHRF’s board and had oversight of its budget and activities.  

The defendants—which, in addition to Yahoo and Laogai, included the Impresa Legal Group, the law firm that worked with Laogai—agreed to pay the six formerly imprisoned Chinese dissidents who filed the suit, with five of them slated to receive $50,000 each and the lead plaintiff receiving $55,000. 

The remainder, after legal fees and other expense reimbursements, will go toward a new fund to continue YHRF’s original mission of supporting individuals in China imprisoned for their speech. The fund will be managed by a small nonprofit organization, Humanitarian China, founded in 2004 by three participants in the 1989 Chinese democracy movement. Humanitarian China has given away $2 million in cash assistance to Chinese dissidents and their families, funded primarily by individual donors. 

This assistance is often vital; political prisoners are frequently released only after years or decades in prison, sometimes with health problems and without the skills to find steady work in the modern job market. They continue to be monitored, visited, and penalized by state security, leaving local employers even more unwilling to hire them. It’s a “difficult situation,” Xu Wanping, one of the plaintiffs, previously told MIT Technology Review—“the sense of isolation and that kind of helplessness we feel … if this lawsuit can be more effective, if it could help restart this program, it is really meaningful.” As we wrote in our original story,

“Xu lives in low-income housing in his hometown of Chongqing, in western China. He Depu, another plaintiff, his wife, and an adult son survive primarily on a small monthly hardship allowance of 1,500 RMB ($210) provided by the local government as collateral to ensure that he keeps his opinions to himself. But he knows that even if he is silent, this money could disappear at any point.” 

The terms of the settlement bar the parties from providing more than a cursory statement to the media, but Times Wang, the plaintiffs’ lawyer, previously told MIT Technology Review about the importance of the fund. In addition to the crucial financial support, “it is a source of comfort to them [the dissidents] to know that there are people outside of China who stand with them,” he said. 

MIT Technology Review took an in-depth look at the case and the mismanagement at YHRF, which you can read here

AI is pushing the limits of the physical world

Architecture often assumes a binary between built projects and theoretical ones. What physics allows in actual buildings, after all, is vastly different from what architects can imagine and design (often referred to as “paper architecture”). That imagination has long been supported and enabled by design technology, but the latest advancements in artificial intelligence have prompted a surge in the theoretical. 

ai-generated shapes
Karl Daubmann, College of Architecture and Design at Lawrence Technological University
“Very often the new synthetic image that comes from a tool like Midjourney or Stable Diffusion feels new,” says Daubmann, “infused by each of the multiple tools but rarely completely derived from them.”

“Transductions: Artificial Intelligence in Architectural Experimentation,” a recent exhibition at the Pratt Institute in Brooklyn, brought together works from over 30 practitioners exploring the experimental, generative, and collaborative potential of artificial intelligence to open up new areas of architectural inquiry—something they’ve been working on for a decade or more, since long before AI became mainstream. Architects and exhibition co-­curators Jason Vigneri-Beane, Olivia Vien, Stephen Slaughter, and Hart Marlow explain that the works in “Transductions” emerged out of feedback loops among architectural discourses, techniques, formats, and media that range from imagery, text, and animation to mixed-­reality media and fabrication. The aim isn’t to present projects that are going to break ground anytime soon; architects already know how to build things with the tools they have. Instead, the show attempts to capture this very early stage in architecture’s exploratory engagement with AI.

Technology has long enabled architecture to push the limits of form and function. As early as 1963, Sketchpad, one of the first architectural software programs, allowed architects and designers to move and change objects on screen. Rapidly, traditional hand drawing gave way to an ever-expanding suite of programs—­Revit, SketchUp, and BIM, among many others—that helped create floor plans and sections, track buildings’ energy usage, enhance sustainable construction, and aid in following building codes, to name just a few uses. 

The architects exhibiting in “Trans­ductions” view newly evolving forms of AI “like a new tool rather than a profession-­ending development,” says Vigneri-Beane, despite what some of his peers fear about the technology. He adds, “I do appreciate that it’s a somewhat unnerving thing for people, [but] I feel a familiarity with the rhetoric.”

After all, he says, AI doesn’t just do the job. “To get something interesting and worth saving in AI, an enormous amount of time is required,” he says. “My architectural vocabulary has gotten much more precise and my visual sense has gotten an incredible workout, exercising all these muscles which have atrophied a little bit.”

Vien agrees: “I think these are extremely powerful tools for an architect and designer. Do I think it’s the entire future of architecture? No, but I think it’s a tool and a medium that can expand the long history of mediums and media that architects can use not just to represent their work but as a generator of ideas.”

Andrew Kudless, Hines College of Architecture and Design
This image, part of the Urban Resolution series, shows how the Stable Diffusion AI model “is unable to focus on constructing a realistic image and instead duplicates features that are prominent in the local latent space,” Kudless says.

Jason Vigneri-Beane, Pratt Institute
“These images are from a larger series on cyborg ecologies that have to do with co-creating with machines to imagine [other] machines,” says Vigneri-Beane. “I might refer to these as cryptomegafauna—infrastructural robots operating at an architectural scale.”

Martin Summers, University of Kentucky College of Design
“Most AI is racing to emulate reality,” says Summers. “I prefer to revel in the hallucinations and misinterpretations like glitches and the sublogic they reveal present in a mediated reality.”
Jason Lee, Pratt Institute
Lee typically uses AI “to generate iterations or high-resolution sketches,” he says. “I am also using it to experiment with how much realism one can incorporate with more abstract representation methods.”

Olivia Vien, Pratt Institute
For the series Imprinting Grounds, Vien created images digitally and fed them into Midjourney. “It riffs on the ideas of damask textile patterns in a more digital realm,” she says.

Robert Lee Brackett III, Pratt Institute
“While new software raises concerns about the absence of traditional tools like hand drawing and modeling, I view these technologies as collaborators rather than replacements,” Brackett says.
NASA has made an air traffic control system for drones

On Thanksgiving weekend of 2013, Jeff Bezos, then Amazon’s CEO, took to 60 Minutes to make a stunning announcement: Amazon was a few years away from deploying drones that would deliver packages to homes in less than 30 minutes. 

It lent urgency to a problem that Parimal Kopardekar, director of the NASA Aeronautics Research Institute, had begun thinking about earlier that year.

“How do you manage and accommodate large-scale drone operations without overloading the air traffic control system?” Kopardekar, who goes by PK, recalls wondering. Busy managing all airplane takeoffs and landings, air traffic controllers clearly wouldn’t have the capacity to oversee the fleets of package-delivering drones Amazon was promising. 

The solution PK devised, which subsequently grew into a collaboration between federal agencies, researchers, and industry, is a system called unmanned-­aircraft-system traffic management, or UTM. Instead of verbally communicating with air traffic controllers, drone operators using UTM share their intended flight paths with each other via a cloud-based network.

This highly scalable approach may finally open the skies to a host of commercial drone applications that have yet to materialize. Amazon Prime Air launched in 2022 but was put on hold after crashes at a testing facility, for example. On any given day, only 8,500 or so unmanned aircraft fly in US airspace, the vast majority of which are used for recreational purposes rather than for services like search and rescue missions, real estate inspections, video surveillance, or farmland surveys. 

One obstacle to wider use has been concern over possible midair drone-to-drone collisions. (Drones are typically restricted to airspace below 400 feet and their access to airports is limited, which significantly lowers the risk of drone-airplane collisions.) Under Federal Aviation Administration regulations, drones generally cannot fly beyond an operator’s visual line of sight, limiting flights to about a third of a mile. This prevents most collisions but also most use cases, such as delivering medication to a patient’s doorstep or dispatching a police drone to an active crime scene so first responders can better prepare before arriving.

Now, though, drone operators are increasingly incorporating UTM into their flights. The system uses path planning algorithms, like those that run in Google Maps, to chart a course that considers not only weather and obstacles like buildings and trees but the flight paths of nearby drones. It’ll automatically reroute a flight before takeoff if another drone has reserved the same volume of airspace at the same time, making the new flight trajectory visible to subsequent pilots. Drones can then fly autonomously to and from their destination, and no air traffic controller is required. 

Over the past decade, NASA and industry have demonstrated to the FAA through a series of tests that drones can safely maneuver around each other by adhering to UTM. And last summer, the agency gave the go-ahead for multiple drone delivery companies using UTM to begin flying simultaneously in the same airspace above Dallas—a first in US aviation history. Drone operators without in-house UTM capabilities have also begun licensing UTM services from FAA-approved third-party providers.

UTM only works if all participants abide by the same rules and agree to share data, and it’s enabled a level of collaboration unusual for companies competing to gain a foothold in a young, hot field, notes Peter Sachs, head of airspace integration strategy at Zipline, a drone delivery company based in South San Francisco that’s approved to use UTM. 

“We all agree that we need to collaborate on the practical, behind-the-scenes nuts and bolts to make sure that this preflight deconfliction for drones works really well,” Sachs says. (“Strategic deconfliction” is the technical term for processes that minimize drone-drone collisions.) Zipline and the drone delivery companies Wing, Flytrex, and DroneUp all operate in the Dallas area and are racing to expand to more cities, yet they disclose where they’re flying to one another in the interest of keeping the airspace conflict-free.

Greater adoption of UTM may be on the way. The FAA is expected to soon release a new rule called Part 108 that may allow operators to fly beyond visual line of sight if, among other requirements, they have some UTM capability, eliminating the need for the difficult-­to-obtain waiver the agency currently requires for these flights. To safely manage this additional drone traffic, drone companies will have to continue working together to keep their aircraft out of each other’s way. 

Yaakov Zinberg is a writer based in Cambridge, Massachusetts.

We need targeted policies, not blunt tariffs, to drive “American energy dominance”

President Trump and his appointees have repeatedly stressed the need to establish “American energy dominance.” 

But the White House’s profusion of executive orders and aggressive tariffs, along with its determined effort to roll back clean-energy policies, are moving the industry in the wrong direction, creating market chaos and economic uncertainty that are making it harder for both legacy players and emerging companies to invest, grow, and compete.


Heat Exchange

MIT Technology Review’s guest opinion series, offering expert commentary on legal, political and regulatory issues related to climate change and clean energy. You can read the rest of the pieces here.


The current 90-day pause on rolling out most of the administration’s so-called “reciprocal” tariffs presents a critical opportunity. Rather than defaulting to broad, blunt tariffs, the administration should use this window to align trade policy with a focused industrial strategy—one aimed at winning the global race to become a manufacturing powerhouse in next-generation energy technologies. 

By tightly aligning tariff design with US strengths in R&D and recent government investments in the energy innovation lifecycle, the administration can turn a regressive trade posture into a proactive plan for economic growth and geopolitical advantage.

The president is right to point out that America is blessed with world-leading energy resources. Over the past decade, the country has grown from being a net importer to a net exporter of oil and the world’s largest producer of oil and gas. These resources are undeniably crucial to America’s ability to reindustrialize and rebuild a resilient domestic industrial base, while also providing strategic leverage abroad. 

But the world is slowly but surely moving beyond the centuries-old model of extracting and burning fossil fuels, a change driven initially by climate risks but increasingly by economic opportunities. America will achieve true energy dominance only by evolving beyond being a mere exporter of raw, greenhouse-gas-emitting energy commodities—and becoming the world’s manufacturing and innovation hub for sophisticated, high-value energy technologies.

Notably, the nation took a lead role in developing essential early components of the cleantech sector, including solar photovoltaics and electric vehicles. Yet too often, the fruits of that innovation—especially manufacturing jobs and export opportunities—have ended up overseas, particularly in China.

China, which is subject to Trump’s steepest tariffs and wasn’t granted any reprieve in the 90-day pause, has become the world’s dominant producer of lithium-ion batteries, EVs, wind turbines, and other key components of the clean-energy transition.

Today, the US is again making exciting strides in next-generation technologies, including fusion energy, clean steel, advanced batteries, industrial heat pumps, and thermal energy storage. These advances can transform industrial processes, cut emissions, improve air quality, and maximize the strategic value of our fossil-fuel resources. That means not simply burning them for their energy content, but instead using them as feedstocks for higher-value materials and chemicals that power the modern economy.

The US’s leading role in energy innovation didn’t develop by accident. For several decades, legislators on both sides of the political divide supported increasing government investments into energy innovation—from basic research at national labs and universities to applied R&D through ARPA-E and, more recently, to the creation of the Office of Clean Energy Demonstrations, which funds first-of-a-kind technology deployments. These programs have laid the foundation for the technologies we need—not just to meet climate goals, but to achieve global competitiveness.

Early-stage companies in competitive, global industries like energy do need extra support to help them get to the point where they can stand up on their own. This is especially true for cleantech companies whose overseas rivals have much lower labor, land, and environmental compliance costs.

That’s why, for starters, the White House shouldn’t work to eliminate federal investments made in these sectors under the Bipartisan Infrastructure Law and the Inflation Reduction Act, as it’s reportedly striving to do as part of the federal budget negotiations.

Instead, the administration and its Republican colleagues in Congress should preserve and refine these programs, which have already helped expand America’s ability to produce advanced energy products like batteries and EVs. Success should be measured not only in barrels produced or watts generated, but in dollars of goods exported, jobs created, and manufacturing capacity built.

The Trump administration should back this industrial strategy with smarter trade policy as well. Steep, sweeping tariffs won’t  build long-term economic strength. 

But there are certain instances where reasonable, modern, targeted tariffs can be a useful tool in supporting domestic industries or countering unfair trade practices elsewhere. That’s why we’ve seen leaders of both parties, including Presidents Biden and Obama, apply them in recent years.

Such levies can be used to protect domestic industries where we’re competing directly with geopolitical rivals like China, and where American companies need breathing room to scale and thrive. These aims can be achieved by imposing tariffs on specific strategic technologies, such as EVs and next-generation batteries.

But to be clear, targeted tariffs on a few strategic sectors are starkly different from Trump’s tariffs, which now include 145% levies on most Chinese goods, a 10% “universal” tariff on other nations and 25% fees on steel and aluminum. 

Another option is implementing a broader border adjustment policy, like the Foreign Pollution Fee Act recently reintroduced by Senators Cassidy and Graham, which is designed to create a level playing field that would help clean manufacturers in the US compete with heavily polluting businesses overseas.  

Just as important, the nation must avoid counterproductive tariffs on critical raw materials like steel, aluminum, and copper or retaliatory restrictions on critical minerals—all of which are essential inputs for US manufacturing. The nation does not currently produce enough of these materials to meet demand, and it would take years to build up that capacity. Raising input costs through tariffs only slows our ability to keep or bring key industries home.

Finally, we must be strategic in how we deploy the country’s greatest asset: our workforce. Americans are among the most educated and capable workers in the world. Their time, talent, and ingenuity shouldn’t be spent assembling low-cost, low-margin consumer goods like toasters. Instead, we should focus on building cutting-edge industrial technologies that the world is demanding. These are the high-value products that support strong wages, resilient supply chains, and durable global leadership.

The worldwide demand for clean, efficient energy technologies is rising rapidly, and the US cannot afford to be left behind. The energy transition presents not just an environmental imperative but a generational opportunity for American industrial renewal.

The Trump administration has a chance to define energy dominance not just in terms of extraction, but in terms of production—of technology, of exports, of jobs, and of strategic influence. Let’s not let that opportunity slip away.

Addison Killean Stark is the chief executive and cofounder of AtmosZero, an industrial steam heat pump startup based in Loveland, Colorado. He was previously a fellow at the Department of Energy’s ARPA-E division, which funds research and development of advanced energy technologies.

How a 1980s toy robot arm inspired modern robotics

As a child of an electronic engineer, I spent a lot of time in our local Radio Shack as a kid. While my dad was locating capacitors and resistors, I was in the toy section. It was there, in 1984, that I discovered the best toy of my childhood: the Armatron robotic arm. 

A drawing from the patent application for the Armatron robotic arm.
COURTESY OF TAKARA TOMY

Described as a “robot-like arm to aid young masterminds in scientific and laboratory experiments,” it was the rare toy that lived up to the hype printed on the front of the box. This was a legit robotic arm. You could rotate the arm to spin around its base, tilt it up and down, bend it at the “elbow” joint, rotate the “wrist,” and open and close the bright-­orange articulated hand in elegant chords of movement, all using only the twistable twin joysticks. 

Anyone who played with this toy will also remember the sound it made. Once you slid the power button to the On position, you heard a constant whirring sound of plastic gears turning and twisting. And if you tried to push it past its boundaries, it twitched and protested with a jarring “CLICK … CLICK … CLICK.”

It wasn’t just kids who found the Armatron so special. It was featured on the cover of the November/December 1982 issue of Robotics Age magazine, which noted that the $31.95 toy (about $96 today) had “capabilities usually found only in much more expensive experimental arms.”

pieces of the armatron disassembled and arranged on a table

JIM GOLDEN

A few years ago I found my Armatron, and when I opened the case to get it working again, I was startled to find that other than the compartment for the pair of D-cell batteries, a switch, and a tiny three-volt DC motor, this thing was totally devoid of any electronic components. It was purely mechanical. Later, I found the patent drawings for the Armatron online and saw how incredibly complex the schematics of the gearbox were. This design was the work of a genius—or a madman.

The man behind the arm

I needed to know the story of this toy. I reached out to the manufacturer, Tomy (now known as Takara Tomy), which has been in business in Japan for over 100 years. It put me in touch with Hiroyuki Watanabe, a 69-year-old engineer and toy designer living in Tokyo. He’s retired now, but he worked at Tomy for 49 years, building many classic handheld electronic toys of the ’80s, including Blip, Digital Diamond, Digital Derby, and Missile Strike. Watanabe’s name can be found on 44 patents, and he was involved in bringing between 50 and 60 products to market. Watanabe answered emailed questions via video, and his responses were translated from Japanese.

“I didn’t have a period where I studied engineering professionally. Instead, I enrolled in what Japan would call a technical high school that trains technical engineers, and I actually [entered] the electrical department there,” he told me. 

Afterward, he worked at Komatsu Manufacturing—because, he said, he liked bulldozers. But in 1974, he saw that Tomy was hiring, and he wanted to make toys. “I was told that it was the No. 1 toy company in Japan, so I decided [it was worth a look],” he said. “I took a night train from Tohoku to Tokyo to take a job exam, and that’s how I ended up joining the company.”

The inspiration for the Armatron came from a newspaper clipping that Watanabe’s boss brought to him one day. “It showed an image of a [mechanical arm] holding an egg with three fingers. I think we started out thinking, ‘This is where things are heading these days, so let’s make this,’” he recalled. 

As the lead of a small team, Watanabe briefly turned his attention to another project, and by the time he returned to the robotic arm, the team had a prototype. But it was quite different from the Armatron’s final form. “The hand stuck out from the main body to the side and could only move about 90 degrees. The control panel also had six movement positions, and they were switched using six switches. I personally didn’t like that,” said Watanabe. So he went back to work.

The Armatron’s inventor, Hiroyuki Watanabe, in Tokyo in 2025
COURTESY OF TAKARA TOMY

Watanabe’s breakthrough was inspired by the radio-controlled helicopters he operated as a hobby. Holding up a radio remote controller with dual joystick controls, he told me, “This stick operation allows you to perform four movements with two arms, but I thought that if you twist this part, you can use six movements.”

Watanabe at work at Tomy in Tokyo in 1982.
COURTESY OF HIROYUKI WATANABE

“I had always wanted to create a system that could rotate 360 degrees, so I thought about how to make that system work,” he added.

Watanabe stressed that while he is listed as the Armatron’s primary inventor, it was a team effort. A designer created the case, colors, and logo, adding touches to mimic features seen on industrial robots of the time, such as the rubber tubes (which are just for looks). 

When the Armatron first came out, in 1981, robotics engineers started contacting Watanabe. “I wasn’t so much hearing from people at toy stores, but rather from researchers at university laboratories, factories, and companies that were making industrial robots,” he said. “They were quite encouraging, and we often talked together.”

The long reach of the robot at Radio Shack

The bold look and function of Armatron made quite an impression on many young kids who would one day have a career in robotics.

One of them was Adam Borrell, a mechanical design engineer who has been building robots for 15 years at Boston Dynamics, including Petman, the YouTube-famous Atlas, and the dog-size quadruped called Spot. 

Borrell grew up a few blocks away from a Radio Shack in New York City. “If I was going to the subway station, we would walk right by Radio Shack. I would stop in and play with it and set the timer, do the challenges,” he says. “I know it was a toy, but that was a real robot.” The Armatron was the hook that lured him into Radio Shack and then sparked his lifelong interest in engineering: “I would roll pennies and use them to buy soldering irons and solder at Radio Shack.” 

“There’s research to this day using AI to try to figure out optimal ways to grab objects that [a robot] sees in a bin or out in the world.”

Borrell had a fateful reunion with the toy while in grad school for engineering. “One of my office mates had an Armatron at his desk,” he recalls, “and it was broken. We took it apart together, and that was the first time I had seen the guts of it. 

“It had this fantastic mechanical gear train to just engage and disengage this one motor in a bunch of different ways. And it was really fascinating that it had done so much—the one little motor. And that sort of got me back thinking about industrial robot arms again.” 

Eric Paulos, a professor of electrical engineering and computer science at the University of California, Berkeley, recalls nagging his parents about what an educational gift Armatron would make. Ultimately, he succeeded in his lobbying. 

“It was just endless exploration of picking stuff up and moving it around and even just watching it move. It was mesmerizing to me. I felt like I really owned my own little robot,” he recalls. “I cherish this thing. I still have it to this day, and it’s still working.” 

The Armatron on the cover of the November/December 1982 issue of Robotics Age magazine.
PUBLIC DOMAIN

Today, Paulos builds robots and teaches his students how to build their own. He challenges them to solve problems within constraints, such as building with cardboard or Play-Doh; he believes the restrictions facing Watanabe and his team ultimately forced them to be more creative in their engineering.

It’s not very hard to draw connections between the Armatron—an impossibly analog robot—and highly advanced machines that are today learning to move in incredible new ways, powered by AI advancements like computer vision and reinforcement learning.

Paulos sees parallels between the problems he tackled as a kid with his Armatron and those that researchers are still trying to deal with today: “What happens when you pick things up and they’re too heavy, but you can sort of pick it up if you approach it from different angles? Or how do you grip things? There’s research to this day using AI to try to figure out optimal ways to grab objects that [a robot] sees in a bin or out in the world.”

While AI may be taking over the world of robotics, the field still requires engineers—builders and tinkerers who can problem-solve in the physical world. 

A page from the 1984 Radio Shack catalogue,
featuring the Armatron for $31.95.
COURTESY OF RADIOSHACKCATALOGS.COM

The Armatron encouraged kids to explore these analog mechanics, a reminder that not all breakthroughs happen on a computer screen. And that hands-on curiosity hasn’t faded. Today, a new generation of fans are rediscovering the Armatron through online communities and DIY modifications. Dozens of Armatron videos are on YouTube, including one where the arm has been modified to run on steam power

“I’m very happy to see people who love mechanisms are amazed,” Watanabe told me. “I’m really happy that there are still people out there who love our products in this way.” 

Jon Keegan writes about technology and AI and publishes Beautiful Public Data, a curated collection of government data sets (beautifulpublicdata.com).

These four charts sum up the state of AI and energy

While it’s rare to look at the news without finding some headline related to AI and energy, a lot of us are stuck waving our hands when it comes to what it all means.

Sure, you’ve probably read that AI will drive an increase in electricity demand. But how that fits into the context of the current and future grid can feel less clear from the headlines. That’s true even for people working in the field. 

A new report from the International Energy Agency digs into the details of energy and AI, and I think it’s worth looking at some of the data to help clear things up. Here are four charts from the report that sum up the crucial points about AI and energy demand.

1. AI is power hungry, and the world will need to ramp up electricity supply to meet demand. 

This point is the most obvious, but it bears repeating: AI is exploding, and it’s going to lead to higher energy demand from data centers. “AI has gone from an academic pursuit to an industry with trillions of dollars at stake,” as the IEA report’s executive summary puts it.

Data centers used less than 300 terawatt-hours of electricity in 2020. That could increase to nearly 1,000 terawatt-hours in the next five years, which is more than Japan’s total electricity consumption today.

Today, the US has about 45% of the world’s data center capacity, followed by China. Those two countries will continue to represent the overwhelming majority of capacity through 2035.  

2. The electricity needed to power data centers will largely come from fossil fuels like coal and natural gas in the near term, but nuclear and renewables could play a key role, especially after 2030.

The IEA report is relatively optimistic on the potential for renewables to power data centers, projecting that nearly half of global growth by 2035 will be met with renewables like wind and solar. (In Europe, the IEA projects, renewables will meet 85% of new demand.)

In the near term, though, natural gas and coal will also expand. An additional 175 terawatt-hours from gas will help meet demand in the next decade, largely in the US, according to the IEA’s projections. Another report, published this week by the energy consultancy BloombergNEF, suggests that fossil fuels will play an even larger role than the IEA projects, accounting for two-thirds of additional electricity generation between now and 2035.

Nuclear energy, a favorite of big tech companies looking to power operations without generating massive emissions, could start to make a dent after 2030, according to the IEA data.

3. Data centers are just a small piece of expected electricity demand growth this decade.

We should be talking more about appliances, industry, and EVs when we talk about energy! Electricity demand is on the rise from a whole host of sources: Electric vehicles, air-conditioning, and appliances will each drive more electricity demand than data centers between now and the end of the decade. In total, data centers make up a little over 8% of electricity demand expected between now and 2030.

There are interesting regional effects here, though. Growing economies will see more demand from the likes of air-conditioning than from data centers. On the other hand, the US has seen relatively flat electricity demand from consumers and industry for years, so newly rising demand from high-performance computing will make up a larger chunk. 

4. Data centers tend to be clustered together and close to population centers, making them a unique challenge for the power grid.  

The grid is no stranger to facilities that use huge amounts of energy: Cement plants, aluminum smelters, and coal mines all pull a lot of power in one place. However, data centers are a unique sort of beast.

First, they tend to be closely clustered together. Globally, data centers make up about 1.5% of total electricity demand. However, in Ireland, that number is 20%, and in Virginia, it’s 25%. That trend looks likely to continue, too: Half of data centers under development in the US are in preexisting clusters.

Data centers also tend to be closer to urban areas than other energy-intensive facilities like factories and mines. 

Since data centers are close both to each other and to communities, they could have significant impacts on the regions where they’re situated, whether by bringing on more fossil fuels close to urban centers or by adding strain to the local grid. Or both.

Overall, AI and data centers more broadly are going to be a major driving force for electricity demand. It’s not the whole story, but it’s a unique part of our energy picture to continue watching moving forward. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

How creativity became the reigning value of our time

Americans don’t agree on much these days. Yet even at a time when consensus reality seems to be on the verge of collapse, there remains at least one quintessentially modern value we can all still get behind: creativity. 

We teach it, measure it, envy it, cultivate it, and endlessly worry about its death. And why wouldn’t we? Most of us are taught from a young age that creativity is the key to everything from finding personal fulfillment to achieving career success to solving the world’s thorniest problems. Over the years, we’ve built creative industries, creative spaces, and creative cities and populated them with an entire class of people known simply as “creatives.” We read thousands of books and articles each year that teach us how to unleash, unlock, foster, boost, and hack our own personal creativity. Then we read even more to learn how to manage and protect this precious resource. 

Given how much we obsess over it, the concept of creativity can feel like something that has always existed, a thing philosophers and artists have pondered and debated throughout the ages. While it’s a reasonable assumption, it’s one that turns out to be very wrong. As Samuel Franklin explains in his recent book, The Cult of Creativity, the first known written use of creativity didn’t actually occur until 1875, “making it an infant as far as words go.” What’s more, he writes, before about 1950, “there were approximately zero articles, books, essays, treatises, odes, classes, encyclopedia entries, or anything of the sort dealing explicitly with the subject of ‘creativity.’”

This raises some obvious questions. How exactly did we go from never talking about creativity to always talking about it? What, if anything, distinguishes creativity from other, older words, like ingenuity, cleverness, imagination, and artistry? Maybe most important: How did everyone from kindergarten teachers to mayors, CEOs, designers, engineers, activists, and starving artists come to believe that creativity isn’t just good—personally, socially, economically—but the answer to all life’s problems?

Thankfully, Franklin offers some potential answers in his book. A historian and design researcher at the Delft University of Technology in the Netherlands, he argues that the concept of creativity as we now know it emerged during the post–World War II era in America as a kind of cultural salve—a way to ease the tensions and anxieties caused by increasing conformity, bureaucracy, and suburbanization.

“Typically defined as a kind of trait or process vaguely associated with artists and geniuses but theoretically possessed by anyone and applicable to any field, [creativity] provided a way to unleash individualism within order,” he writes, “and revive the spirit of the lone inventor within the maze of the modern corporation.”

Brainstorming, a new method for encouraging creative thinking, swept corporate America in the 1950s. A response to pressure for new products and new ways of marketing them, as well as a panic over conformity, it inspired passionate debate about whether true creativity should be an individual affair or could be systematized for corporate use.
INSTITUTE OF PERSONALITY AND SOCIAL RESEARCH, UNIVERSITY OF CALIFORNIA, BERKELEY/THE MONACELLI PRESS

I spoke to Franklin about why we continue to be so fascinated by creativity, how Silicon Valley became the supposed epicenter of it, and what role, if any, technologies like AI might have in reshaping our relationship with it. 

I’m curious what your personal relationship to creativity was growing up. What made you want to write a book about it?

Like a lot of kids, I grew up thinking that creativity was this inherently good thing. For me—and I imagine for a lot of other people who, like me, weren’t particularly athletic or good at math and science—being creative meant you at least had some future in this world, even if it wasn’t clear what that future would entail. By the time I got into college and beyond, the conventional wisdom among the TED Talk register of thinkers—people like Daniel Pink and Richard Florida—was that creativity was actually the most important trait to have for the future. Basically, the creative people were going to inherit the Earth, and society desperately needed them if we were going to solve all of these compounding problems in the world. 

On the one hand, as someone who liked to think of himself as creative, it was hard not to be flattered by this. On the other hand, it all seemed overhyped to me. What was being sold as the triumph of the creative class wasn’t actually resulting in a more inclusive or creative world order. What’s more, some of the values embedded in what I call the cult of creativity seemed increasingly problematic—specifically, the focus on self-­realization, doing what you love, and following your passion. Don’t get me wrong—it’s a beautiful vision, and I saw it work out for some people. But I also started to feel like it was just a cover for what was, economically speaking, a pretty bad turn of events for many people.  

Staff members at the University of California’s Institute of Personality Assessment and Research simulate a situational procedure involving group interaction, called the Bingo Test. Researchers of the 1950s hoped to learn how factors in people’s lives and environments shaped their creative aptitude.
INSTITUTE OF PERSONALITY AND SOCIAL RESEARCH, UNIVERSITY OF CALIFORNIA, BERKELEY/THE MONACELLI PRESS

Nowadays, it’s quite common to bash the “follow your passion,” “hustle culture” idea. But back when I started this project, the whole move-fast-and-break-things, disrupter, innovation-economy stuff was very much unquestioned. In a way, the idea for the book came from recognizing that creativity was playing this really interesting role in connecting two worlds: this world of innovation and entrepreneurship and this more soulful, bohemian side of our culture. I wanted to better understand the history of that relationship.

When did you start thinking about creativity as a kind of cultone that we’re all a part of? 

Similar to something like the “cult of domesticity,” it was a way of describing a historical moment in which an idea or value system achieves a kind of broad, uncritical acceptance. I was finding that everyone was selling stuff based on the idea that it boosted your creativity, whether it was a new office layout, a new kind of urban design, or the “Try these five simple tricks” type of thing. 

You start to realize that nobody is bothering to ask, “Hey, uh, why do we all need to be creative again? What even is this thing, creativity?” It had become this unimpeachable value that no one, regardless of what side of the political spectrum they fell on, would even think to question. That, to me, was really unusual, and I think it signaled that something interesting was happening.

Your book highlights midcentury efforts by psychologists to turn creativity into a quantifiable mental trait and the “creative person” into an identifiable type. How did that play out? 

The short answer is: not very well. To study anything, you of course need to agree on what it is you’re looking at. Ultimately, I think these groups of psychologists were frustrated in their attempts to come up with scientific criteria that defined a creative person. One technique was to go find people who were already eminent in fields that were deemed creative—writers like Truman Capote and Norman Mailer, architects like Louis Kahn and Eero Saarinen—and just give them a battery of cognitive and psychoanalytic tests and then write up the results. This was mostly done by an outfit called the Institute of Personality Assessment and Research (IPAR) at Berkeley. Frank Barron and Don MacKinnon were the two biggest researchers in that group.

Another way psychologists went about it was to say, all right, that’s not going to be practical for coming up with a good scientific standard. We need numbers, and lots and lots of people to certify these creative criteria. This group of psychologists theorized that something called “divergent thinking” was a major component of creative accomplishment. You’ve heard of the brick test, where you’re asked to come up with many creative uses for a brick in a given amount of time? They basically gave a version of that test to Army officers, schoolchildren, rank-and-file engineers at General Electric, all kinds of people. It’s tests like those that ultimately became stand-ins for what it means to be “creative.”

Are they still used? 

When you see a headline about AI making people more creative, or actually being more creative than humans, the tests they are basing that assertion on are almost always some version of a divergent thinking test. It’s highly problematic for a number of reasons. Chief among them is the fact that these tests have never been shown to have predictive value—that’s to say, a third grader, a 21-year-old, or a 35-year-old who does really well on divergent thinking tests doesn’t seem to have any greater likelihood of being successful in creative pursuits. The whole point of developing these tests in the first place was to both identify and predict creative people. None of them have been shown to do that. 

Reading your book, I was struck by how vague and, at times, contradictory the concept of “creativity” was from the beginning. You characterize that as “a feature, not a bug.” How so?

Ask any creativity expert today what they mean by “creativity,” and they’ll tell you it’s the ability to generate something new and useful. That something could be an idea, a product, an academic paper—whatever. But the focus on novelty has remained an aspect of creativity from the beginning. It’s also what distinguishes it from other similar words, like imagination or cleverness. But you’re right: Creativity is a flexible enough concept to be used in all sorts of ways and to mean all sorts of things, many of them contradictory. I think I write in the book that the term may not be precise, but that it’s vague in precise and meaningful ways. It can be both playful and practical, artsy and technological, exceptional and pedestrian. That was and remains a big part of its appeal. 

The question of “Can machines be ‘truly creative’?” is not that interesting, but the questions of “Can they be wise, honest, caring?” are more important if we’re going to be welcoming [AI] into our lives as advisors and assistants.

Is that emphasis on novelty and utility a part of why Silicon Valley likes to think of itself as the new nexus for creativity?

Absolutely. The two criteria go together. In techno-solutionist, hypercapitalist milieus like Silicon Valley, novelty isn’t any good if it’s not useful (or at least marketable), and utility isn’t any good (or marketable) unless it’s also novel. That’s why they’re often dismissive of boring-but-important things like craft, infrastructure, maintenance, and incremental improvement, and why they support art—which is traditionally defined by its resistance to utility—only insofar as it’s useful as inspiration for practical technologies.

At the same time, Silicon Valley loves to wrap itself in “creativity” because of all the artsy and individualist connotations. It has very self-consciously tried to distance itself from the image of the buttoned-down engineer working for a large R&D lab of a brick-and-mortar manufacturing corporation and instead raise up the idea of a rebellious counterculture type tinkering in a garage making weightless products and experiences. That, I think, has saved it from a lot of public scrutiny.

Up until recently, we’ve tended to think of creativity as a human trait, maybe with a few exceptions from the rest of the animal world. Is AI changing that?

When people started defining creativity in the ’50s, the threat of computers automating white-collar work was already underway. They were basically saying, okay, rational and analytical thinking is no longer ours alone. What can we do that the computers can never do? And the assumption was that humans alone could be “truly creative.” For a long time, computers didn’t do much to really press the issue on what that actually meant. Now they’re pressing the issue. Can they do art and poetry? Yes. Can they generate novel products that also make sense or work? Sure.

I think that’s by design. The kinds of LLMs that Silicon Valley companies have put forward are meant to appear “creative” in those conventional senses. Now, whether or not their products are meaningful or wise in a deeper sense, that’s another question. If we’re talking about art, I happen to think embodiment is an important element. Nerve endings, hormones, social instincts, morality, intellectual honesty—those are not things essential to “creativity” necessarily, but they are essential to putting things out into the world that are good, and maybe even beautiful in a certain antiquated sense. That’s why I think the question of “Can machines be ‘truly creative’?” is not that interesting, but the questions of “Can they be wise, honest, caring?” are more important if we’re going to be welcoming them into our lives as advisors and assistants. 

This interview is based on two conversations and has been edited and condensed for clarity.

Bryan Gardiner is a writer based in Oakland, California.

Longevity clinics around the world are selling unproven treatments

The quest for long, healthy life—and even immortality—is probably almost as old as humans are, but it’s never been hotter than it is right now. Today my newsfeed is full of claims about diets, exercise routines, and supplements that will help me live longer.

A lot of it is marketing fluff, of course. It should be fairly obvious that a healthy, plant-rich diet and moderate exercise will help keep you in good shape. And no drugs or supplements have yet been proved to extend human lifespan.

The growing field of longevity medicine is apparently aiming for something in between these two ends of the wellness spectrum. By combining the established tools of clinical medicine (think blood tests and scans) with some more experimental ones (tests that measure your biological age), these clinics promise to help their clients improve their health and longevity.

But a survey of longevity clinics around the world, carried out by an organization that publishes updates and research on the industry, is revealing a messier picture. In reality, these clinics—most of which cater only to the very wealthy—vary wildly in their offerings.

Today, the number of longevity clinics is thought to be somewhere in the hundreds. The proponents of these clinics say they represent the future of medicine. “We can write new rules on how we treat patients,” Eric Verdin, who directs the Buck Institute for Research on Aging, said at a professional meeting last year.

Phil Newman, who runs Longevity.Technology, a company that tracks the longevity industry, says he knows of 320 longevity clinics operating around the world. Some operate multiple centers on an international scale, while others involve a single “practitioner” incorporating some element of “longevity” into the treatments offered, he says. To get a better idea of what these offerings might be, Newman and his colleagues conducted a survey of 82 clinics around the world, including the US, Australia, Brazil, and multiple countries in Europe and Asia.

Some of the results are not all that surprising. Three-quarters of the clinics said that most of their clients were Gen Xers, aged between 44 and 59. This makes sense—anecdotally, it’s around this age that many people start to feel the effects of aging. And research suggests that waves of molecular changes associated with aging hit us in our 40s and again in our 60s. (Longevity influencers Bryan Johnson, Andrew Huberman, and Peter Attia all fall into this age group too.)

And I wasn’t surprised to see that plenty of clinics are offering aesthetic treatments, focusing more on how old their clients look. Of the clinics surveyed, 28% said they offered Botox injections, 35% offered hair loss treatments, and 38% offered “facial rejuvenation procedures.”  “The distinction between longevity medicine and aesthetic medicine remains blurred,” Andrea Maier of the National University of Singapore, and cofounder of a private longevity clinic, wrote in a commentary on the report.

Maier is also former president of the Healthy Longevity Medicine Society, an organization that was set up with the aim of establishing clinical standards and credibility for longevity clinics. Other results from the survey underline how much of a challenge this will be; many clinics are still offering unproven treatments. Over a third of the clinics said they offered stem-cell treatments, for example. There is no evidence that those treatments will help people live longer—and they are not without risk, either.

I was a little surprised to see that most of the clinics are also offering prescription medicines off label. In other words, drugs that have been approved for specific medical issues are apparently being prescribed for aging instead. This is also not without risks—all medicines have side effects. And, again, none of them have been proved to slow or reverse human aging.

And these prescriptions are coming from certified medical doctors. More than 80% of clinics reported that their practice was overseen by a medical doctor with more than 10 years of clinical experience.

It was also a little surprising to learn that despite their high fees, most of these clinics are not making a profit. For clients, the annual costs of attending a longevity clinic range between $10,000 and $150,000, according to Fountain Life, a company with clinics in Florida and Prague. But only 39% of the surveyed clinics said they were turning a profit and 30% said they were “approaching breaking even,” while 16% said they were operating at a loss.

Proponents of longevity clinics have high hopes for the field. They see longevity medicine as nothing short of a revolution—a move away from reactive treatments and toward proactive health maintenance. But these survey results show just how far they have to go.

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

The world’s biggest space-based radar will measure Earth’s forests from orbit

Forests are the second-largest carbon sink on the planet, after the oceans. To understand exactly how much carbon they trap, the European Space Agency and Airbus have built a satellite called Biomass that will use a long-prohibited band of the radio spectrum to see below the treetops around the world. It will lift off from French Guiana toward the end of April and will boast the largest space-based radar in history, though it will soon be tied in orbit by the US-India NISAR imaging satellite, due to launch later this year.

Roughly half of a tree’s dry mass is made of carbon, so getting a good measure of how much a forest weighs can tell you how much carbon dioxide it’s taken from the atmosphere. But scientists have no way of measuring that mass directly. 

“To measure biomass, you need to cut the tree down and weigh it, which is why we use indirect measuring systems,” says Klaus Scipal, manager of the Biomass mission. 

These indirect systems rely on a combination of field sampling—foresters roaming among the trees to measure their height and diameter—and remote sensing technologies like lidar scanners, which can be flown over the forests on airplanes or drones and used to measure treetop height along lines of flight. This approach has worked well in North America and Europe, which have well-established forest management systems in place. “People know every tree there, take lots of measurements,” Scipal says. 

But most of the world’s trees are in less-mapped places, like the Amazon jungle, where less than 20% of the forest has been studied in depth on the ground. To get a sense of the biomass in those remote, mostly inaccessible areas, space-based forest sensing is the only feasible option. The problem is, the satellites we currently have in orbit are not equipped for monitoring trees. 

Tropical forests seen from space look like green plush carpets, because all we can see are the treetops; from imagery like this, we can’t tell how high or thick the trees are. Radars we have on satellites like Sentinel 1 use short radio wavelengths like those in the C band, which fall between 3.9 and 7.5 centimeters. These bounce off the leaves and smaller branches and can’t penetrate the forest all the way to the ground. 

This is why for the Biomass mission ESA went with P-band radar. P-band radio waves, which are about 10 times longer in wavelength, can see bigger branches and the trunks of trees, where most of their mass is stored. But fitting a P-band radar system on a satellite isn’t easy. The first problem is the size. 

“Radar systems scale with wavelengths—the longer the wavelength, the bigger your antennas need to be. You need bigger structures,” says Scipal. To enable it to carry the P-band radar, Airbus engineers had to make the Biomass satellite two meters wide, two meters thick, and four meters tall. The antenna for the radar is 12 meters in diameter. It sits on a long, multi-joint boom, and Airbus engineers had to fold it like a giant umbrella to fit it into the Vega C rocket that will lift it into orbit. The unfolding procedure alone is going to take several days once the satellite gets to space. 

Sheer size, though, is just one reason we have generally avoided sending P-band radars to space. Operating such radar systems in space is banned by International Telecommunication Union regulations, and for a good reason: interference. 

workers moving the BIOMASS satellite in a clean space
Workers roll the BIOMASS satellite out into a cleanroom to be inspected before the launch
ESA-CNES-ARIANESPACE/OPTIQUE VIDéO DU CSG–S. MARTIN

“The primary frequency allocation in P band is for huge SOTR [single-object-tracking radars] Americans use to detect incoming intercontinental ballistic missiles. That was, of course, a problem for us,” Scipal says. To get an exemption from the ban on space-based P-band radars, ESA had to agree to several limitations, the most painful of which was turning the Biomass radar off over North America and Europe to avoid interfering with SOTR coverage.

“This was a pity. It’s a European mission, so we wanted to do observations in Europe,” Scipal says. The rest of the world, though, is fair game.

The Biomass mission is scheduled to last five years. Calibration of the radar and other systems is going to take the first five months. After that, Biomass will enter its tomography phase, gathering data to create detailed biomass maps of the forests in India, Australia, Siberia, South America, Africa—everywhere but North America and Europe. “Tomography will work like a CT scan in a hospital. We will take images of each area from various different positions and create the 3D map of the forests,” Scipal says. 

Getting full, global coverage is expected to take 18 months. Then, for the rest of the mission, Biomass will switch to a different measurement method, capturing one full global map every nine months to measure how the condition of our forests changes over time. 

“The scientific goal here is to really understand the role of forests in the global carbon cycle. The main interest is the tropics because it’s the densest forest which is under the biggest threat of deforestation and the one we know the least about,” Scipal says.

Biomass is going to provide hectare-scale-resolution 3D maps of those tropical forests, including everything from the tree heights to ground topography—something we’ve never had before. But there are limits to what it can do. 

“One drawback is that we won’t get insights into seasonal deviations in forest throughout the year because of the time it takes for Biomass to do global coverage,” says Irena Hajnsek, a professor of Earth observation at ETH Zurich, who is not involved in the Biomass mission. And Biomass is still going to leave some of our questions about carbon sinks unanswered.

“In all our estimations of climate change, we know how much carbon is in the atmosphere, but we do not know so much about how much carbon is stored on land,” says Hajnsek. Biomass will have its limits, she says, since significant amounts of carbon are trapped in the soil in permafrost areas, which the mission won’t be able to measure.

“But we’re going to learn how much carbon is stored in the forests and also how much of it is getting released due to disturbances like deforestation or fires,” she says. “And that is going to be a huge contribution.”