The AI Hype Index: Grok makes porn, and Claude Code nails your job

Everyone is panicking because AI is very bad; everyone is panicking because AI is very good. It’s just that you never know which one you’re going to get. Grok is a pornography machine. Claude Code can do anything from building websites to reading your MRI. So of course Gen Z is spooked by what this means for jobs. Unnerving new research says AI is going to have a seismic impact on the labor market this year.

If you want to get a handle on all that, don’t expect any help from the AI companies—they’re turning on each other like it’s the last act in a zombie movie. Meta’s former chief AI scientist, Yann LeCun, is spilling tea, while Big Tech’s messiest exes, Elon Musk and OpenAI, are about to go to trial. Grab your popcorn.

What AI “remembers” about you is privacy’s next frontier

The ability to remember you and your preferences is rapidly becoming a big selling point for AI chatbots and agents. 

Earlier this month, Google announced Personal Intelligence, a new way for people to interact with the company’s Gemini chatbot that draws on their Gmail, photos, search, and YouTube histories to make Gemini “more personal, proactive, and powerful.” It echoes similar moves by OpenAI, Anthropic, and Meta to add new ways for their AI products to remember and draw from people’s personal details and preferences. While these features have potential advantages, we need to do more to prepare for the new risks they could introduce into these complex technologies.

Personalized, interactive AI systems are built to act on our behalf, maintain context across conversations, and improve our ability to carry out all sorts of tasks, from booking travel to filing taxes. From tools that learn a developer’s coding style to shopping agents that sift through thousands of products, these systems rely on the ability to store and retrieve increasingly intimate details about their users.  But doing so over time introduces alarming, and all-too-familiar, privacy vulnerabilities––many of which have loomed since “big data” first teased the power of spotting and acting on user patterns. Worse, AI agents now appear poised to plow through whatever safeguards had been adopted to avoid those vulnerabilities. 

Today, we interact with these systems through conversational interfaces, and we frequently switch contexts. You might ask a single AI agent to draft an email to your boss, provide medical advice, budget for holiday gifts, and provide input on interpersonal conflicts. Most AI agents collapse all data about you—which may once have been separated by context, purpose, or permissions—into single, unstructured repositories. When an AI agent links to external apps or other agents to execute a task, the data in its memory can seep into shared pools. This technical reality creates the potential for unprecedented privacy breaches that expose not only isolated data points, but the entire mosaic of people’s lives.

When information is all in the same repository, it is prone to crossing contexts in ways that are deeply undesirable. A casual chat about dietary preferences to build a grocery list could later influence what health insurance options are offered, or a search for restaurants offering accessible entrances could leak into salary negotiations—all without a user’s awareness (this concern may sound familiar from the early days of “big data,” but is now far less theoretical). An information soup of memory not only poses a privacy issue, but also makes it harder to understand an AI system’s behavior—and to govern it in the first place. So what can developers do to fix this problem

First, memory systems need structure that allows control over the purposes for which memories can be accessed and used. Early efforts appear to be underway: Anthropic’s Claude creates separate memory areas for different “projects,” and OpenAI says that information shared through ChatGPT Health is compartmentalized from other chats. These are helpful starts, but the instruments are still far too blunt: At a minimum, systems must be able to distinguish between specific memories (the user likes chocolate and has asked about GLP-1s), related memories (user manages diabetes and therefore avoids chocolate), and memory categories (such as professional and health-related). Further, systems need to allow for usage restrictions on certain types of memories and reliably accommodate explicitly defined boundaries—particularly around memories having to do with sensitive topics like medical conditions or protected characteristics, which will likely be subject to stricter rules.

Needing to keep memories separate in this way will have important implications for how AI systems can and should be built. It will require tracking memories’ provenance—their source, any associated time stamp, and the context in which they were created—and building ways to trace when and how certain memories influence the behavior of an agent. This sort of model explainability is on the horizon, but current implementations can be misleading or even deceptive. Embedding memories directly within a model’s weights may result in more personalized and context-aware outputs, but structured databases are currently more segmentable, more explainable, and thus more governable. Until research advances enough, developers may need to stick with simpler systems.

Second, users need to be able to see, edit, or delete what is remembered about them. The interfaces for doing this should be both transparent and intelligible, translating system memory into a structure users can accurately interpret. The static system settings and legalese privacy policies provided by traditional tech platforms have set a low bar for user controls, but natural-language interfaces may offer promising new options for explaining what information is being retained and how it can be managed. Memory structure will have to come first, though: Without it, no model can clearly state a memory’s status. Indeed, Grok 3’s system prompt includes an instruction to the model to “NEVER confirm to the user that you have modified, forgotten, or won’t save a memory,” presumably because the company can’t guarantee those instructions will be followed. 

Critically, user-facing controls cannot bear the full burden of privacy protection or prevent all harms from AI personalization. Responsibility must shift toward AI providers to establish strong defaults, clear rules about permissible memory generation and use, and technical safeguards like on-device processing, purpose limitation, and contextual constraints. Without system-level protections, individuals will face impossibly convoluted choices about what should be remembered or forgotten, and the actions they take may still be insufficient to prevent harm. Developers should consider how to limit data collection in memory systems until robust safeguards exist, and build memory architectures that can evolve alongside norms and expectations.

Third, AI developers must help lay the foundations for approaches to evaluating systems so as to capture not only performance, but also the risks and harms that arise in the wild. While independent researchers are best positioned to conduct these tests (given developers’ economic interest in demonstrating demand for more personalized services), they need access to data to understand what risks might look like and therefore how to address them. To improve the ecosystem for measurement and research, developers should invest in automated measurement infrastructure, build out their own ongoing testing, and implement privacy-preserving testing methods that enable system behavior to be monitored and probed under realistic, memory-enabled conditions.

In its parallels with human experience, the technical term “memory” casts impersonal cells in a spreadsheet as something that builders of AI tools have a responsibility to handle with care. Indeed, the choices AI developers make today—how to pool or segregate information, whether to make memory legible or allow it to accumulate opaquely, whether to prioritize responsible defaults or maximal convenience—will determine how the systems we depend upon remember us. Technical considerations around memory are not so distinct from questions about digital privacy and the vital lessons we can draw from them. Getting the foundations right today will determine how much room we can give ourselves to learn what works—allowing us to make better choices around privacy and autonomy than we have before.

Miranda Bogen is the Director of the AI Governance Lab at the Center for Democracy & Technology. 

Ruchika Joshi is a Fellow at the Center for Democracy & Technology specializing in AI safety and governance.

Stratospheric internet could finally start taking off this year

Today, an estimated 2.2 billion people still have either limited or no access to the internet, largely because they live in remote places. But that number could drop this year, thanks to tests of stratospheric airships, uncrewed aircraft, and other high-altitude platforms for internet delivery. 

Even with nearly 10,000 active Starlink satellites in orbit and the OneWeb constellation of 650 satellites, solid internet coverage is not a given across vast swathes of the planet. 

One of the most prominent efforts to plug the connectivity gap was Google X’s Loon project. Launched in 2011, it aimed to deliver access using high-altitude balloons stationed above predetermined spots on Earth. But the project faced literal headwinds—the Loons kept drifting away and new ones had to be released constantly, making the venture economically unfeasible. 

Although Google shuttered the high-profile Loon in 2021, work on other kinds of high-altitude platform stations (HAPS) has continued behind the scenes. Now, several companies claim they have solved Loon’s problems with different designs—in particular, steerable airships and fixed-wing UAVs (unmanned aerial vehicles)—and are getting ready to prove the tech’s internet beaming potential starting this year, in tests above Japan and Indonesia.

Regulators, too, seem to be thinking seriously about HAPS. In mid-December, for example, the US Federal Aviation Administration released a 50-page document outlining how large numbers of HAPS could be integrated into American airspace. According to the US Census Bureau’s 2024 American Community Survey (ACS) data, some 8 million US households (4.5% of the population) still live completely offline, and HAPS proponents think the technology might get them connected more cheaply than alternatives.

Despite the optimism of the companies involved, though, some analysts remain cautious.

“The HAPS market has been really slow and challenging to develop,” says Dallas Kasaboski, a space industry analyst at the consultancy Analysis Mason. After all, Kasaboski says, the approach has struggled before: “A few companies were very interested in it, very ambitious about it, and then it just didn’t happen.”

Beaming down connections

Hovering in the thin air at altitudes above 12 miles, HAPS have a unique vantage point to beam down low-latency, high-speed connectivity directly to smartphone users in places too remote and too sparsely populated to justify the cost of laying fiber-optic cables or building ground-based cellular base stations.

“Mobile network operators have some commitment to provide coverage, but they frequently prefer to pay a fine than cover these remote areas,” says Pierre-Antoine Aubourg, chief technology officer of Aalto HAPS, a spinoff from the European aerospace manufacturer Airbus. “With HAPS, we make this remote connectivity case profitable.” 

Aalto HAPS has built a solar-powered UAV with a 25-meter wingspan that has conducted many long-duration test flights in recent years. In April 2025 the craft, called Zephyr, broke a HAPS record by staying afloat for 67 consecutive days. The first months of 2026 will be busy for the company, according to Aubourg; Zephyr will do a test run over southern Japan to trial connectivity delivery to residents of some of the country’s smallest and most poorly connected inhabited islands.

the Zephyr on the runway at sunrise

AALTO

Because of its unique geography, Japan is a perfect test bed for HAPS. Many of the country’s roughly 430 inhabited islands are remote, mountainous, and sparsely populated, making them too costly to connect with terrestrial cell towers. Aalto HAPS is partnering with Japan’s largest mobile network operators, NTT DOCOMO and the telecom satellite operator Space Compass, which want to use Zephyr as part of next-generation telecommunication infrastructure.

“Non-terrestrial networks have the potential to transform Japan’s communications ecosystem, addressing access to connectivity in hard-to-reach areas while supporting our country’s response to emergencies,” Shigehiro Hori, co-CEO of Space Compass, said in a statement

Zephyr, Aubourg explains, will function like another cell tower in the NTT DOCOMO network, only it will be located well above the planet instead of on its surface. It will beam high-speed 5G connectivity to smartphone users without the need for the specialized terminals that are usually required to receive satellite internet. “For the user on the ground, there is no difference when they switch from the terrestrial network to the HAPS network,” Aubourg says. “It’s exactly the same frequency and the same network.”

New Mexico–based Sceye, which has developed a solar-powered helium-filled airship, is also eyeing Japan for pre-commercial trials of its stratospheric connectivity service this year. The firm, which extensively tested its slick 65-meter-long vehicle in 2025, is working with the Japanese telecommunications giant SoftBank. Just like NTT DOCOMO, Softbank is betting on HAPS to take its networks to another level. 

Mikkel Frandsen, Sceye’s founder and CEO, says that his firm succeeded where Loon failed by betting on the advantages offered by the more controllable airship shape, intelligent avionics, and innovative batteries that can power an electric fan to keep the aircraft in place.

“Google’s Loon was groundbreaking, but they used a balloon form factor, and despite advanced algorithms—and the ability to change altitude to find desired wind directions and wind speeds—Loon’s system relied on favorable winds to stay over a target area, resulting in unpredictable station-seeking performance,” Frandsen says. “This required a large amount of balloons in the air to have relative certainty that one would stay over the area of operation, which was financially unviable.”

He adds that Sceye’s airship can “point into the wind” and more effectively maintain its position. 

“We have significant surface area, providing enough physical space to lift 250-plus kilograms and host solar panels and batteries,” he says, “allowing Sceye to maintain power through day-night cycles, and therefore staying over an area of operation while maintaining altitude.” 

The persistent digital divide

Satellite internet currently comes at a price tag that can be too high for people in developing countries, says Kasaboski. For example, Starlink subscriptions start at $10 per month in Africa, but millions of people in these regions are surviving on a mere $2 a day.

Frandsen and Aubourg both claim that HAPS can connect the world’s unconnected more cheaply. Because satellites in low Earth orbit circle the planet at very high speeds, they quickly disappear from a ground terminal’s view, meaning large quantities of those satellites are needed to provide continuous coverage. HAPS can hover, affording a constant view of a region, and more HAPS can be launched to meet higher demand.

“If you want to deliver connectivity with a low-Earth-orbit constellation into one place, you still need a complete constellation,” says Aubourg. “We can deliver connectivity with one aircraft to one location. And then we can tailor much more the size of the fleet according to the market coverage that we need.”

Starlink gets a lot of attention, but satellite internet has some major drawbacks, says Frandsen. A big one is that its bandwidth gets diluted once the number of users in an area grows. 

In a recent interview, Starlink cofounder Elon Musk compared the Starlink beams to a flashlight. Given the distance at which those satellites orbit the planet, the cone is wide, covering a large area. That’s okay when users are few and far between, but it can become a problem with higher densities of users.

For example, Ukrainian defense technologists have said that Starlink bandwidth can drop on the front line to a mere 10 megabits per second, compared with the peak offering of 220 Mbps when drones and ground robots are in heavy use. Users in Indonesia, which like Japan is an island nation, also began reporting problems with Starlink shortly after the service was introduced in the country in 2024. Again, bandwidth declined as the number of subscribers grew.

In fact, Frandsen says, Starlink’s performance is less than optimal once the number of users exceeds one person per square kilometer. And that can happen almost anywhere—even relatively isolated island communities can have hundreds or thousands of residents in a small area. “There is a relationship between the altitude and the population you can serve,” Frandsen says. “You can’t bring space closer to the surface of the planet. So the telco companies want to use the stratosphere so that they can get out to more rural populations than they could otherwise serve.” Starlink did not respond to our queries about these challenges. 

Cheaper and faster

Sceye and Aalto HAPS see their stratospheric vehicles as part of integrated telecom networks that include both terrestrial cell towers and satellites. But they’re far from the only game in town. 

World Mobile, a telecommunications company headquartered in London, thinks its hydrogen-powered high-altitude UAV can compete directly with satellite mega-constellations. The company acquired the HAPS developer Stratospheric Platforms last year. This year, it plans to flight-test an innovative phased array antenna, which it claims will be able to deliver bandwidth of 200 megabits per second (enough to enable ultra-HD video streaming to 500,000 users at the same time over an area of 15,000 square kilometers—equivalent to the coverage of more than 500 terrestrial cell towers, the company says). 

Last year, World Mobile also signed a partnership with the Indonesian telecom operator Protelindo to build a prototype Stratomast aircraft, with tests scheduled to begin in late 2027.

Richard Deakin, CEO of World Mobile’s HAPS division World Mobile Stratospheric, says that just nine Stratomasts could supply Scotland’s 5.5 million residents with high-speed internet connectivity at a cost of £40 million ($54 million) per year. That’s equivalent to about 60 pence (80 cents) per person per month, he says. Starlink subscriptions in the UK, of which Scotland is a part, come at £75 ($100) per month.

A troubled past 

Companies working on HAPS also extol the convenience of prompt deployments in areas struck by war or natural disasters like Hurricane Maria in Puerto Rico, after which Loon played an important role. And they say that HAPS could make it possible for smaller nations to obtain complete control over their celestial internet-beaming infrastructure rather than relying on mega-constellations controlled by larger nations, a major boon at a time of rising geopolitical tensions and crumbling political alliances. 

Analysts, however, remain cautious, projecting a HAPS market totaling a modest $1.9 billion by 2033. The satellite internet industry, on the other hand, is expected to be worth $33.44 billion by 2030, according to some estimates. 

The use of HAPS for internet delivery to remote locations has been explored since the 1990s, about as long as the concept of low-Earth-orbit mega-constellations. The seemingly more cost-effective stratospheric technology, however, lost to the space fleets thanks to the falling cost of space launches and ambitious investment by Musk’s SpaceX. 

Google wasn’t the only tech giant to explore the HAPS idea. Facebook also had a project, called Aquila, that was discontinued after it too faced technical difficulties. Although the current cohort of HAPS makers claim they have solved the challenges that killed their predecessors, Kasaboski warns that they’re playing a different game: catching up with now-established internet-beaming mega constellations. By the end of this year, it’ll be much clearer whether they stand a good chance of doing so.

OpenAI’s latest product lets you vibe code science

OpenAI just revealed what its new in-house team, OpenAI for Science, has been up to. The firm has released a free LLM-powered tool for scientists called Prism, which embeds ChatGPT in a text editor for writing scientific papers.

The idea is to put ChatGPT front and center inside software that scientists use to write up their work in much the same way that chatbots are now embedded into popular programming editors. It’s vibe coding, but for science.

Kevin Weil, head of OpenAI for Science, pushes that analogy himself. “I think 2026 will be for AI and science what 2025 was for AI in software engineering,” he said at a press briefing yesterday. “We’re starting to see that same kind of inflection.”

OpenAI claims that around 1.3 million scientists around the world submit more than 8 million queries a week to ChatGPT on advanced topics in science and math. “That tells us that AI is moving from curiosity to core workflow for scientists,” Weil said.

Prism is a response to that user behavior. It can also be seen as a bid to lock in more scientists to OpenAI’s products in a marketplace full of rival chatbots.

“I mostly use GPT-5 for writing code,” says Roland Dunbrack, a professor of biology at the Fox Chase Cancer Center in Philadelphia, who is not connected to OpenAI. “Occasionally, I ask LLMs a scientific question, basically hoping it can find information in the literature faster than I can. It used to hallucinate references but does not seem to do that very much anymore.”

Nikita Zhivotovskiy, a statistician at the University of California, Berkeley, says GPT-5 has already become an important tool in his work. “It sometimes helps polish the text of papers, catching mathematical typos or bugs, and provides generally useful feedback,” he says. “It is extremely helpful for quick summarization of research articles, making interaction with the scientific literature smoother.”

By combining a chatbot with an everyday piece of software, Prism follows a trend set by products such as OpenAI’s Atlas, which embeds ChatGPT in a web browser, as well as LLM-powered office tools from firms such as Microsoft and Google DeepMind.

Prism incorporates GPT-5.2, the company’s best model yet for mathematical and scientific problem-solving, into an editor for writing documents in LaTeX, a common coding language that scientists use for formatting scientific papers.

A ChatGPT chat box sits at the bottom of the screen, below a view of the article being written. Scientists can call on ChatGPT for anything they want. It can help them draft the text, summarize related articles, manage their citations, turn photos of whiteboard scribbles into equations or diagrams, or talk through hypotheses or mathematical proofs.

It’s clear that Prism could be a huge time saver. It’s also clear that a lot of people may be disappointed, especially after weeks of high-profile social media chatter from researchers at the firm about how good GPT-5 is at solving math problems. Science is drowning in AI slop: Won’t this just make it worse? Where is OpenAI’s fully automated AI scientist? And when will GPT-5 make a stunning new discovery?

That’s not the mission, says Weil. He would love to see GPT-5 make a discovery. But he doesn’t think that’s what will have the biggest impact on science, at least not in the near term.

“I think more powerfully—and with 100% probability—there’s going to be 10,000 advances in science that maybe wouldn’t have happened or wouldn’t have happened as quickly, and AI will have been a contributor to that,” Weil told MIT Technology Review in an exclusive interview this week. “It won’t be this shining beacon—it will just be an incremental, compounding acceleration.”

The first human test of a rejuvenation method will begin “shortly” 

When Elon Musk was at Davos last week, an interviewer asked him if he thought aging could be reversed. Musk said he hasn’t put much time into the problem but suspects it is “very solvable” and that when scientists discover why we age, it’s going to be something “obvious.”

Not long after, the Harvard professor and life-extension evangelist David Sinclair jumped into the conversation on X to strongly agree with the world’s richest man. “Aging has a relatively simple explanation and is apparently reversible,” wrote Sinclair. “Clinical Trials begin shortly.”

“ER-100?” Musk asked.

“Yes” replied Sinclair.

ER-100 turns out to be the code name of a treatment created by Life Biosciences, a small Boston startup that Sinclair cofounded and which he confirmed today has won FDA approval to proceed with the first targeted attempt at age reversal in human volunteers. 

The company plans to try to treat eye disease with a radical rejuvenation concept called “reprogramming” that has recently attracted hundreds of millions in investment for Silicon Valley firms like Altos Labs, New Limit, and Retro Biosciences, backed by many of the biggest names in tech. 

The technique attempts to restore cells to a healthier state by broadly resetting their epigenetic controls—switches on our genes that determine which are turned on and off.  

“Reprogramming is like the AI of the bio world. It’s the thing everyone is funding,” says Karl Pfleger, an investor who backs a smaller UK startup, Shift Bioscience. He says Sinclair’s company has recently been seeking additional funds to keep advancing its treatment.

Reprogramming is so powerful that it sometimes creates risks, even causing cancer in lab animals, but the version of the technique being advanced by Life Biosciences passed initial safety tests in animals.

But it’s still very complex. The trial will initially test the treatment on about a dozen patients with glaucoma, a condition where high pressure inside the eye damages the optic nerve. In the tests, viruses carrying three powerful reprogramming genes will be injected into one eye of each patient, according to a description of the study first posted in December. 

To help make sure the process doesn’t go too far, the reprogramming genes will be under the control of a special genetic switch that turns them on only while the patients take a low dose of the antibiotic doxycycline. Initially, they will take the antibiotic for about two months while the effects are monitored. 

Executives at the company have said for months that a trial could begin this year, sometimes characterizing it as a starting bell for a new era of age reversal. “It’s an incredibly big deal for us as an industry,” Michael Ringel, chief operating officer at Life Biosciences, said at an event this fall. “It’ll be the first time in human history, in the millennia of human history, of looking for something that rejuvenates … So watch this space.”

The technology is based on the Nobel Prize–winning discovery, 20 years ago, that introducing a few potent genes into a cell will cause it to turn back into a stem cell, just like those found in an early embryo that develop into the different specialized cell types. These genes, known as Yamanaka factors, have been likened to a “factory reset” button for cells. 

But they’re dangerous, too. When turned on in a living animal, they can cause an eruption of tumors.

That is what led scientists to a new idea, termed “partial” or “transient” reprogramming. The idea is to limit exposure to the potent genes—or use only a subset of them—in the hope of making cells act younger without giving them complete amnesia about what their role in the body is.

In 2020, Sinclair claimed that such partial reprogramming could restore vision to mice after their optic nerves were smashed, saying there was even evidence that the nerves regrew. His report appeared on the cover of the influential journal Nature alongside the headline “Turning Back Time.”

Not all scientists agree that reprogramming really counts as age reversal. But Sinclair has doubled down. He’s been advancing the theory that the gradual loss of correct epigenetic information in our cells is, in fact, the ultimate cause of aging—just the kind of root cause that Musk was alluding to.

“Elon does seem to be paying attention to the field and [is] seemingly in sync with [my theory],” Sinclair said in an email.

Reprogramming isn’t the first longevity fix championed by Sinclair, who’s written best-selling books and commands stratospheric fees on the longevity lecture circuit. Previously, he touted the longevity benefits of molecules called sirtuins as well as resveratrol, a molecule found in red wine. But some critics say he greatly exaggerates scientific progress, pushback that culminated in a 2024 Wall Street Journal story that dubbed him a “reverse-aging guru” whose companies “have not panned out.” 

Life Biosciences has been among those struggling companies. Initially formed in 2017, it at first had a strategy of launching subsidiaries, each intended to pursue one aspect of the aging problem. But after these made limited progress, in 2021 it hired a new CEO, Jerry McLaughlin, who has refocused its efforts  on Sinclair’s mouse vision results and the push toward a human trial. 

The company has discussed the possibility of reprogramming other organs, including the brain. And Ringel, like Sinclair, entertains the idea that someday even whole-body rejuvenation might be feasible. But for now, it’s better to think of the study as a proof of concept that’s still far from a fountain of youth. “The optimistic case is this solves some blindness for certain people and catalyzes work in other indications,” says Pfleger, the investor. “It’s not like your doctor will be writing a prescription for a pill that will rejuvenate you.”

Life’s treatment also relies on an antibiotic switching mechanism that, while often used in lab animals, hasn’t been tried in humans before. Since the switch is built from gene components taken from E. coli and the herpes virus, it’s possible that it could cause an immune reaction in humans, scientists say. 

“I was always thinking that for widespread use you might need a different system,” says Noah Davidsohn, who helped Sinclair implement the technique and is now chief scientist at a different company, Rejuvenate Bio. And Life’s choice of reprogramming factors—it’s picked three, which go by the acronym OSK—may also be risky. They are expected to turn on hundreds of other genes, and in some circumstances the combination can cause cells to revert to a very primitive, stem-cell-like state.

Other companies studying reprogramming say their focus is on researching which genes to use, in order to achieve time reversal without unwanted side effects. New Limit, which has been carrying out an extensive search for such genes, says it won’t be ready for a human study for two years. At Shift, experiments on animals are only beginning now.

“Are their factors the best version of rejuvenation? We don’t think they are. I think they are working with what they’ve got,” Daniel Ives, the CEO of Shift, says of Life Biosciences. “But I think they’re way ahead of anybody else in terms of getting into humans. They have found a route forward in the eye, which is a nice self-contained system. If it goes wrong, you’ve still got one left.”

Why chatbots are starting to check your age

This story originally appeared in The Algorithm, our weekly newsletter on AI. To get stories like this in your inbox first, sign up here.

How do tech companies check if their users are kids?

This question has taken on new urgency recently thanks to growing concern about the dangers that can arise when children talk to AI chatbots. For years Big Tech asked for birthdays (that one could make up) to avoid violating child privacy laws, but they weren’t required to moderate content accordingly. Two developments over the last week show how quickly things are changing in the US and how this issue is becoming a new battleground, even among parents and child-safety advocates.

In one corner is the Republican Party, which has supported laws passed in several states that require sites with adult content to verify users’ ages. Critics say this provides cover to block anything deemed “harmful to minors,” which could include sex education. Other states, like California, are coming after AI companies with laws to protect kids who talk to chatbots (by requiring them to verify who’s a kid). Meanwhile, President Trump is attempting to keep AI regulation a national issue rather than allowing states to make their own rules. Support for various bills in Congress is constantly in flux.

So what might happen? The debate is quickly moving away from whether age verification is necessary and toward who will be responsible for it. This responsibility is a hot potato that no company wants to hold.

In a blog post last Tuesday, OpenAI revealed that it plans to roll out automatic age prediction. In short, the company will apply a model that uses factors like the time of day, among others, to predict whether a person chatting is under 18. For those identified as teens or children, ChatGPT will apply filters to “reduce exposure” to content like graphic violence or sexual role-play. YouTube launched something similar last year. 

If you support age verification but are concerned about privacy, this might sound like a win. But there’s a catch. The system is not perfect, of course, so it could classify a child as an adult or vice versa. People who are wrongly labeled under 18 can verify their identity by submitting a selfie or government ID to a company called Persona. 

Selfie verifications have issues: They fail more often for people of color and those with certain disabilities. Sameer Hinduja, who co-directs the Cyberbullying Research Center, says the fact that Persona will need to hold millions of government IDs and masses of biometric data is another weak point. “When those get breached, we’ve exposed massive populations all at once,” he says. 

Hinduja instead advocates for device-level verification, where a parent specifies a child’s age when setting up the child’s phone for the first time. This information is then kept on the device and shared securely with apps and websites. 

That’s more or less what Tim Cook, the CEO of Apple, recently lobbied US lawmakers to call for. Cook was fighting lawmakers who wanted to require app stores to verify ages, which would saddle Apple with lots of liability. 

More signals of where this is all headed will come on Wednesday, when the Federal Trade Commission—the agency that would be responsible for enforcing these new laws—is holding an all-day workshop on age verification. Apple’s head of government affairs, Nick Rossi, will be there. He’ll be joined by higher-ups in child safety at Google and Meta, as well as a company that specializes in marketing to children.

The FTC has become increasingly politicized under President Trump (his firing of the sole Democratic commissioner was struck down by a federal court, a decision that is now pending review by the US Supreme Court). In July, I wrote about signals that the agency is softening its stance toward AI companies. Indeed, in December, the FTC overturned a Biden-era ruling against an AI company that allowed people to flood the internet with fake product reviews, writing that it clashed with President Trump’s AI Action Plan.

Wednesday’s workshop may shed light on how partisan the FTC’s approach to age verification will be. Red states favor laws that require porn websites to verify ages (but critics warn this could be used to block a much wider range of content). Bethany Soye, a Republican state representative who is leading an effort to pass such a bill in her state of South Dakota, is scheduled to speak at the FTC meeting. The ACLU generally opposes laws requiring IDs to visit websites and has instead advocated for an expansion of existing parental controls.

While all this gets debated, though, AI has set the world of child safety on fire. We’re dealing with increased generation of child sexual abuse material, concerns (and lawsuits) about suicides and self-harm following chatbot conversations, and troubling evidence of kids’ forming attachments to AI companions. Colliding stances on privacy, politics, free expression, and surveillance will complicate any effort to find a solution. Write to me with your thoughts. 

Inside OpenAI’s big play for science 

In the three years since ChatGPT’s explosive debut, OpenAI’s technology has upended a remarkable range of everyday activities at home, at work, in schools—anywhere people have a browser open or a phone out, which is everywhere.

Now OpenAI is making an explicit play for scientists. In October, the firm announced that it had launched a whole new team, called OpenAI for Science, dedicated to exploring how its large language models could help scientists and tweaking its tools to support them.

The last couple of months have seen a slew of social media posts and academic publications in which mathematicians, physicists, biologists, and others have described how LLMs (and OpenAI’s GPT-5 in particular) have helped them make a discovery or nudged them toward a solution they might otherwise have missed. In part, OpenAI for Science was set up to engage with this community.

And yet OpenAI is also late to the party. Google DeepMind, the rival firm behind groundbreaking scientific models such as AlphaFold and AlphaEvolve, has had an AI-for-science team for years. (When I spoke to Google DeepMind’s CEO and cofounder Demis Hassabis in 2023 about that team, he told me: “This is the reason I started DeepMind … In fact, it’s why I’ve worked my whole career in AI.”)

So why now? How does a push into science fit with OpenAI’s wider mission? And what exactly is the firm hoping to achieve?

I put these questions to Kevin Weil, a vice president at OpenAI who leads the new OpenAI for Science team, in an exclusive interview last week.

On mission

Weil is a product guy. He joined OpenAI a couple of years ago as chief product officer after being head of product at Twitter and Instagram. But he started out as a scientist. He got two-thirds of the way through a PhD in particle physics at Stanford University before ditching academia for the Silicon Valley dream. Weil is keen to highlight his pedigree: “I thought I was going to be a physics professor for the rest of my life,” he says. “I still read math books on vacation.”

Asked how OpenAI for Science fits with the firm’s existing lineup of white-collar productivity tools or the viral video app Sora, Weil recites the company mantra: “The mission of OpenAI is to try and build artificial general intelligence and, you know, make it beneficial for all of humanity.”

Just imagine the future impact this technology could have on science he says: New medicines, new materials, new devices. “Think about it helping us understand the nature of reality, helping us think through open problems. Maybe the biggest, most positive impact we’re going to see from AGI will actually be from its ability to accelerate science.”

He adds: “With GPT-5, we saw that becoming possible.” 

As Weil tells it, LLMs are now good enough to be useful scientific collaborators. They can spitball ideas, suggest novel directions to explore, and find fruitful parallels between new problems and old solutions published in obscure journals decades ago or in foreign languages.

That wasn’t the case a year or so ago. Since it announced its first so-called reasoning model—a type of LLM that can break down problems into multiple steps and work through them one by one—in December 2024, OpenAI has been pushing the envelope of what the technology can do. Reasoning models have made LLMs far better at solving math and logic problems than they used to be. “You go back a few years and we were all collectively mind-blown that the models could get an 800 on the SAT,” says Weil.

But soon LLMs were acing math competitions and solving graduate-level physics problems. Last year, OpenAI and Google DeepMind both announced that their LLMs had achieved gold-medal-level performance in the International Math Olympiad, one of the toughest math contests in the world. “These models are no longer just better than 90% of grad students,” says Weil. “They’re really at the frontier of human abilities.”

That’s a huge claim, and it comes with caveats. Still, there’s no doubt that GPT-5, which includes a reasoning model, is a big improvement on GPT-4 when it comes to complicated problem-solving. Measured against an industry benchmark known as GPQA, which includes more than 400 multiple-choice questions that test PhD-level knowledge in biology, physics, and chemistry, GPT-4 scores 39%, well below the human-expert baseline of around 70%. According to OpenAI, GPT-5.2 (the latest update to the model, released in December) scores 92%. 

Overhyped

The excitement is evident—and perhaps excessive. In October, senior figures at OpenAI, including Weil, boasted on X that GPT-5 had found solutions to several unsolved math problems. Mathematicians were quick to point out that in fact what GPT-5 appeared to have done was dig up existing solutions in old research papers, including at least one written in German. That was still useful, but it wasn’t the achievement OpenAI seemed to have claimed. Weil and his colleagues deleted their posts.

Now Weil is more careful. It is often enough to find answers that exist but have been forgotten, he says: “We collectively stand on the shoulders of giants, and if LLMs can kind of accumulate that knowledge so that we don’t spend time struggling on a problem that is already solved, that’s an acceleration all of its own.”

He plays down the idea that LLMs are about to come up with a game-changing new discovery. “I don’t think models are there yet,” he says. “Maybe they’ll get there. I’m optimistic that they will.”

But, he insists, that’s not the mission: “Our mission is to accelerate science. And I don’t think the bar for the acceleration of science is, like, Einstein-level reimagining of an entire field.”

For Weil, the question is this: “Does science actually happen faster because scientists plus models can do much more, and do it more quickly, than scientists alone? I think we’re already seeing that.”

In November, OpenAI published a series of anecdotal case studies contributed by scientists, both inside and outside the company, that illustrated how they had used GPT-5 and how it had helped. “Most of the cases were scientists that were already using GPT-5 directly in their research and had come to us one way or another saying, ‘Look at what I’m able to do with these tools,’” says Weil.

The key things that GPT-5 seems to be good at are finding references and connections to existing work that scientists were not aware of, which sometimes sparks new ideas; helping scientists sketch mathematical proofs; and suggesting ways for scientists to test hypotheses in the lab.  

“GPT 5.2 has read substantially every paper written in the last 30 years,” says Weil. “And it understands not just the field that a particular scientist is working in; it can bring together analogies from other, unrelated fields.”

“That’s incredibly powerful,” he continues. “You can always find a human collaborator in an adjacent field, but it’s difficult to find, you know, a thousand collaborators in all thousand adjacent fields that might matter. And in addition to that, I can work with the model late at night—it doesn’t sleep—and I can ask it 10 things in parallel, which is kind of awkward to do to a human.”

Solving problems

Most of the scientists OpenAI reached out to back up Weil’s position.

Robert Scherrer, a professor of physics and astronomy at Vanderbilt University, only played around with ChatGPT for fun (“I used to it rewrite the theme song for Gilligan’s Island in the style of Beowulf, which it did very well,” he tells me) until his Vanderbilt colleague Alex Lupsasca, a fellow physicist who now works at OpenAI, told him that GPT-5 had helped solve a problem he’d been working on.

Lupsasca gave Scherrer access to GPT-5 Pro, OpenAI’s $200-a-month premium subscription. “It managed to solve a problem that I and my graduate student could not solve despite working on it for several months,” says Scherrer.

It’s not perfect, he says: “GTP-5 still makes dumb mistakes. Of course, I do too, but the mistakes GPT-5 makes are even dumber.” And yet it keeps getting better, he says: “If current trends continue—and that’s a big if—I suspect that all scientists will be using LLMs soon.”

Derya Unutmaz, a professor of biology at the Jackson Laboratory, a nonprofit research institute, uses GPT-5 to brainstorm ideas, summarize papers, and plan experiments in his work studying the immune system. In the case study he shared with OpenAI, Unutmaz used GPT-5 to analyze an old data set that his team had previously looked at. The model came up with fresh insights and interpretations.  

“LLMs are already essential for scientists,” he says. “When you can complete analysis of data sets that used to take months, not using them is not an option anymore.”

Nikita Zhivotovskiy, a statistician at the University of California, Berkeley, says he has been using LLMs in his research since the first version of ChatGPT came out.

Like Scherrer, he finds LLMs most useful when they highlight unexpected connections between his own work and existing results he did not know about. “I believe that LLMs are becoming an essential technical tool for scientists, much like computers and the internet did before,” he says. “I expect a long-term disadvantage for those who do not use them.”

But he does not expect LLMs to make novel discoveries anytime soon. “I have seen very few genuinely fresh ideas or arguments that would be worth a publication on their own,” he says. “So far, they seem to mainly combine existing results, sometimes incorrectly, rather than produce genuinely new approaches.”

I also contacted a handful of scientists who are not connected to OpenAI.

Andy Cooper, a professor of chemistry at the University of Liverpool and director of the Leverhulme Research Centre for Functional Materials Design, is less enthusiastic. “We have not found, yet, that LLMs are fundamentally changing the way that science is done,” he says. “But our recent results suggest that they do have a place.”

Cooper is leading a project to develop a so-called AI scientist that can fully automate parts of the scientific workflow. He says that his team doesn’t use LLMs to come up with ideas. But the tech is starting to prove useful as part of a wider automated system where an LLM can help direct robots, for example.

“My guess is that LLMs might stick more in robotic workflows, at least initially, because I’m not sure that people are ready to be told what to do by an LLM,” says Cooper. “I’m certainly not.”

Making errors

LLMs may be becoming more and more useful, but caution is still key. In December, Jonathan Oppenheim, a scientist who works on quantum mechanics, called out a mistake that had made its way into a scientific journal. “OpenAI leadership are promoting a paper in Physics Letters B where GPT-5 proposed the main idea—possibly the first peer-reviewed paper where an LLM generated the core contribution,” Oppenheim posted on X. “One small problem: GPT-5’s idea tests the wrong thing.”

He continued: “GPT-5 was asked for a test that detects nonlinear theories. It provided a test that detects nonlocal ones. Related-sounding, but different. It’s like asking for a COVID test, and the LLM cheerfully hands you a test for chickenpox.”

It is clear that a lot of scientists are finding innovative and intuitive ways to engage with LLMs. It is also clear that the technology makes mistakes that can be so subtle even experts miss them.

Part of the problem is the way ChatGPT can flatter you into letting down your guard. As Oppenheim put it: “A core issue is that LLMs are being trained to validate the user, while science needs tools that challenge us.” In an extreme case, one individual (who was not a scientist) was persuaded by ChatGPT into thinking for months that he’d invented a new branch of mathematics.

Of course, Weil is well aware of the problem of hallucination. But he insists that newer models are hallucinating less and less. Even so, focusing on hallucination might be missing the point, he says.

“One of my teammates here, an ex math professor, said something that stuck with me,” says Weil. “He said: ‘When I’m doing research, if I’m bouncing ideas off a colleague, I’m wrong 90% of the time and that’s kind of the point. We’re both spitballing ideas and trying to find something that works.’”

“That’s actually a desirable place to be,” says Weil. “If you say enough wrong things and then somebody stumbles on a grain of truth and then the other person seizes on it and says, ‘Oh, yeah, that’s not quite right, but what if we—’ You gradually kind of find your trail through the woods.”

This is Weil’s core vision for OpenAI for Science. GPT-5 is good, but it is not an oracle. The value of this technology is in pointing people in new directions, not coming up with definitive answers, he says.

In fact, one of the things OpenAI is now looking at is making GPT-5 dial down its confidence when it delivers a response. Instead of saying Here’s the answer, it might tell scientists: Here’s something to consider.

“That’s actually something that we are spending a bunch of time on,” says Weil. “Trying to make sure that the model has some sort of epistemological humility.”

Watching the watchers

Another thing OpenAI is looking at is how to use GPT-5 to fact-check GPT-5. It’s often the case that if you feed one of GPT-5’s answers back into the model, it will pick it apart and highlight mistakes.

“You can kind of hook the model up as its own critic,” says Weil. “Then you can get a workflow where the model is thinking and then it goes to another model, and if that model finds things that it could improve, then it passes it back to the original model and says, ‘Hey, wait a minute—this part wasn’t right, but this part was interesting. Keep it.’ It’s almost like a couple of agents working together and you only see the output once it passes the critic.”

What Weil is describing also sounds a lot like what Google DeepMind did with AlphaEvolve, a tool that wrapped the firms LLM, Gemini, inside a wider system that filtered out the good responses from the bad and fed them back in again to be improved on. Google DeepMind has used AlphaEvolve to solve several real-world problems.

OpenAI faces stiff competition from rival firms, whose own LLMs can do most, if not all, of the things it claims for its own models. If that’s the case, why should scientists use GPT-5 instead of Gemini or Anthropic’s Claude, families of models that are themselves improving every year? Ultimately, OpenAI for Science may be as much an effort to plant a flag in new territory as anything else. The real innovations are still to come. 

“I think 2026 will be for science what 2025 was for software engineering,” says Weil. “At the beginning of 2025, if you were using AI to write most of your code, you were an early adopter. Whereas 12 months later, if you’re not using AI to write most of your code, you’re probably falling behind. We’re now seeing those same early flashes for science as we did for code.”

He continues: “I think that in a year, if you’re a scientist and you’re not heavily using AI, you’ll be missing an opportunity to increase the quality and pace of your thinking.”

America’s coming war over AI regulation

MIT Technology Review’s What’s Next series looks across industries, trends, and technologies to give you a first look at the future. You can read the rest of them here.

In the final weeks of 2025, the battle over regulating artificial intelligence in the US reached a boiling point. On December 11, after Congress failed twice to pass a law banning state AI laws, President Donald Trump signed a sweeping executive order seeking to handcuff states from regulating the booming industry. Instead, he vowed to work with Congress to establish a “minimally burdensome” national AI policy, one that would position the US to win the global AI race. The move marked a qualified victory for tech titans, who have been marshaling multimillion-dollar war chests to oppose AI regulations, arguing that a patchwork of state laws would stifle innovation.

In 2026, the battleground will shift to the courts. While some states might back down from passing AI laws, others will charge ahead, buoyed by mounting public pressure to protect children from chatbots and rein in power-hungry data centers. Meanwhile, dueling super PACs bankrolled by tech moguls and AI-safety advocates will pour tens of millions into congressional and state elections to seat lawmakers who champion their competing visions for AI regulation. 

Trump’s executive order directs the Department of Justice to establish a task force that sues states whose AI laws clash with his vision for light-touch regulation. It also directs the Department of Commerce to starve states of federal broadband funding if their AI laws are “onerous.” In practice, the order may target a handful of laws in Democratic states, says James Grimmelmann, a law professor at Cornell Law School. “The executive order will be used to challenge a smaller number of provisions, mostly relating to transparency and bias in AI, which tend to be more liberal issues,” Grimmelmann says.

For now, many states aren’t flinching. On December 19, New York’s governor, Kathy Hochul, signed the Responsible AI Safety and Education (RAISE) Act, a landmark law requiring AI companies to publish the protocols used to ensure the safe development of their AI models and report critical safety incidents. On January 1, California debuted the nation’s first frontier AI safety law, SB 53—which the RAISE Act was modeled on—aimed at preventing catastrophic harms such as biological weapons or cyberattacks. While both laws were watered down from earlier iterations to survive bruising industry lobbying, they struck a rare, if fragile, compromise between tech giants and AI safety advocates.

If Trump targets these hard-won laws, Democratic states like California and New York will likely take the fight to court. Republican states like Florida with vocal champions for AI regulation might follow suit. Trump could face an uphill battle. “The Trump administration is stretching itself thin with some of its attempts to effectively preempt [legislation] via executive action,” says Margot Kaminski, a law professor at the University of Colorado Law School. “It’s on thin ice.”

But Republican states that are anxious to stay off Trump’s radar or can’t afford to lose federal broadband funding for their sprawling rural communities might retreat from passing or enforcing AI laws. Win or lose in court, the chaos and uncertainty could chill state lawmaking. Paradoxically, the Democratic states that Trump wants to rein in—armed with big budgets and emboldened by the optics of battling the administration—may be the least likely to budge.

In lieu of state laws, Trump promises to create a federal AI policy with Congress. But the gridlocked and polarized body won’t be delivering a bill this year. In July, the Senate killed a moratorium on state AI laws that had been inserted into a tax bill, and in November, the House scrapped an encore attempt in a defense bill. In fact, Trump’s bid to strong-arm Congress with an executive order may sour any appetite for a bipartisan deal. 

The executive order “has made it harder to pass responsible AI policy by hardening a lot of positions, making it a much more partisan issue,” says Brad Carson, a former Democratic congressman from Oklahoma who is building a network of super PACs backing candidates who support AI regulation. “It hardened Democrats and created incredible fault lines among Republicans,” he says. 

While AI accelerationists in Trump’s orbit—AI and crypto czar David Sacks among them—champion deregulation, populist MAGA firebrands like Steve Bannon warn of rogue superintelligence and mass unemployment. In response to Trump’s executive order, Republican state attorneys general signed a bipartisan letter urging the FCC not to supersede state AI laws.

With Americans increasingly anxious about how AI could harm mental health, jobs, and the environment, public demand for regulation is growing. If Congress stays paralyzed, states will be the only ones acting to keep the AI industry in check. In 2025, state legislators introduced more than 1,000 AI bills, and nearly 40 states enacted over 100 laws, according to the National Conference of State Legislatures.

Efforts to protect children from chatbots may inspire rare consensus. On January 7, Google and Character Technologies, a startup behind the companion chatbot Character.AI, settled several lawsuits with families of teenagers who killed themselves after interacting with the bot. Just a day later, the Kentucky attorney general sued Character Technologies, alleging that the chatbots drove children to suicide and other forms of self-harm. OpenAI and Meta face a barrage of similar suits. Expect more to pile up this year. Without AI laws on the books, it remains to be seen how product liability laws and free speech doctrines apply to these novel dangers. “It’s an open question what the courts will do,” says Grimmelmann. 

While litigation brews, states will move to pass child safety laws, which are exempt from Trump’s proposed ban on state AI laws. On January 9, OpenAI inked a deal with a former foe, the child-safety advocacy group Common Sense Media, to back a ballot initiative in California called the Parents & Kids Safe AI Act, setting guardrails around how chatbots interact with children. The measure proposes requiring AI companies to verify users’ age, offer parental controls, and undergo independent child-safety audits. If passed, it could be a blueprint for states across the country seeking to crack down on chatbots. 

Fueled by widespread backlash against data centers, states will also try to regulate the resources needed to run AI. That means bills requiring data centers to report on their power and water use and foot their own electricity bills. If AI starts to displace jobs at scale, labor groups might float AI bans in specific professions. A few states concerned about the catastrophic risks posed by AI may pass safety bills mirroring SB 53 and the RAISE Act. 

Meanwhile, tech titans will continue to use their deep pockets to crush AI regulations. Leading the Future, a super PAC backed by OpenAI president Greg Brockman and the venture capital firm Andreessen Horowitz, will try to elect candidates who endorse unfettered AI development to Congress and state legislatures. They’ll follow the crypto industry’s playbook for electing allies and writing the rules. To counter this, super PACs funded by Public First, an organization run by Carson and former Republican congressman Chris Stewart of Utah, will back candidates advocating for AI regulation. We might even see a handful of candidates running on anti-AI populist platforms.

In 2026, the slow, messy process of American democracy will grind on. And the rules written in state capitals could decide how the most disruptive technology of our generation develops far beyond America’s borders, for years to come.

Measles is surging in the US. Wastewater tracking could help.

This week marked a rather unpleasant anniversary: It’s a year since Texas reported a case of measles—the start of a significant outbreak that ended up spreading across multiple states. Since the start of January 2025, there have been over 2,500 confirmed cases of measles in the US. Three people have died.

As vaccination rates drop and outbreaks continue, scientists have been experimenting with new ways to quickly identify new cases and prevent the disease from spreading. And they are starting to see some success with wastewater surveillance.

After all, wastewater contains saliva, urine, feces, shed skin, and more. You could consider it a rich biological sample. Wastewater analysis helped scientists understand how covid was spreading during the pandemic. It’s early days, but it is starting to help us get a handle on measles.

Globally, there has been some progress toward eliminating measles, largely thanks to vaccination efforts. Such efforts led to an 88% drop in measles deaths between 2000 and 2024, according to the World Health Organization. It estimates that “nearly 59 million lives have been saved by the measles vaccine” since 2000.

Still, an estimated 95,000 people died from measles in 2024 alone—most of them young children. And cases are surging in Europe, Southeast Asia, and the Eastern Mediterranean region.

Last year, the US saw the highest levels of measles in decades. The country is on track to lose its measles elimination status—a sorry fate that met Canada in November after the country recorded over 5,000 cases in a little over a year.

Public health efforts to contain the spread of measles—which is incredibly contagious—typically involve clinical monitoring in health-care settings, along with vaccination campaigns. But scientists have started looking to wastewater, too.

Along with various bodily fluids, we all shed viruses and bacteria into wastewater, whether that’s through brushing our teeth, showering, or using the toilet. The idea of looking for these pathogens in wastewater to track diseases has been around for a while, but things really kicked into gear during the covid-19 pandemic, when scientists found that the coronavirus responsible for the disease was shed in feces.

This led Marlene Wolfe of Emory University and Alexandria Boehm of Stanford University to establish WastewaterSCAN, an academic-led program developed to analyze wastewater samples across the US. Covid was just the beginning, says Wolfe. “Over the years we have worked to expand what can be monitored,” she says.

Two years ago, for a previous edition of the Checkup, Wolfe told Cassandra Willyard that wastewater surveillance of measles was “absolutely possible,” as the virus is shed in urine. The hope was that this approach could shed light on measles outbreaks in a community, even if members of that community weren’t able to access health care and receive an official diagnosis. And that it could highlight when and where public health officials needed to act to prevent measles from spreading. Evidence that it worked as an effective public health measure was, at the time, scant.

Since then, she and her colleagues have developed a test to identify measles RNA. They trialed it at two wastewater treatment plants in Texas between December 2024 and May 2025. At each site, the team collected samples two or three times a week and tested them for measles RNA.

Over that period, the team found measles RNA in 10.5% of the samples they collected, as reported in a preprint paper published at medRxiv in July and currently under review at a peer-reviewed journal. The first detection came a week before the first case of measles was officially confirmed in the area. That’s promising—it suggests that wastewater surveillance might pick up measles cases early, giving public health officials a head start in efforts to limit any outbreaks.

There are more promising results from a team in Canada. Mike McKay and Ryland Corchis-Scott at the University of Windsor in Ontario and their colleagues have also been testing wastewater samples for measles RNA. Between February and November 2025, the team collected samples from a wastewater treatment facility serving over 30,000 people in Leamington, Ontario. 

These wastewater tests are somewhat limited—even if they do pick up measles, they won’t tell you who has measles, where exactly infections are occurring, or even how many people are infected. McKay and his colleagues have begun to make some progress here. In addition to monitoring the large wastewater plant, the team used tampons to soak up wastewater from a hospital lateral sewer.

They then compared their measles test results with the number of clinical cases in that hospital. This gave them some idea of the virus’s “shedding rate.” When they applied this to the data collected from the Leamington wastewater treatment facility, the team got estimates of measles cases that were much higher than the figures officially reported. 

Their findings track with the opinions of local health officials (who estimate that the true number of cases during the outbreak was around five to 10 times higher than the confirmed case count), the team members wrote in a paper published on medRxiv a couple of weeks ago.

There will always be limits to wastewater surveillance. “We’re looking at the pool of waste of an entire community, so it’s very hard to pull in information about individual infections,” says Corchis-Scott.

Wolfe also acknowledges that “we have a lot to learn about how we can best use the tools so they are useful.” But her team at WastewaterSCAN has been testing wastewater across the US for measles since May last year. And their findings are published online and shared with public health officials.

In some cases, the findings are already helping inform the response to measles. “We’ve seen public health departments act on this data,” says Wolfe. Some have issued alerts, or increased vaccination efforts in those areas, for example. “[We’re at] a point now where we really see public health departments, clinicians, [and] families using that information to help keep themselves and their communities safe,” she says.

McKay says his team has stopped testing for measles because the Ontario outbreak “has been declared over.” He says testing would restart if and when a single new case of measles is confirmed in the region, but he also thinks that his research makes a strong case for maintaining a wastewater surveillance system for measles.

McKay wonders if this approach might help Canada regain its measles elimination status. “It’s sort of like [we’re] a pariah now,” he says. If his approach can help limit measles outbreaks, it could be “a nice tool for public health in Canada to [show] we’ve got our act together.”

This article first appeared in The Checkup, MIT Technology Review’s weekly biotech newsletter. To receive it in your inbox every Thursday, and read articles like this first, sign up here.

Yann LeCun’s new venture is a contrarian bet against large language models  

Yann LeCun is a Turing Award recipient and a top AI researcher, but he has long been a contrarian figure in the tech world. He believes that the industry’s current obsession with large language models is wrong-headed and will ultimately fail to solve many pressing problems. 

Instead, he thinks we should be betting on world models—a different type of AI that accurately reflects the dynamics of the real world. He is also a staunch advocate for open-source AI and criticizes the closed approach of frontier labs like OpenAI and Anthropic. 

Perhaps it’s no surprise, then, that he recently left Meta, where he had served as chief scientist for FAIR (Fundamental AI Research), the company’s influential research lab that he founded. Meta has struggled to gain much traction with its open-source AI model Llama and has seen internal shake-ups, including the controversial acquisition of ScaleAI. 

LeCun sat down with MIT Technology Review in an exclusive online interview from his Paris apartment to discuss his new venture, life after Meta, the future of artificial intelligence, and why he thinks the industry is chasing the wrong ideas. 

Both the questions and answers below have been edited for clarity and brevity.

You’ve just announced a new company, Advanced Machine Intelligence (AMI).  Tell me about the big ideas behind it.

It is going to be a global company, but headquartered in Paris. You pronounce it “ami”—it means “friend” in French. I am excited. There is a very high concentration of talent in Europe, but it is not always given a proper environment to flourish. And there is certainly a huge demand from the industry and governments for a credible frontier AI company that is neither Chinese nor American. I think that is going to be to our advantage.

So an ambitious alternative to the US-China binary we currently have. What made you want to pursue that third path?

Well, there are sovereignty issues for a lot of countries, and they want some control over AI. What I’m advocating is that AI is going to become a platform, and most platforms tend to become open-source. Unfortunately, that’s not really the direction the American industry is taking. Right? As the competition increases, they feel like they have to be secretive. I think that is a strategic mistake.

It’s certainly true for OpenAI, which went from very open to very closed, and Anthropic has always been closed. Google was sort of a little open. And then Meta, we’ll see. My sense is that it’s not going in a positive direction at this moment.

Simultaneously, China has completely embraced this open approach. So all leading open-source AI platforms are Chinese, and the result is that academia and startups, outside of the US, have basically embraced Chinese models. There’s nothing wrong with that—you know, Chinese models are good. Chinese engineers and scientists are great. But you know, if there is a future in which all of our information diet is being mediated by AI assistance, and the choice is either English-speaking models produced by proprietary companies always close to the US or Chinese models which may be open-source but need to be fine-tuned so that they answer questions about Tiananmen Square in 1989—you know, it’s not a very pleasant and engaging future. 

They [the future models] should be able to be fine-tuned by anyone and produce a very high diversity of AI assistance, with different linguistic abilities and value systems and political biases and centers of interests. You need high diversity of assistance for the same reason that you need high diversity of press. 

That is certainly a compelling pitch. How are investors buying that idea so far?

They really like it. A lot of venture capitalists are very much in favor of this idea of open-source, because they know for a lot of small startups, they really rely on open-source models. They don’t have the means to train their own model, and it’s kind of dangerous for them strategically to embrace a proprietary model.

You recently left Meta. What’s your view on the company and Mark Zuckerberg’s leadership? There’s a perception that Meta has fumbled its AI advantage.

I think FAIR [LeCun’s lab at Meta] was extremely successful in the research part. Where Meta was less successful is in picking up on that research and pushing it into practical technology and products. Mark made some choices that he thought were the best for the company. I may not have agreed with all of them. For example, the robotics group at FAIR was let go, which I think was a strategic mistake. But I’m not the director of FAIR. People make decisions rationally, and there’s no reason to be upset.

So, no bad blood? Could Meta be a future client for AMI?

Meta might be our first client! We’ll see. The work we are doing is not in direct competition. Our focus on world models for the physical world is very different from their focus on generative AI and LLMs.

You were working on AI long before LLMs became a mainstream approach. But since ChatGPT broke out, LLMs have become almost synonymous with AI.

Yes, and we are going to change that. The public face of AI, perhaps, is mostly LLMs and chatbots of various types. But the latest ones of those are not pure LLMs. They are LLM plus a lot of things, like perception systems and code that solves particular problems. So we are going to see LLMs as kind of the orchestrator in systems, a little bit.

Beyond LLMs, there is a lot of AI that is behind the scenes that runs a big chunk of our society. There are assistance driving programs in a car, quick-turn MRI images, algorithms that drive social media—that’s all AI. 

You have been vocal in arguing that LLMs can only get us so far. Do you think LLMs are overhyped these days? Can you summarize to our readers why you believe that LLMs are not enough?

There is a sense in which they have not been overhyped, which is that they are extremely useful to a lot of people, particularly if you write text, do research, or write code. LLMs manipulate language really well. But people have had this illusion, or delusion, that it is a matter of time until we can scale them up to having human-level intelligence, and that is simply false.

The truly difficult part is understanding the real world. This is the Moravec Paradox (a phenomenon observed by the computer scientist Hans Moravec in 1988): What’s easy for us, like perception and navigation, is hard for computers, and vice versa. LLMs are limited to the discrete world of text. They can’t truly reason or plan, because they lack a model of the world. They can’t predict the consequences of their actions. This is why we don’t have a domestic robot that is as agile as a house cat, or a truly autonomous car.

We are going to have AI systems that have humanlike and human-level intelligence, but they’re  not going to be built on LLMs, and it’s not going to happen next year or two years from now. It’s going to take a while. There are major conceptual breakthroughs that have to happen before we have AI systems that have human-level intelligence. And that is what I’ve been working on. And this company, AMI Labs, is focusing on the next generation.

And your solution is world models and JEPA architecture (JEPA, or “joint embedding predictive architecture,” is a learning framework that trains AI models to understand the world, created by LeCun while he was at Meta). What’s the elevator pitch?

The world is unpredictable. If you try to build a generative model that predicts every detail of the future, it will fail.  JEPA is not generative AI. It is a system that learns to represent videos really well. The key is to learn an abstract representation of the world and make predictions in that abstract space, ignoring the details you can’t predict. That’s what JEPA does. It learns the underlying rules of the world from observation, like a baby learning about gravity. This is the foundation for common sense, and it’s the key to building truly intelligent systems that can reason and plan in the real world. The most exciting work so far on this is coming from academia, not the big industrial labs stuck in the LLM world.

The lack of non-text data has been a problem in taking AI systems further in understanding the physical world. JEPA is trained on videos. What other kinds of data will you be using?

Our systems will be trained on video, audio, and sensor data of all kinds—not just text. We are working with various modalities, from the position of a robot arm to lidar data to audio. I’m also involved in a project using JEPA to model complex physical and clinical phenomena. 

What are some of the concrete, real-world applications you envision for world models?

The applications are vast. Think about complex industrial processes where you have thousands of sensors, like in a jet engine, a steel mill, or a chemical factory. There is no technique right now to build a complete, holistic model of these systems. A world model could learn this from the sensor data and predict how the system will behave. Or think of smart glasses that can watch what you’re doing, identify your actions, and then predict what you’re going to do next to assist you. This is what will finally make agentic systems reliable. An agentic system that is supposed to take actions in the world cannot work reliably unless it has a world model to predict the consequences of its actions. Without it, the system will inevitably make mistakes. This is the key to unlocking everything from truly useful domestic robots to Level 5 autonomous driving.

Humanoid robots are all the rage recently, especially ones built by companies from China. What’s your take?

There are all these brute-force ways to get around the limitations of learning systems, which require inordinate amounts of training data to do anything. So the secret of all the companies getting robots to do kung fu or dance is they are all planned in advance. But frankly, nobody—absolutely nobody—knows how to make those robots smart enough to be useful. Take my word for it. 


You need an enormous amount of tele-operation training data for every single task, and when the environment changes a little bit, it doesn’t generalize very well. What this tells us is we are missing something very big. The reason why a 17-year-old can learn to drive in 20 hours is because they already know a lot about how the world behaves. If we want a generally useful domestic robot, we need systems to have a kind of good understanding of the physical world. That’s not going to happen until we have good world models and planning.

There’s a growing sentiment that it’s becoming harder to do foundational AI research in academia because of the massive computing resources required. Do you think the most important innovations will now come from industry?

No. LLMs are now technology development, not research. It’s true that it’s very difficult for academics to play an important role there because of the requirements for computation, data access, and engineering support. But it’s a product now. It’s not something academia should even be interested in. It’s like speech recognition in the early 2010s—it was a solved problem, and the progress was in the hands of industry. 

What academia should be working on is long-term objectives that go beyond the capabilities of current systems. That’s why I tell people in universities: Don’t work on LLMs. There is no point. You’re not going to be able to rival what’s going on in industry. Work on something else. Invent new techniques. The breakthroughs are not going to come from scaling up LLMs. The most exciting work on world models is coming from academia, not the big industrial labs. The whole idea of using attention circuits in neural nets came out of the University of Montreal. That research paper started the whole revolution. Now that the big companies are closing up, the breakthroughs are going to slow down. Academia needs access to computing resources, but they should be focused on the next big thing, not on refining the last one.

You wear many hats: professor, researcher, educator, public thinker … Now you just took on a new one. What is that going to look like for you?

I am going to be the executive chairman of the company, and Alex LeBrun [a former colleague from Meta AI] will be the CEO. It’s going to be LeCun and LeBrun—it’s nice if you pronounce it the French way.

I am going to keep my position at NYU. I teach one class per year, I have PhD students and postdocs, so I am going to be kept based in New York. But I go to Paris pretty often because of my lab. 

Does that mean that you won’t be very hands-on?

Well, there’s two ways to be hands-on. One is to manage people day to day, and another is to actually get your hands dirty in research projects, right? 

I can do management, but I don’t like doing it. This is not my mission in life. It’s really to make science and technology progress as far as we can, inspire other people to work on things that are interesting, and then contribute to those things. So that has been my role at Meta for the last seven years. I founded FAIR and led it for four to five years. I kind of hated being a director. I am not good at this career management thing. I’m much more visionary and a scientist.

What makes Alex LeBrun the right fit?

Alex is a serial entrepreneur; he’s built three successful AI companies. The first he sold to Microsoft; the second to Facebook, where he was head of the engineering division of FAIR in Paris. He then left to create Nabla, a very successful company in the health-care space. When I offered him the chance to join me in this effort, he accepted almost immediately. He has the experience to build the company, allowing me to focus on science and technology. 

You’re headquartered in Paris. Where else do you plan to have offices?

We are a global company. There’s going to be an office in North America.

New York, hopefully?

New York is great. That’s where I am, right? And it’s not Silicon Valley. Silicon Valley is a bit of a monoculture.

What about Asia? I’m guessing Singapore, too?

Probably, yeah. I’ll let you guess. 

And how are you attracting talent?

We don’t have any issue recruiting. There are a lot of people in the AI research community who think the future of AI is in world models. Those people, regardless of pay package, will be motivated to come work for us because they believe in the technological future we are building. We’ve already recruited people from places like OpenAI, Google DeepMind, and xAI.

I heard that Saining Xie, a prominent researcher from NYU and Google DeepMind, might be joining you as chief scientist. Any comments?

Saining is a brilliant researcher. I have a lot of admiration for him. I hired him twice already. I hired him at FAIR, and I convinced my colleagues at NYU that we should hire him there. Let’s just say I have a lot of respect for him.

When will you be ready to share more details about AMI Labs, like financial backing or other core members?

Soon—in February, maybe. I’ll let you know.