Meet Cathy Tie, Bride of “China’s Frankenstein”

Since the Chinese biophysicist He Jiankui was released from prison in 2022, he has sought to make a scientific comeback and to repair his reputation after a three-year incarceration for illegally creating the world’s first gene-edited children. 

While he has bounced between cities, jobs, and meetings with investors, one area of visible success on his comeback trail has been his X.com account, @Jiankui_He, which has become his main way of spreading his ideas to the world. Starting in September 2022, when he joined the platform, the account stuck to the scientist’s main themes, including promising a more careful approach to his dream of creating more gene-edited children. “I will do it, only after society has accepted it,” he posted in August 2024. He also shared mundane images of his daily life, including golf games and his family.

But over time, it evolved and started to go viral. First came a series of selfies accompanied by grandiose statements (“Every pioneer or prophet must suffer”). Then, in April of this year, it became particularly outrageous and even troll-like, blasting out bizarre messages (“Good morning bitches. How many embryos have you gene edited today?”). This has left observers unsure what to take seriously.

Last month, in reply to MIT Technology Review’s questions about who was responsible for the account’s transformation into a font of clever memes, He emailed us back: “It’s thanks to Cathy Tie.”

You may not be familiar with Tie, but she’s no stranger to the public spotlight. A former Thiel fellow, she is a partner in the attention-grabbing Los Angeles Project, which promised to create glow-in-the-dark pets. Over the past several weeks, though, the 29-year-old Canadian entrepreneur has started to get more and more attention as the new wife to (and apparent social media mastermind behind) He Jiankui. On April 15, He announced a new venture, Cathy Medicine, that would take up his mission of editing human embryos to create people resistant to diseases like Alzheimer’s or cancer. Just a few days later, on April 18, He and Tie announced that they had married, posting pictures of themselves in traditional Chinese wedding attire.

But now Tie says that just a month after she married “the most controversial scientist in the world,” her plans to relocate from Los Angeles to Beijing to be with He are in disarray; she says she’s been denied entry to China and the two “may never see each other again,” as He’s passport is being held by Chinese authorities and he can’t leave the country.

Reached by phone in Manila, Tie said authorities in the Philippines had intercepted her during a layover on May 17 and told her she couldn’t board a plane to China, where she was born and where she says she has a valid 10-year visa. She claims they didn’t say why but told her she is likely “on a watch list.” (MIT Technology Review could not independently confirm Tie’s account.) 

“While I’m concerned about my marriage, I am more concerned about what this means for humanity and the future of science,” Tie posted to her own X account.

A match made in gene-editing heaven

The romance between He and Tie has been playing out in public over the past several weeks through a series of reveals on He’s X feed, which had already started going viral late last year thanks to his style of posting awkward selfies alongside maxims about the untapped potential of heritable gene editing, which involves changing people’s DNA when they’re just embryos in an IVF dish. 

“Human [sic] will no longer be controlled by Darwin’s evolution,” He wrote in March. That post, which showed him standing in an empty lab, gazing into the distance, garnered 9.7 million views. And then, a week later, he collected 13.3 million for this one: “Ethics is holding back scientific innovation and progress.” 

In April, the feed started to change even more drastically. 

He’s posts became increasingly provocative, with better English and a unique sensibility reflecting online culture. “Stop asking for cat girls. I’m trying to cure disease,” the account posted on April 15. Two days later, it followed up: “I literally went to prison for this shit.” 

This shift coincided with the development of his romance with Tie. Tie told us she has visited China three times this year, including a three-week stint in April when she and He got married after a whirlwind romance. She bought him a silver wedding ring made up of intertwined DNA strands. 

The odd behavior on He’s X feed and the sudden marriage have left followers wondering if they are watching a love story, a new kind of business venture, or performance art. It might be all three. 

A wedding photo posted by Tie on the Chinese social media platform Rednote shows the couple sitting at a table in a banquet hall, with a small number of guests. MIT Technology Review has been able to identify several people who attended: Cai Xilei, He’s criminal attorney; Liu Haiyan, an investor and former business partner of He; and Darren Zhu, an artist and Thiel fellow who is making a “speculative” documentary about the biophysicist that will blur the boundaries of fiction and reality.

In the phone interview, Tie declined to say if she and He are legally married. She also confirmed she celebrated a wedding less than one year ago with someone else in California, in July of 2024, but said they broke up after a few months; she also declined to describe the legal status of that marriage. In the phone call, Tie emphasized that her relationship with He is genuine: “I wouldn’t marry him if I wasn’t in love with him.”

An up-and-comer

Years before Tie got into a relationship with He, she was getting plenty of attention in her own right. She became a Thiel fellow in 2015, when she was just 18. That program, started by the billionaire Peter Thiel, gave her a grant of $100,000 to drop out of the University of Toronto and start a gene testing company, Ranomics. 

Soon, she began appearing on the entrepreneur circuit as a “wunderkind” who was featured on a Forbes30 Under 30” list in 2018 and presented as an up-and-coming venture capitalist on CNN that same year. In 2020, she started her second company, Locke Bio, which focuses on online telemedicine.

Like Thiel, Tie has staked out contrarian positions. She’s called mainstream genomics a scam and described entrepreneurship as a way to escape the hidebound practices of academia and bioethics. “Starting companies is my preferred form of art,” she posted in 2022, linking to an interview on CNBC

By February 2025, Tie was ready to announce another new venture: the Los Angeles Project, a stealth company she had incorporated in 2023 under her legal name, Cheng Cheng Tie. The company, started with the Texas-based biohacker and artist Josie Zayner, says it will try to modify animal embryos; one goal is to make fluorescent glow-in-the-dark rabbits as pets.

The Los Angeles Project revels in explicitly transgressive aims for embryo editing, including a plan to add horn genes to horse embryos to make a unicorn. That’s consistent with Zayner’s past stunts, which include injecting herself with CRISPR during a livestream. “This is a company that should not exist,” Zayner said in announcing the newly public project.

Although the Los Angeles Project has only a tiny staff with uncertain qualifications, it did raise $1 million from the 1517 Fund, a venture group that supports “dropouts” and whose managers previously ran the Thiel Fellowship. 

Asked for his assessment of Tie, Michael Gibson, a 1517 partner, said in an email that he thinks Tie is “not just exceptional, but profoundly exceptional.” He sent along a list of observations he’d jotted down about Tie before funding her company, which approvingly noted her “hyper-fluent competence” and “low need for social approval,” adding: “Thoughts & actions routinely unconventional.” 

A comeback story

He first gained notoriety in 2018, when he and coworkers at the Southern University of Science & Technology in Shenzhen injected the CRISPR gene editor into several viable human embryos and then transferred these into volunteers, leading to the birth of three girls who he claimed would be resistant to HIV. A subsequent Chinese investigation found he’d practiced medicine illegally while “pursuing fame and fortune.” A court later sentenced him to three years in prison.

He has never apologized for his experiments, except to say he acted “too quickly” and to express regret for the trouble he’d caused his former wife and two daughters. (According to a leaked WeChat post by his ex-wife, she divorced him in 2024 “because of a major fault on his side.”)

Since his release from prison, He has sought to restart his research and convince people that he should be recognized as the “Chinese Darwin,” not “China’s Frankenstein,” as the press once dubbed him. 

But his comeback has been bumpy. He lost a position at Wuchang University of Technology, a small private university in Hubei province, after some negative press. In February 2024, He posted that his application for funding from the Muscular Dystrophy Association was rejected. Last September, he even posted pictures of his torn shirt—which he said was the result of an assault by jealous rivals.

One area of clear success, though, was the growing reach of his X profile, which today has ballooned to more than 130,000 followers. And as his public profile rose, some started encouraging He to find ways to cash in. Andrew Hessel, a futurist and synthetic biologist active in US ethics debates, says he tried to get He invited to give a TED Talk. “His story is unique, and I wanted to see his story get more widespread attention, if only as a cautionary tale,” Hessel says. “I think he is a lightning rod for a generation of people working in life sciences.”

Later, Hessel says, he sent him information on how to join X’s revenue-sharing program. “I said, ‘You have a powerful voice. Have you looked into monetization?’” Hessel says.

By last fall, He was also welcoming visitors to what he called a new lab in Beijing. One person who took him up on the offer was Steve Hsu, a Michigan State physics professor who has started several genetics companies and was visiting Beijing. 

They ended up talking for hours. Hsu says that He expressed a desire to move to the US and start a company, and that he shared his idea for conducting a clinical trial of embryo editing in South Africa, possibly for the prevention of HIV. 

Hsu says he later arranged an invitation for He to give a lecture in the United States. “You are a little radioactive, but things are opening up,” Hsu told him. But He declined the offer because the Chinese government is holding his passport—a common tactic it uses to restrict the movement of sensitive or high-profile figures—and won’t return it to him. “He doesn’t even know why. He literally doesn’t know,” says Hsu. “According to the law, they should give it back to him.”

A curious triangle

Despite any plans by He and Tie to advance the idea, creating designer babies is currently illegal in most of the world, including China and the US. Some experts, however, fret that forbidding the technology will only drive it underground and make it attractive to biohackers or scientists outside the mainstream. 

That’s one reason Tie’s simultaneous connection to two notable biotech renegades—He and Zayner—is worth watching. “There is clearly a triangle forming in some way,” says Hessel.

With Tie stuck outside China and He being kept inside the country, their new gene-editing venture, Cathy Medicine, faces an uncertain future. Tie posted previously on Rednote that she was “helping Dr. He open up the U.S. market” and was planning to return to the US with him for scientific research. But when we spoke on the phone, she declined to disclose their next steps and said their predicament means the project is “out of the window now.”

Even as the couple remain separated, their social media game is stronger than ever. As she waited in Manila, Tie sought help from friends, followers, and the entire internet. She blasted out a tweet to “crypto people,” calling them “too pussy to stand up for things when it matters.” Within hours, someone had created a memecoin called $GENE as a way for the public to support the couple. 

On May 20, Tie posted on X claiming that the amount donated to them is now worth almost $2 million. “I may need to retract my last statement about crypto,” she wrote. 

He’s X account also retweeted to express support: “I only want to reunite with my wife @CathyTie, and continue my gene editing research.” He added the hashtag $GENE.

How a top Chinese AI model overcame US sanctions

The AI community is abuzz over DeepSeek R1, a new open-source reasoning model. 

The model was developed by the Chinese AI startup DeepSeek, which claims that R1 matches or even surpasses OpenAI’s ChatGPT o1 on multiple key benchmarks but operates at a fraction of the cost. 

“This could be a truly equalizing breakthrough that is great for researchers and developers with limited resources, especially those from the Global South,” says Hancheng Cao, an assistant professor in information systems at Emory University.

DeepSeek’s success is even more remarkable given the constraints facing Chinese AI companies in the form of increasing US export controls on cutting-edge chips. But early evidence shows that these measures are not working as intended. Rather than weakening China’s AI capabilities, the sanctions appear to be driving startups like DeepSeek to innovate in ways that prioritize efficiency, resource-pooling, and collaboration.

To create R1, DeepSeek had to rework its training process to reduce the strain on its GPUs, a variety released by Nvidia for the Chinese market that have their performance capped at half the speed of its top products, according to Zihan Wang, a former DeepSeek employee and current PhD student in computer science at Northwestern University. 

DeepSeek R1 has been praised by researchers for its ability to tackle complex reasoning tasks, particularly in mathematics and coding. The model employs a “chain of thought” approach similar to that used by ChatGPT o1, which lets it solve problems by processing queries step by step.

Dimitris Papailiopoulos, principal researcher at Microsoft’s AI Frontiers research lab, says what surprised him the most about R1 is its engineering simplicity. “DeepSeek aimed for accurate answers rather than detailing every logical step, significantly reducing computing time while maintaining a high level of effectiveness,” he says.

DeepSeek has also released six smaller versions of R1 that are small enough to  run locally on laptops. It claims that one of them even outperforms OpenAI’s o1-mini on certain benchmarks.“DeepSeek has largely replicated o1-mini and has open sourced it,” tweeted Perplexity CEO Aravind Srinivas. DeepSeek did not reply to MIT Technology Review’s request for comments.

Despite the buzz around R1, DeepSeek remains relatively unknown. Based in Hangzhou, China, it was founded in July 2023 by Liang Wenfeng, an alumnus of Zhejiang University with a background in information and electronic engineering. It was incubated by High-Flyer, a hedge fund that Liang founded in 2015. Like Sam Altman of OpenAI, Liang aims to build artificial general intelligence (AGI), a form of AI that can match or even beat humans on a range of tasks.

Training large language models (LLMs) requires a team of highly trained researchers and substantial computing power. In a recent interview with the Chinese media outlet LatePost, Kai-Fu Lee, a veteran entrepreneur and former head of Google China, said that only “front-row players” typically engage in building foundation models such as ChatGPT, as it’s so resource-intensive. The situation is further complicated by the US export controls on advanced semiconductors. High-Flyer’s decision to venture into AI is directly related to these constraints, however. Long before the anticipated sanctions, Liang acquired a substantial stockpile of Nvidia A100 chips, a type now banned from export to China. The Chinese media outlet 36Kr estimates that the company has over 10,000 units in stock, but Dylan Patel, founder of the AI research consultancy SemiAnalysis, estimates that it has at least 50,000. Recognizing the potential of this stockpile for AI training is what led Liang to establish DeepSeek, which was able to use them in combination with the lower-power chips to develop its models. 

Tech giants like Alibaba and ByteDance, as well as a handful of startups with deep-pocketed investors, dominate the Chinese AI space, making it challenging for small or medium-sized enterprises to compete. A company like DeepSeek, which has no plans to raise funds, is rare. 

Zihan Wang, the former DeepSeek employee, told MIT Technology Review that he had access to abundant computing resources and was given freedom to experiment when working at DeepSeek, “a luxury that few fresh graduates would get at any company.” 

In an interview with the Chinese media outlet 36Kr in July 2024 Liang said that an additional challenge Chinese companies face on top of chip sanctions, is that their AI engineering techniques tend to be less efficient. “We [most Chinese companies] have to consume twice the computing power to achieve the same results. Combined with data efficiency gaps, this could mean needing up to four times more computing power. Our goal is to continuously close these gaps,” he said.  

But DeepSeek found ways to reduce memory usage and speed up calculation without significantly sacrificing accuracy. “The team loves turning a hardware challenge into an opportunity for innovation,” says Wang.

Liang himself remains deeply involved in DeepSeek’s research process, running experiments alongside his team. “The whole team shares a collaborative culture and dedication to hardcore research,” Wang says.

As well as prioritizing efficiency, Chinese companies are increasingly embracing open-source principles. Alibaba Cloud has released over 100 new open-source AI models, supporting 29 languages and catering to various applications, including coding and mathematics. Similarly, startups like Minimax and 01.AI have open-sourced their models. 

According to a white paper released last year by the China Academy of Information and Communications Technology, a state-affiliated research institute, the number of AI large language models worldwide has reached 1,328, with 36% originating in China. This positions China as the second-largest contributor to AI, behind the United States. 

“This generation of young Chinese researchers identify strongly with open-source culture because they benefit so much from it,” says Thomas Qitong Cao, an assistant professor of technology policy at Tufts University.

“The US export control has essentially backed Chinese companies into a corner where they have to be far more efficient with their limited computing resources,” says Matt Sheehan, an AI researcher at the Carnegie Endowment for International Peace. “We are probably going to see a lot of consolidation in the future related to the lack of compute.”

That might already have started to happen. Two weeks ago, Alibaba Cloud announced that it has partnered with the Beijing-based startup 01.AI, founded by Kai-Fu Lee, to merge research teams and establish an “industrial large model laboratory.”

“It is energy-efficient and natural for some kind of division of labor to emerge in the AI industry,” says Cao, the Tufts professor. “The rapid evolution of AI demands agility from Chinese firms to survive.”

How the US and its allies can rebuild economic security

A country’s economic security—its ability to generate both national security and economic prosperity—is grounded in it having significant technological capabilities that outpace those of its adversaries and complement those of its allies. Though this is a principle well known throughout history, the move over the last few decades toward globalization and offshoring of technologically advanced industrial capacity has made ensuring a nation state’s security and economic prosperity increasingly problematic. A broad span of technologies ranging from automation and secure communications to energy storage and vaccine design are the basis for wider economic prosperity—and high priorities for governments seeking to maintain national security. However, the necessary capabilities do not spring up overnight. They rely upon long decades of development, years of accumulated knowledge, and robust supply chains.

For the US and, especially, its allies in NATO, a particular problem has emerged: a “missing middle” in technology investment. Insufficient capital is allocated toward the maturation of breakthroughs in critical technologies to ensure that they can be deployed at scale. Investment is allocated either toward the rapid deployment of existing technologies or to scientific ideas that are decades away from delivering practical capability or significant economic impact (for example, quantum computers). But investment in scaling manufacturing technologies, learning while doing, and maturing of emerging technologies to contribute to a next-generation industrial base, is too often absent. Without this middle-ground commitment, the United States and its partners lack the production know-how that will be crucial for tomorrow’s batteries, the next generation of advanced computing, alternative solar photovoltaic cells, and active pharmaceutical ingredients.

While this once mattered only for economic prosperity, it is now a concern for national security too—especially given that China has built strong supply chains and other domestic capabilities that confer both economic security and significant geopolitical leverage.

Consider drone technology. Military doctrine has shifted toward battlefield technology that relies upon armies of small, relatively cheap products enabled by sophisticated software—from drones above the battlefield to autonomous boats to CubeSats in space.

Drones have played a central role in the war in Ukraine. First-person viewer (FPV) drones—those controlled by a pilot on the ground via a video stream—are often strapped with explosives to act as precision kamikaze munitions and have been essential to Ukraine’s frontline defenses. While many foundational technologies for FPV drones were pioneered in the West, China now dominates the manufacturing of drone components and systems, which ultimately enables the country to have a significant influence on the outcome of the war.

When the history of the war in Ukraine is written, it will be taught as the first true “drone war.” But it should also be understood as an industrial wake-up call: a time when the role of a drone’s component parts was laid bare and the supply chains that support this technology—the knowledge, production operations, and manufacturing processes—were found wanting. Heroic stories will be told of Ukrainian ingenuity in building drones with Chinese parts in basements and on kitchen tables, and we will hear of the country’s attempt to rebuild supply chains dominated by China while in the midst of an existential fight for survival. But in the background, we will also need to understand the ways in which other nations, especially China, controlled the war through long-term economic policies focused on capturing industrial capacity that the US and its allies failed to support through to maturity.

Disassemble one of the FPV drones found across the battlefields of Ukraine and you will find about seven critical subsystems: power, propulsion, flight control, navigation and sensors (which gather location data and other information to support flight), compute (the processing and memory capacity needed to analyze the vast array of information and then support operations), communications (to connect the drone to the ground), and—supporting it all—the airframe.

We have created a bill of materials listing the components necessary to build an FPV drone and the common suppliers for those parts.

China’s manufacturing dominance has resulted in a domestic workforce with the experience to achieve process innovations and product improvements that have no equal in the West.  And it has come with the sophisticated supply chains that support a wide range of today’s technological capabilities and serve as the foundations for the next generation. None of that was inevitable. For example, most drone electronics are integrated on printed circuit boards (PCBs), a technology that was developed in the UK and US. However, first-mover advantage was not converted into long-term economic or national security outcomes, and both countries have lost the PCB supply chain to China.

Propulsion is another case in point. The brushless DC motors used to convert electrical energy from batteries into mechanical energy to rotate drone propellers were invented in the US and Germany. The sintered permanent neodymium (NdFeB) magnets used in these motors were invented in Japan and the US. Today, to our knowledge, all brushless DC motors for drones are made in China. Similarly, China dominates all steps in the processing and manufacture of NdFeB magnets, accounting for 92% of global NdFeB magnet and magnet alloy markets.

The missing middle of technology investment—insufficient funding for commercial production—is evident in each and every one of these failures, but the loss of expertise is an added dimension. For example, lithium polymer (LiPo) batteries are at the heart of every FPV drone. LiPo uses a solid or gel polymer electrolyte and achieves higher specific energy (energy per unit of weight)—a feature that is crucial for lightweight drones. Today, you would be hard-pressed to find a LiPo battery that was not manufactured in China. The experienced workforce behind these companies has contributed to learning curves that have led to a 97% drop in the cost of lithium-ion batteries and a simultaneous 300%-plus increase in battery energy density over the past three decades.

China’s dominance in LiPo batteries for drones reflects its overall dominance in Li-ion manufacturing. China controls approximately 75% of global lithium-ion capacity—the anode, cathode, electrolyte, and separator subcomponents as well as the assembly into a single unit. It dominates the manufacture of each of these subcomponents, producing over 85% of anodes and over 70% of cathodes, electrolytes, and separators. China also controls the extraction and refinement of minerals needed to make these subcomponents.

Again, this dominance was not inevitable. Most of the critical breakthroughs needed to invent and commercialize Li-ion batteries were made by scientists in North America and Japan. But in comparison to the US and Europe (at least until very recently), China has taken a proactive stance to coordinate, support, and co-invest with strategic industries to commercialize emerging technologies. China’s Ministry of Industry and Information Technology has been at pains to support these domestic industries.

The case of Li-ion batteries is not an isolated one. The shift to Chinese dominance in the underlying electronics for FPV drones coincides with the period beginning in 2000, when Shenzhen started to emerge as a global hub for low-cost electronics. This trend was amplified by US corporations from Apple, for which low-cost production in China has been essential, to General Electric, which also sought low-cost approaches to maintain the competitive edge of its products. The global nature of supply chains was seen as a strength for US companies, whose comparative advantage lay in the design and integration of consumer products (such as smartphones) with little or no relevance for national security. Only a small handful of “exquisite systems” essential for military purposes were carefully developed within the US. And even those have relied upon global supply chains.

While the absence of the high-tech industrial capacity needed for economic security is easy to label, it is not simple to address. Doing so requires several interrelated elements, among them designing and incentivizing appropriate capital investments, creating and matching demand for a talented technology workforce, building robust industrial infrastructure, ensuring visibility into supply chains, and providing favorable financial and regulatory environments for on- and friend-shoring of production. This is a project that cannot be done by the public or the private sector alone. Nor is the US likely to accomplish it absent carefully crafted shared partnerships with allies and partners across both the Atlantic and the Pacific.

The opportunity to support today’s drones may have passed, but we do have the chance to build a strong industrial base to support tomorrow’s most critical technologies—not simply the eye-catching finished assemblies of autonomous vehicles, satellites, or robots but also their essential components. This will require attention to our manufacturing capabilities, our supply chains, and the materials that are the essential inputs. Alongside a shift in emphasis to our own domestic industrial base must come a willingness to plan and partner more effectively with allies and partners.

If we do so, we will transform decades of US and allied support for foundational science and technology into tomorrow’s industrial base vital for economic prosperity and national security. But to truly take advantage of this opportunity, we need to value and support our shared, long-term economic security. And this means rewarding patient investment in projects that take a decade or more, incentivizing high-capital industrial activity, and maintaining a determined focus on education and workforce development—all within a flexible regulatory framework.

Edlyn V. Levine is CEO and co-founder of a stealth-mode technology start up and an affiliate at MIT Sloan School of Management and the Department of Physics at Harvard University. Levine was co-founder and CSO of America’s Frontier Fund, and formerly Chief Technologist for the MITRE Corporation.

Fiona Murray is the William Porter (1967) Professor of Entrepreneurship at the MIT School of Management where she works at the intersection of critical technologies, entrepreneurship, and geopolitics. She is the Vice Chair of the NATO Innovation Fund—a multi-sovereign venture fund for defense, security and resilience, and served for a decade on the UK Prime Minister’s Council on Science and Technology.