Texas banned lab-grown meat. What’s next for the industry?

Last week, a legal battle over lab-grown meat kicked off in Texas. On September 1, a two-year ban on the technology went into effect across the state; the following day, two companies filed a lawsuit against state officials.

The two companies, Wildtype Foods and Upside Foods, are part of a growing industry that aims to bring new types of food to people’s plates. These products, often called cultivated meat by the industry, take live animal cells and grow them in the lab to make food products without the need to slaughter animals.

Texas joins six other US states and the country of Italy in banning these products. These legal challenges are adding barriers to an industry that’s still in its infancy and already faces plenty of challenges before it can reach consumers in a meaningful way.

The agriculture sector makes up a hefty chunk of global greenhouse-gas emissions, with livestock alone accounting for somewhere between 10% and 20% of climate pollution. Alternative meat products, including those grown in a lab, could help cut the greenhouse gases from agriculture.

The industry is still in its early days, though. In the US, just a handful of companies can legally sell products including cultivated chicken, pork fat, and salmon. Australia, Singapore, and Israel also allow a few companies to sell within their borders.

Upside Foods, which makes cultivated chicken, was one of the first to receive the legal go-ahead to sell its products in the US, in 2022. Wildtype Foods, one of the latest additions to the US market, was able to start selling its cultivated salmon in June.

Upside, Wildtype, and other cultivated-meat companies are still working to scale up production. Products are generally available at pop-up events or on special menus at high-end restaurants. (I visited San Francisco to try Upside’s cultivated chicken at a Michelin-starred restaurant a few years ago.)

Until recently, the only place you could reliably find lab-grown meat in Texas was a sushi restaurant in Austin. Otoko featured Wildtype’s cultivated salmon on a special tasting menu starting in July. (The chef told local publication Culture Map Austin that the cultivated fish tastes like wild salmon, and it was included in a dish with grilled yellowtail to showcase it side-by-side with another type of fish.)

The as-yet-limited reach of lab-grown meat didn’t stop state officials from moving to ban the technology, effective from now until September 2027.

The office of state senator Charles Perry, the author of the bill, didn’t respond to requests for comment. Neither did the Texas and Southwestern Cattle Raisers Association, whose president, Carl Ray Polk Jr., testified in support of the bill in a March committee hearing.

“The introduction of lab-grown meat could disrupt traditional livestock markets, affecting rural communities and family farms,” Perry said during the meeting.

In an interview with the Texas Tribune, Polk said the two-year moratorium would help the industry put checks and balances in place before the products could be sold. He also expressed concern about how clearly cultivated-meat companies will be labeling their products.

“The purpose of these bans is to try to kill the cultivated-meat industry before it gets off the ground,” said Myra Pasek, general counsel of Upside Foods, via email. The company is working to scale up its manufacturing and get the product on the market, she says, “but that can’t happen if we’re not allowed to compete in the marketplace.”

Others in the industry have similar worries. “Moratoriums on sale like this not only deny Texans new choices and economic growth, but they also send chilling signals to researchers and entrepreneurs across the country,” said Pepin Andrew Tuma, the vice president of policy and government relations for the Good Food Institute, a nonprofit think tank focused on alternative proteins, in a statement. (The group isn’t involved in the lawsuit.) 

One day after the moratorium took effect on September 1, Wildtype Foods and Upside Foods filed a lawsuit challenging the ban, naming Jennifer Shuford, commissioner of the Texas Department of State Health Services, among other state officials.

A lawsuit wasn’t necessarily part of the scale-up plan. “This was really a last resort for us,” says Justin Kolbeck, cofounder and CEO of Wildtype.

Growing cells to make meat in the lab isn’t easy—some companies have spent a decade or more trying to make significant amounts of a product that people want to eat. These legal battles certainly aren’t going to help. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

AI is changing the grid. Could it help more than it harms?

The rising popularity of AI is driving an increase in electricity demand so significant it has the potential to reshape our grid. Energy consumption by data centers has gone up by 80% from 2020 to 2025 and is likely to keep growing. Electricity prices are already rising, especially in places where data centers are most concentrated. 

Yet many people, especially in Big Tech, argue that AI will be, on balance, a positive force for the grid. They claim that the technology could help get more clean power online faster, run our power system more efficiently, and predict and prevent failures that cause blackouts. 


This story is a part of MIT Technology Review’s series “Power Hungry: AI and our energy future,” on the energy demands and carbon costs of the artificial-intelligence revolution.


There are early examples where AI is helping already, including AI tools that utilities are using to help forecast supply and demand. The question is whether these big promises will be realized fast enough to outweigh the negative effects of AI on local grids and communities. 

A delicate balance

One area where AI is already being used for the grid is in forecasting, says Utkarsha Agwan, a member of the nonprofit group Climate Change AI.

Running the grid is a balancing act: Operators have to understand how much electricity demand there is and turn on the right combination of power plants to meet it. They optimize for economics along the way, choosing the sources that will keep prices lowest for the whole system.

That makes it necessary to look ahead hours and in some cases days. Operators consider factors such as historical data (holidays often see higher demand) and the weather (a hot day means more air conditioners sucking up power). These predictions also consider what level of supply is expected from intermittent sources like solar panels.

There’s little risk in using AI tools in forecasting; it’s often not as time sensitive as other applications, which can require reactions within seconds or even milliseconds. A grid operator might use a forecast to determine which plants will need to turn on. Other groups might run their own forecasts as well, using AI tools to decide how to staff a plant, for example. The tools also can’t physically control anything. Rather, they can be used alongside more conventional methods to provide more data.  

Today, grid operators make a lot of approximations to model the grid, because the system is so incredibly complex that it’s impossible to truly know what’s going on in every place at every time. Not only are there a whole host of power plants and consumers to think about, but there are considerations like making sure power lines don’t get overloaded.

Working with those estimates can lead to some inefficiencies, says Kyri Baker, a professor at the University of Colorado Boulder. Operators tend to generate a bit more electricity than the system uses, for example. Using AI to create a better model could reduce some of those losses and allow operators to make decisions about how to control infrastructure in real time to reach a closer match of supply and demand.

She gives the example of a trip to the airport. Imagine there’s a route you know will get you there in about 45 minutes. There might be another, more complicated route that could save you some time in ideal conditions—but you’re not sure whether it’s better on any particular day. What the grid does now is the equivalent of taking the reliable route.

“So that’s the gap that AI can help close. We can solve this more complex problem, fast enough and reliably enough that we can possibly use it and shave off emissions,” Baker says. 

In theory, AI could be used to operate the grid entirely without human intervention. But that work is largely still in the research phase. Grid operators are running some of the most critical infrastructure in this country, and the industry is hesitant to mess with something that’s already working, Baker says. If this sort of technology is ever used in grid operations, there will still be humans in the loop to help make decisions, at least when it’s first deployed.  

Planning ahead

Another fertile area for AI is planning future updates to the grid. Building a power plant can take a very long time—the typical time from an initial request to commercial operation in the US is roughly four years. One reason for the lengthy wait is that new power plants have to demonstrate how they might affect the rest of the grid before they can connect. 

An interconnection study examines whether adding a new power plant of a particular type in a particular place would require upgrades to the grid to prevent problems. After regulators and utilities determine what upgrades might be needed, they estimate the cost, and the energy developer generally foots the bill. 

Today, those studies can take months. They involve trying to understand an incredibly complicated system, and because they rely on estimates of other existing and proposed power plants, only a few can happen in an area at any given time. This has helped create the years-long interconnection queue, a long line of plants waiting for their turn to hook up to the grid in markets like the US and Europe. The vast majority of projects in the queue today are renewables, which means there’s clean power just waiting to come online. 

AI could help speed this process, producing these reports more quickly. The Midcontinent Independent System Operator, a grid operator that covers 15 states in the central US, is currently working with a company called Pearl Street to help automate these reports.

AI won’t be a cure-all for grid planning; there are other steps to clearing the interconnection queue, including securing the necessary permits. But the technology could help move things along. “The sooner we can speed up interconnection, the better off we’ll be,” says Rob Gramlich, president of Grid Strategies, a consultancy specializing in transmission and power markets.

There’s a growing list of other potential uses for AI on the grid and in electricity generation. The technology could monitor and plan ahead for failures in equipment ranging from power lines to gear boxes. Computer vision could help detect everything from wildfires to faulty lines. AI could also help balance supply and demand in virtual power plants, systems of distributed resources like EV chargers or smart water heaters. 

While there are early examples of research and pilot programs for AI from grid planning to operation, some experts are skeptical that the technology will deliver at the level some are hoping for. “It’s not that AI has not had some kind of transformation on power systems,” Climate Change AI’s Agwan says. “It’s that the promise has always been bigger, and the hope has always been bigger.”

Some places are already seeing higher electricity prices because of power needs from data centers. The situation is likely to get worse. Electricity demand from data centers is set to double by the end of the decade, reaching 945 terawatt-hours, roughly the annual demand from the entire country of Japan. 

The infrastructure growth needed to support AI load growth has outpaced the promises of the technology, “by quite a bit,” says Panayiotis Moutis, an assistant professor of electrical engineering at the City College of New York. Higher bills caused by the increasing energy needs of AI aren’t justified by existing ways of using the technology for the grid, he says. 

“At the moment, I am very hesitant to lean on the side of AI being a silver bullet,” Moutis says. 

Correction: This story has been updated to correct Moutis’s affiliation.

Meet the Ethiopian entrepreneur who is reinventing ammonia production

Iwnetim Abate is one of MIT Technology Review’s 2025 Innovators Under 35. Meet the rest of this year’s honorees. 

“I’m the only one who wears glasses and has eye problems in the family,” Iwnetim Abate says with a smile as sun streams in through the windows of his MIT office. “I think it’s because of the candles.”

In the small town in Ethiopia where he grew up, Abate’s family had electricity, but it was unreliable. So, for several days each week when they were without power, Abate would finish his homework by candlelight.

Today, Abate, 32, is an assistant professor at MIT in the department of materials science and engineering. Part of his research focuses on sodium-ion batteries, which could be cheaper than the lithium-based ones that typically power electric vehicles and grid installations. He’s also pursuing a new research path, examining how to harness the heat and pressure under the Earth’s surface to make ammonia, a chemical used in fertilizer and as a green fuel.

Growing up without the ubiquitous access to electricity that many people take for granted shaped the way Abate thinks about energy issues, he says. He recalls rushing to dry out his school uniform over a fire before he left in the morning. One of his chores was preparing cow dung to burn as fuel—the key is strategically placing holes to ensure proper drying, he says.

Abate’s desire to devote his attention to energy crystallized in a high school chemistry class on fuel cells. “It was like magic,” he says, to learn it’s possible to basically convert water into energy. “Sometimes science is magic, right?”

Abate scored the highest of any student in Ethiopia on the national exam the year he took it, and he knew he wanted to go to the US to further his education. But actually getting there proved to be a challenge. 

Abate applied to US colleges for three years before he was granted admission to Concordia College Moorhead, a small liberal arts college, with a partial scholarship. To raise the remaining money, he reached out to various companies and wealthy people across Ethiopia. He received countless rejections but didn’t let that phase him. He laughs recalling how guards would chase him off when he dropped by prospects’ homes in person. Eventually, a family friend agreed to help.

When Abate finally made it to the Minnesota college, he walked into a room in his dorm building and the lights turned on automatically. “I both felt happy to have all this privilege and I felt guilty at the same time,” he says.

Lab notes

His college wasn’t a research institute, so Abate quickly set out to get into a laboratory. He reached out to Sossina Haile, then at the California Institute of Technology, to ask about a summer research position.

Haile, now at Northwestern University, recalls thinking that Abate was particularly eager. As a visible Ethiopian scientist, she gets a lot of email requests, but his stood out. “No obstacle was going to stand in his way,” she says. It was risky to take on a young student with no research experience who’d only been in the US for a year, but she offered him a spot in her lab.

Abate spent the summer working on materials for use in solid oxide fuel cells. He returned for the following summer, then held a string of positions in energy-materials research, including at IBM and Los Alamos National Lab, before completing his graduate degree at Stanford and postdoctoral work at the University of California, Berkeley.

Meet the rest of this year’s 
Innovators Under 35.

He joined the MIT faculty in 2023 and set out to build a research group of his own. Today, there are two major focuses of his lab. One is sodium-ion batteries, which are a popular alternative to the lithium-based cells used in EVs and grid storage installations. Sodium-ion batteries don’t require the kinds of critical minerals lithium-ion batteries do, which can be both expensive and tied up by geopolitics.  

One major stumbling block for sodium-ion batteries is their energy density. It’s possible to improve energy density by operating at higher voltages, but some of the materials used tend to degrade quickly at high voltages. That limits the total energy density of the battery, so it’s a problem for applications like electric vehicles, where a low energy density would restrict range.

Abate’s team is developing materials that could extend the lifetime of sodium-ion batteries while avoiding the need for nickel, which is considered a critical mineral in the US. The team is examining additives and testing materials-engineering techniques to help the batteries compete with lithium-ion cells.

Irons in the fire

Another vein of Abate’s work is in some ways a departure from his history in batteries and fuel cells. In January, his team published research describing a process to make ammonia underground, using naturally-occurring heat and pressure to drive the necessary chemical reactions.  

Today, making ammonia generates between 1% and 2% of global greenhouse gas emissions. It’s primarily used to fertilize crops, but it’s also being considered as a fuel for sectors like long-distance shipping.

Abate cofounded a company called Addis Energy to commercialize the research, alongside MIT serial entrepreneur Yet-Ming Chiang and a pair of oil industry experts. (Addis means “new” in Amharic, the official language of Ethiopia.) For an upcoming pilot, the company aims to build an underground reactor that can produce ammonia. 

When he’s not tied up in research or the new startup, Abate runs programs for African students. In 2017, he cofounded an organization called Scifro, which runs summer school programs in Ethiopia and plans to expand to other countries, including Rwanda. The programs focus on providing mentorship and educating students about energy and medical devices, which is the specialty of his cofounder. 

While Abate holds a position at one of the world’s most prestigious universities and serves as chief science officer of a buzzy startup, he’s quick to give credit to those around him. “It takes a village to build something, and it’s not just me,” he says.

Abate often thinks about his friends, family, and former neighbors in Ethiopia as he works on new energy solutions. “Of course, science is beautiful, and we want to make an impact,” he says. “Being good at what you do is important, but ultimately, it’s about people.”

How Trump is helping China extend its massive lead in clean energy 

On a spring day in 1954, Bell Labs researchers showed off the first practical solar panels at a press conference in Murray Hill, New Jersey, using sunlight to spin a toy Ferris wheel before a stunned crowd.

The solar future looked bright. But in the race to commercialize the technology it invented, the US would lose resoundingly. Last year, China exported $40 billion worth of solar panels and modules, while America shipped just $69 million, according to the New York Times. It was a stunning forfeit of a huge technological lead. 

And now the US seems determined to repeat the mistake. In its quest to prop up aging fossil-fuel industries, the Trump administration has slashed federal support for the emerging cleantech sector, handing his nation’s chief economic rival the most generous of gifts: an unobstructed path to locking in its control of emerging energy technologies, and a leg up in inventing the industries of the future.

China’s dominance of solar was no accident. In the late 2000s, the government simply determined that the sector was a national priority. Then it leveraged deep subsidies, targeted policies, and price wars to scale up production, drive product improvements, and slash costs. It’s made similar moves in batteries, electric vehicles, and wind turbines. 

Meanwhile, President Donald Trump has set to work unraveling hard-won clean-energy achievements in the US, snuffing out the gathering momentum to rebuild the nation’s energy sector in cleaner, more sustainable ways.

The tax and spending bill that Trump signed into law in early July wound down the subsidies for solar and wind power contained in the Inflation Reduction Act of 2022. The legislation also cut off federal support for cleantech projects that rely too heavily on Chinese materials—a hamfisted bid to punish Chinese industries that will instead make many US projects financially unworkable.

Meanwhile, the administration has slashed federal funding for science and attacked the financial foundations of premier research universities, pulling up the roots of future energy innovations and industries.

A driving motivation for many of these policies is the quest to protect the legacy energy industry based on coal, oil, and natural gas, all of which the US is geologically blessed with. But this strategy amounts to the innovator’s dilemma playing out at a national scale—a country clinging to its declining industries rather than investing in the ones that will define the future.

It does not particularly matter whether Trump believes in or cares about climate change. The economic and international security imperatives to invest in modern, sustainable industries are every bit as indisputable as the chemistry of greenhouse gases.

Without sustained industrial policies that reward innovation, American entrepreneurs and investors won’t risk money and time creating new businesses, developing new products, or building first-of-a-kind projects here. Indeed, venture capitalists have told me that numerous US climate-tech companies are already looking overseas, seeking markets where they can count on government support. Some fear that many other companies will fail in the coming months as subsidies disappear, developments stall, and funding flags. 

All of which will help China extend an already massive lead.

The nation has installed nearly three times as many wind turbines as the US, and it generates more than twice as much solar power. It boasts five of the 10 largest EV companies in the world, and the three largest wind turbine manufacturers. China absolutely dominates the battery market, producing the vast majority of the anodes, cathodes, and battery cells that increasingly power the world’s vehicles, grids, and gadgets.

China harnessed the clean-energy transition to clean up its skies, upgrade its domestic industries, create jobs for its citizens, strengthen trade ties, and build new markets in emerging economies. In turn, it’s using those business links to accrue soft power and extend its influence—all while the US turns it back on global institutions.

These widening relationships increasingly insulate China from external pressures, including those threatened by Trump’s go-to tactic: igniting or inflaming trade wars. 

But stiff tariffs and tough talk aren’t what built the world’s largest economy and established the US as the global force in technology for more than a century. What did was deep, sustained federal investment into education, science, and research and development—the very budget items that Trump and his party have been so eager to eliminate. 

Another thing

Earlier this summer, the EPA announced plans to revoke the Obama-era “endangerment finding,” the legal foundation for regulating the nation’s greenhouse-gas pollution. 

The agency’s argument leans heavily on a report that rehashes decades-old climate-denial talking points to assert that rising emissions haven’t produced the harms that scientists expected. It’s a wild, Orwellian plea for you to reject the evidence of your eyes and ears in a summer that saw record heat waves in the Midwest and East and is now blanketing the West in wildfire smoke.

Over the weekend, more than 85 scientists sent a point-by-point, 459-page rebuttal to the federal government, highlighting myriad ways in which the report “is biased, full of errors, and not fit to inform policy making,” as Bob Kopp, a climate scientist at Rutgers, put it on Bluesky.

“The authors reached these flawed conclusions through selective filtering of evidence (‘cherry picking’), overemphasis of uncertainties, misquoting peer-reviewed research, and a general dismissal of the vast majority of decades of peer-reviewed research,” the dozens of reviewers found.

The Trump administration handpicked researchers who would write the report it wanted to support its quarrel with thermometers and justify its preordained decision to rescind the endangerment finding. But it’s legally bound to hear from others as well, notes Karen McKinnon, a climate researcher at the University of California, Los Angeles.

“Luckily, there is time to take action,” McKinnon said in a statement. “Comment on the report, and contact your representatives to let them know we need to take action to bring back the tolerable summers of years past.”

You can read the full report here, or NPR’s take here. And be sure to read Casey Crownhart’s earlier piece in The Spark on the endangerment finding.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

This American nuclear company could help India’s thorium dream

For just the second time in nearly two decades, the United States has granted an export license to an American company planning to sell nuclear technology to India, MIT Technology Review has learned. The decision to greenlight Clean Core Thorium Energy’s license is a major step toward closer cooperation between the two countries on atomic energy and marks a milestone in the development of thorium as an alternative to uranium for fueling nuclear reactors. 

Starting from the issuance last week, the thorium fuel produced by the Chicago-based company can be shipped to reactors in India, where it could be loaded into the cores of existing reactors. Once Clean Core receives final approval from Indian regulators, it will become one of the first American companies to sell nuclear technology to India, just as the world’s most populous nation has started relaxing strict rules that have long kept the US private sector from entering its atomic power industry. 

“This license marks a turning point, not just for Clean Core but for the US-India civil nuclear partnership,” says Mehul Shah, the company’s chief executive and founder. “It places thorium at the center of the global energy transformation.”

Thorium has long been seen as a good alternative to uranium because it’s more abundant, produces both smaller amounts of long-lived radioactive waste and fewer byproducts with centuries-long half-lives, and reduces the risk that materials from the fuel cycle will be diverted into weapons manufacturing. 

But at least some uranium fuel is needed to make thorium atoms split, making it an imperfect replacement. It’s also less well suited for use in the light-water reactors that power the vast majority of commercial nuclear plants worldwide. And in any case, the complex, highly regulated nuclear industry is extremely resistant to change.

For India, which has scant uranium reserves but abundant deposits of thorium, the latter metal has been part of a long-term strategy for reducing dependence on imported fuels. The nation started negotiating a nuclear export treaty with the US in the early 2000s, and a 123 Agreement—a special, Senate-approved treaty the US requires with another country before sending it any civilian nuclear products—was approved in 2008.

A new approach

While most thorium advocates have envisioned new reactors designed to run on this fuel, which would mean rebuilding the nuclear industry from the ground up, Shah and his team took a different approach. Clean Core created a new type of fuel that blends thorium with a more concentrated type of uranium called HALEU (high-assay low-enriched uranium). This blended fuel can be used in India’s pressurized heavy-water reactors, which make up the bulk of the country’s existing fleet and many of the new units under development now. 

Thorium isn’t a fissile material itself, meaning its atoms aren’t inherently unstable enough for an extra neutron to easily split the nuclei and release energy. But the metal has what’s known as “fertile properties,” meaning it can absorb neutrons and transform into the fissile material uranium-233. Uranium-233 produces fewer long-lived radioactive isotopes than the uranium-235 that makes up the fissionable part of traditional fuel pellets. Most commercial reactors run on low-enriched uranium, which is about 5% U-235. When the fuel is spent, roughly 95% of the energy potential is left in the metal. And what remains is a highly toxic cocktail of long-lived radioactive isotopes such as cesium-137 and plutonium-239, which keep the waste dangerous for tens of thousands of years. Another concern is that the plutonium could be extracted for use in weapons. 

Enriched up to 20%, HALEU allows reactors to extract more of the available energy and thus reduce the volume of waste. Clean Core’s fuel goes further: The HALEU provides the initial spark to ignite fertile thorium and triggers a reaction that can burn much hotter and utilize the vast majority of the material in the core, as a study published last year in the journal Nuclear Engineering and Design showed.

“Thorium provides attributes needed to achieve higher burnups,” says Koroush Shirvan, an MIT professor of nuclear science and engineering who helped design Clean Core’s fuel assemblies. “It is enabling technology to go to higher burnups, which reduces your spent fuel volume, increases your fuel efficiency, and reduces the amount of uranium that you need.” 

Compared with traditional uranium fuel, Clean Core says, its fuel reduces waste by more than 85% while avoiding the most problematic isotopes produced during fission. “The result is a safer, more sustainable cycle that reframes nuclear power not as a source of millennia-long liabilities but as a pathway to cleaner energy and a viable future fuel supply,” says Milan Shah, Clean Core’s chief operating officer and Mehul’s son.

Pressurized heavy-water reactors are particularly well suited to thorium because heavy water—a version of H2O that has an extra neutron on the hydrogen atom—absorbs fewer neutrons during the fission process, increasing efficiency by allowing more neutrons to be captured by the thorium.

There are 46 so-called PHWRs operating worldwide: 17 in Canada, 19 in India, three each in Argentina and South Korea, and two each in China and Romania, according to data from the International Atomic Energy Agency. In 1954, India set out a three-stage development plan for nuclear power that involved eventually phasing thorium into the fuel cycle for its fleet. 

Yet in the 56 years since India built its first commercial nuclear plant, its state-controlled industry has remained relatively shut off to the private sector and the rest of the world. When the US signed the 123 Agreement with India in 2008, the moment heralded an era in which the subcontinent could become a testing ground for new American reactor designs. 

In 2010, however, India passed the Civil Liability for Nuclear Damage Act. The legislation was based on what lawmakers saw as legal shortcomings in the wake of the 1984 Bhopal chemical factory disaster, when a subsidiary of the American industrial giant Dow Chemical avoided major payouts to the victims of a catastrophe that killed thousands. Under this law, responsibility for an accident at an Indian nuclear plant would fall on suppliers. The statute effectively killed any exports to India, since few companies could shoulder that burden. Only Russia’s state-owned Rosatom charged ahead with exporting reactors to India.

But things are changing. In a joint statement issued after a February 2025 summit, Prime Minister Narendra Modi and President Donald Trump “announced their commitment to fully realise the US-India 123 Civil Nuclear Agreement by moving forward with plans to work together to build US-designed nuclear reactors in India through large scale localisation and possible technology transfer.” 

In March 2025, US federal officials gave the nuclear developer Holtec International an export license to sell Indian companies its as-yet-unbuilt small modular reactors, which are based on the light-water reactor design used in the US. In April, the Indian government suggested it would reform the nuclear liability law to relax rules on foreign companies in hopes of drawing more overseas developers. Last month, a top minister confirmed that the Modi administration would overhaul the law. 

“For India, the thing they need to do is get another international vendor in the marketplace,” says Chris Gadomski, the chief nuclear analyst at the consultancy BloombergNEF.

Path of least resistance

But Shah sees larger potential for Clean Core. Unlike Holtec, whose export license was endorsed by the two Mumbai-based industrial giants Larsen & Toubro and Tata Consulting Engineers, Clean Core had its permit approved by two of India’s atomic regulators and its main state-owned nuclear company. By focusing on fuel rather than new reactors, Clean Core could become a vendor to the majority of the existing plants already operating in India. 

Its technology diverges not only from that of other US nuclear companies but also from the approach used in China. Last year, China made waves by bringing its first thorium-fueled reactor online. This enabled it to establish a new foothold in a technology the US had invented and then abandoned, and it gave Beijing another leg up in atomic energy.

But scaling that technology will require building out a whole new kind of reactor. That comes at a cost. A recent Johns Hopkins University study found that China’s success in building nuclear reactors stemmed in large part from standardization and repetition of successful designs, virtually all of which have been light-water reactors. Using thorium in existing heavy-water reactors lowers the bar for popularizing the fuel, according to the younger Shah. 

“We think ours is the path of least resistance,” Milan Shah says. “Maybe not being completely revolutionary in the way you look at nuclear today, but incredibly evolutionary to progress humanity forward.” 

The company has plans to go beyond pressurized heavy-water reactors. Within two years, the elder Shah says, Clean Core plans to design a version of its fuel that could work in the light-water reactors that make up the entire US fleet of 94. But it’s not a simple conversion. For starters, there’s the size: While the PHWR fuel rods are about 50 centimeters in length, the rods that go into light-water reactors are roughly four meters long. Then there’s the history of challenges with light water’s absorption of neutrons that could otherwise be captured to induce fission in the thorium. 

For Anil Kakodkar, the former chairman of India’s Atomic Energy Commission and a mentor to Shah, popularizing thorium could help rectify one of the darker chapters in his country’s nuclear development. In 1974, India became the first country since the signing of the first global Treaty on the Non-Proliferation of Nuclear Weapons to successfully test an atomic weapon. New Delhi was never a signatory to the pact. But the milestone prompted neighboring Pakistan to develop its own weapons. 

In response, President Jimmy Carter tried to demonstrate Washington’s commitment to reversing the Cold War arms race by sacrificing the first US effort to commercialize nuclear waste recycling, since the technology to separate plutonium and other radioisotopes from uranium in spent fuel was widely seen as a potential new source of weapons-grade material. By running its own reactors on thorium, Kakodkar says, India can chart a new path for newcomer nations that want to harness the power of the atom without stoking fears that nuclear weapons capability will spread. 

“The proliferation concerns will be dismissed to a significant extent, allowing more rapid growth of nuclear power in emerging countries,” he says. “That will be a good thing for the world at large.” 

Alexander C. Kaufman is a reporter who has covered energy, climate change, pollution, business, and geopolitics for more than a decade. 

This American nuclear company could help India’s thorium dream

For just the second time in nearly two decades, the United States has granted an export license to an American company planning to sell nuclear technology to India, MIT Technology Review has learned. The decision to greenlight Clean Core Thorium Energy’s license is a major step toward closer cooperation between the two countries on atomic energy and marks a milestone in the development of thorium as an alternative to uranium for fueling nuclear reactors. 

Starting from the issuance last week, the thorium fuel produced by the Chicago-based company can be shipped to reactors in India, where it could be loaded into the cores of existing reactors. Once Clean Core receives final approval from Indian regulators, it will become one of the first American companies to sell nuclear technology to India, just as the world’s most populous nation has started relaxing strict rules that have long kept the US private sector from entering its atomic power industry. 

“This license marks a turning point, not just for Clean Core but for the US-India civil nuclear partnership,” says Mehul Shah, the company’s chief executive and founder. “It places thorium at the center of the global energy transformation.”

Thorium has long been seen as a good alternative to uranium because it’s more abundant, produces both smaller amounts of long-lived radioactive waste and fewer byproducts with centuries-long half-lives, and reduces the risk that materials from the fuel cycle will be diverted into weapons manufacturing. 

But at least some uranium fuel is needed to make thorium atoms split, making it an imperfect replacement. It’s also less well suited for use in the light-water reactors that power the vast majority of commercial nuclear plants worldwide. And in any case, the complex, highly regulated nuclear industry is extremely resistant to change.

For India, which has scant uranium reserves but abundant deposits of thorium, the latter metal has been part of a long-term strategy for reducing dependence on imported fuels. The nation started negotiating a nuclear export treaty with the US in the early 2000s, and a 123 Agreement—a special, Senate-approved treaty the US requires with another country before sending it any civilian nuclear products—was approved in 2008.

A new approach

While most thorium advocates have envisioned new reactors designed to run on this fuel, which would mean rebuilding the nuclear industry from the ground up, Shah and his team took a different approach. Clean Core created a new type of fuel that blends thorium with a more concentrated type of uranium called HALEU (high-assay low-enriched uranium). This blended fuel can be used in India’s pressurized heavy-water reactors, which make up the bulk of the country’s existing fleet and many of the new units under development now. 

Thorium isn’t a fissile material itself, meaning its atoms aren’t inherently unstable enough for an extra neutron to easily split the nuclei and release energy. But the metal has what’s known as “fertile properties,” meaning it can absorb neutrons and transform into the fissile material uranium-233. Uranium-233 produces fewer long-lived radioactive isotopes than the uranium-235 that makes up the fissionable part of traditional fuel pellets. Most commercial reactors run on low-enriched uranium, which is about 5% U-235. When the fuel is spent, roughly 95% of the energy potential is left in the metal. And what remains is a highly toxic cocktail of long-lived radioactive isotopes such as cesium-137 and plutonium-239, which keep the waste dangerous for tens of thousands of years. Another concern is that the plutonium could be extracted for use in weapons. 

Enriched up to 20%, HALEU allows reactors to extract more of the available energy and thus reduce the volume of waste. Clean Core’s fuel goes further: The HALEU provides the initial spark to ignite fertile thorium and triggers a reaction that can burn much hotter and utilize the vast majority of the material in the core, as a study published last year in the journal Nuclear Engineering and Design showed.

“Thorium provides attributes needed to achieve higher burnups,” says Koroush Shirvan, an MIT professor of nuclear science and engineering who helped design Clean Core’s fuel assemblies. “It is enabling technology to go to higher burnups, which reduces your spent fuel volume, increases your fuel efficiency, and reduces the amount of uranium that you need.” 

Compared with traditional uranium fuel, Clean Core says, its fuel reduces waste by more than 85% while avoiding the most problematic isotopes produced during fission. “The result is a safer, more sustainable cycle that reframes nuclear power not as a source of millennia-long liabilities but as a pathway to cleaner energy and a viable future fuel supply,” says Milan Shah, Clean Core’s chief operating officer and Mehul’s son.

Pressurized heavy-water reactors are particularly well suited to thorium because heavy water—a version of H2O that has an extra neutron on the hydrogen atom—absorbs fewer neutrons during the fission process, increasing efficiency by allowing more neutrons to be captured by the thorium.

There are 46 so-called PHWRs operating worldwide: 17 in Canada, 19 in India, three each in Argentina and South Korea, and two each in China and Romania, according to data from the International Atomic Energy Agency. In 1954, India set out a three-stage development plan for nuclear power that involved eventually phasing thorium into the fuel cycle for its fleet. 

Yet in the 56 years since India built its first commercial nuclear plant, its state-controlled industry has remained relatively shut off to the private sector and the rest of the world. When the US signed the 123 Agreement with India in 2008, the moment heralded an era in which the subcontinent could become a testing ground for new American reactor designs. 

In 2010, however, India passed the Civil Liability for Nuclear Damage Act. The legislation was based on what lawmakers saw as legal shortcomings in the wake of the 1984 Bhopal chemical factory disaster, when a subsidiary of the American industrial giant Dow Chemical avoided major payouts to the victims of a catastrophe that killed thousands. Under this law, responsibility for an accident at an Indian nuclear plant would fall on suppliers. The statute effectively killed any exports to India, since few companies could shoulder that burden. Only Russia’s state-owned Rosatom charged ahead with exporting reactors to India.

But things are changing. In a joint statement issued after a February 2025 summit, Prime Minister Narendra Modi and President Donald Trump “announced their commitment to fully realise the US-India 123 Civil Nuclear Agreement by moving forward with plans to work together to build US-designed nuclear reactors in India through large scale localisation and possible technology transfer.” 

In March 2025, US federal officials gave the nuclear developer Holtec International an export license to sell Indian companies its as-yet-unbuilt small modular reactors, which are based on the light-water reactor design used in the US. In April, the Indian government suggested it would reform the nuclear liability law to relax rules on foreign companies in hopes of drawing more overseas developers. Last month, a top minister confirmed that the Modi administration would overhaul the law. 

“For India, the thing they need to do is get another international vendor in the marketplace,” says Chris Gadomski, the chief nuclear analyst at the consultancy BloombergNEF.

Path of least resistance

But Shah sees larger potential for Clean Core. Unlike Holtec, whose export license was endorsed by the two Mumbai-based industrial giants Larsen & Toubro and Tata Consulting Engineers, Clean Core had its permit approved by two of India’s atomic regulators and its main state-owned nuclear company. By focusing on fuel rather than new reactors, Clean Core could become a vendor to the majority of the existing plants already operating in India. 

Its technology diverges not only from that of other US nuclear companies but also from the approach used in China. Last year, China made waves by bringing its first thorium-fueled reactor online. This enabled it to establish a new foothold in a technology the US had invented and then abandoned, and it gave Beijing another leg up in atomic energy.

But scaling that technology will require building out a whole new kind of reactor. That comes at a cost. A recent Johns Hopkins University study found that China’s success in building nuclear reactors stemmed in large part from standardization and repetition of successful designs, virtually all of which have been light-water reactors. Using thorium in existing heavy-water reactors lowers the bar for popularizing the fuel, according to the younger Shah. 

“We think ours is the path of least resistance,” Milan Shah says. “Maybe not being completely revolutionary in the way you look at nuclear today, but incredibly evolutionary to progress humanity forward.” 

The company has plans to go beyond pressurized heavy-water reactors. Within two years, the elder Shah says, Clean Core plans to design a version of its fuel that could work in the light-water reactors that make up the entire US fleet of 94. But it’s not a simple conversion. For starters, there’s the size: While the PHWR fuel rods are about 50 centimeters in length, the rods that go into light-water reactors are roughly four meters long. Then there’s the history of challenges with light water’s absorption of neutrons that could otherwise be captured to induce fission in the thorium. 

For Anil Kakodkar, the former chairman of India’s Atomic Energy Commission and a mentor to Shah, popularizing thorium could help rectify one of the darker chapters in his country’s nuclear development. In 1974, India became the first country since the signing of the first global Treaty on the Non-Proliferation of Nuclear Weapons to successfully test an atomic weapon. New Delhi was never a signatory to the pact. But the milestone prompted neighboring Pakistan to develop its own weapons. 

In response, President Jimmy Carter tried to demonstrate Washington’s commitment to reversing the Cold War arms race by sacrificing the first US effort to commercialize nuclear waste recycling, since the technology to separate plutonium and other radioisotopes from uranium in spent fuel was widely seen as a potential new source of weapons-grade material. By running its own reactors on thorium, Kakodkar says, India can chart a new path for newcomer nations that want to harness the power of the atom without stoking fears that nuclear weapons capability will spread. 

“The proliferation concerns will be dismissed to a significant extent, allowing more rapid growth of nuclear power in emerging countries,” he says. “That will be a good thing for the world at large.” 

Alexander C. Kaufman is a reporter who has covered energy, climate change, pollution, business, and geopolitics for more than a decade. 

Google’s still not giving us the full picture on AI energy use

Google just announced that a typical query to its Gemini app uses about 0.24 watt-hours of electricity. That’s about the same as running a microwave for one second—something that, to me, feels virtually insignificant. I run the microwave for so many more seconds than that on most days.

I was excited to see this report come out, and I welcome more openness from major players in AI about their estimated energy use per query. But I’ve noticed that some folks are taking this number and using it to conclude that we don’t need to worry about AI’s energy demand. That’s not the right takeaway here. Let’s dig into why.

1. This one number doesn’t reflect all queries, and it leaves out cases that likely use much more energy.

Google’s new report considers only text queries. Previous analysis, including MIT Technology Review’s reporting, suggests that generating a photo or video will typically use more electricity.

When I spoke with Jeff Dean, Google’s chief scientist, he said the company doesn’t currently have plans to do this sort of analysis for images and videos, but that he wouldn’t rule it out.

The reason the company started with text prompts is that those are something many people out there are using in their daily lives, he says, while image and video generation is something that not as many people are doing. But I’m seeing more AI images and videos all over my social feeds. So there’s a whole world of queries not represented here.

Also, this estimate is the median, meaning it’s just the number in the middle of the range of queries Google is seeing. Longer questions and responses can push up the energy demand, and so can using a reasoning model.  We don’t know anything about how much energy these more complicated queries demand or what the distribution of the range is.

2. We don’t know how many queries Gemini is seeing, so we don’t know the product’s total energy impact.

One of my biggest outstanding questions about Gemini’s energy use is the total number of queries the product is seeing every day. 

This number isn’t included in Google’s report, and the company wouldn’t share it with me. And let me be clear: I absolutely pestered them about this, both in a press call they had about the news and in my interview with Dean. In the press call, the company pointed me to a recent earnings report, which includes only figures about monthly active users (450 million, for what it’s worth).

“We’re not comfortable revealing that for various reasons,” Dean told me on our call. The total number is an abstract measure that changes over time, he says, adding that the company wants users to be thinking about the energy usage per prompt.

But there are people out there all over the world interacting with this technology, not just me—and what we all add up to seems quite relevant.

OpenAI does publicly share its total, sharing recently that it sees 2.5 billion queries to ChatGPT every day. So for the curious, we can use this as an example and take the company’s self-reported average energy use per query (0.34 watt-hours) to get a rough idea of the total for all people prompting ChatGPT.

According to my math, over the course of a year, that would add up to over 300 gigawatt-hours—the same as powering nearly 30,000 US homes annually. When you put it that way, it starts to sound like a lot of seconds in microwaves.

3. AI is everywhere, not just in chatbots, and we’re often not even conscious of it.

AI is touching our lives even when we’re not looking for it. AI summaries appear in web searches, whether you ask for them or not. There are built-in features for email and texting applications that that can draft or summarize messages for you.

Google’s estimate is strictly for Gemini apps and wouldn’t include many of the other ways that even this one company is using AI. So even if you’re trying to think about your own personal energy demand, it’s increasingly difficult to tally up. 

To be clear, I don’t think people should feel guilty for using tools that they find genuinely helpful. And ultimately, I don’t think the most important conversation is about personal responsibility. 

There’s a tendency right now to focus on the small numbers, but we need to keep in mind what this is all adding up to. Over two gigawatts of natural gas will need to come online in Louisiana to power a single Meta data center this decade. Google Cloud is spending $25 billion on AI just in the PJM grid on the US East Coast. By 2028, AI could account for 326 terawatt-hours of electricity demand in the US annually, generating over 100 million metric tons of carbon dioxide.

We need more reporting from major players in AI, and Google’s recent announcement is one of the most transparent accounts yet. But one small number doesn’t negate the ways this technology is affecting communities and changing our power grid. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

How lidar measures the cost of climate disasters

The wildfires that swept through Los Angeles County in January 2025 left an indelible mark on the Southern California landscape. The Eaton and Palisades fires raged for 24 days, killing 29 people and destroying 16,000 structures, with losses estimated at $60 billion. More than 55,000 acres were consumed, and the landscape itself was physically transformed.

Researchers are now using lidar (light detection and ranging) technology to precisely measure these changes in the landscape’s geometry—helping them understand the effects of climate disasters.

Lidar, which measures how long it takes for pulses of laser light to bounce off surfaces and return, has been used in topographic mapping for decades. Today, airborne lidar from planes and drones maps the Earth’s surface in high detail. Scientists can then “diff” the data—compare before-and-after snapshots and highlight all the changes—to identify more subtle consequences of a disaster, including fault-line shifts, volcanic eruptions, and mudslides.

Falko Kuester, an engineering professor at the University of California, San Diego, co-directs ALERTCalifornia, a public safety program that uses real-time remote sensing to help detect wildfires. Kuester says lidar snapshots can tell a story over time.

“They give us a lay of the land,” he says. “This is what a particular region has been like at this point in time. Now, if you have consecutive flights at a later time, you can do a ‘difference.’ Show me what it looked like. Show me what it looks like. Tell me what changed. Was something constructed? Something burned down? Did something fall down? Did vegetation grow?” 

Shortly after the fires were contained in late January 2025, ALERTCalifornia sponsored new lidar flights over the Eaton and Palisades burn areas. NV5, an inspection and engineering firm, conducted the scans, and the US Geological Survey is now hosting the public data sets.  

Comparing a 2016 lidar snapshot and the January 2025 snapshot, Cassandra Brigham and her team at Arizona State University visualized the elevation changes—revealing the buildings, trees, and structures that had disappeared.

“We said, what would be a useful product for people to have as quickly as possible, since we’re doing this a couple weeks after the end of the fires?” says Brigham. Her team cleaned and reformatted the older, lower-resolution data and then subtracted the newer data. The resulting visualizations reveal the scale of devastation in ways satellite imagery can’t match. Red shows lost elevation (like when a building burns), and blue shows a gain (such as tree growth or new construction).

Lidar is helping scientists track the cascading effects of climate-­driven disasters—from the damage to structures and vegetation destroyed by wildfires to the landslides and debris flows that often follow in their wake. “For the Eaton and Palisades fires, for example, entire hillsides burned. So all of that vegetation is removed,” Kuester says. “Now you have an atmospheric river coming in, dumping water. What happens next? You have debris flows, mud flows, landslides.” 

Lidar’s usefulness for quantifying the costs of climate disasters underscores its value in preparing for future fires, floods, and earthquakes. But as policymakers weigh steep budget cuts to scientific research, these crucial lidar data collection projects could face an uncertain future.

Jon Keegan writes about technology and AI, and he publishes Beautiful Public Data (beautifulpublicdata.com), a curated collection of government data sets.

Why recycling isn’t enough to address the plastic problem

I remember using a princess toothbrush when I was little. The handle was purple, teal, and sparkly. Like most of the other pieces of plastic that have ever been made, it’s probably still out there somewhere, languishing in a landfill. (I just hope it’s not in the ocean.)

I’ve been thinking about that toothbrush again this week after UN talks about a plastic treaty broke down on Friday. Nations had gotten together to try and write a binding treaty to address plastic waste, but negotiators left without a deal.

Plastic is widely recognized as a huge source of environmental pollution—again, I’m wondering where that toothbrush is—but the material is also a contributor to climate change. Let’s dig into why talks fell apart and how we might address emissions from plastic.

I’ve defended plastic before in this newsletter (sort of). It’s a wildly useful material, integral in everything from glasses lenses to IV bags.

But the pace at which we’re producing and using plastic is absolutely bonkers. Plastic production has increased at an average rate of 9% every year since 1950. Production hit 460 million metric tons in 2019. And an estimated 52 million metric tons are dumped into the environment or burned each year.

So, in March 2022, the UN Environment Assembly set out to develop an international treaty to address plastic pollution. Pretty much everyone should agree that a bunch of plastic waste floating in the ocean is a bad thing. But as we’ve learned over the past few years, as these talks developed, opinions diverge on what to do about it and how any interventions should happen.

One phrase that’s become quite contentious is the “full life cycle” of plastic. Basically, some groups are hoping to go beyond efforts to address just the end of the plastic life cycle (collecting and recycling it) by pushing for limits on plastic production. There was even talk at the Assembly of a ban on single-use plastic.

Petroleum-producing nations strongly opposed production limits in the talks. Representatives from Saudi Arabia and Kuwait told the Guardian that they considered limits to plastic production outside the scope of talks. The US reportedly also slowed down talks and proposed to strike a treaty article that references the full life cycle of plastics.

Petrostates have a vested interest because oil, natural gas, and coal are all burned for energy used to make plastic, and they’re also used as raw materials. This stat surprised me: 12% of global oil demand and over 8% of natural gas demand is for plastic production.  

That translates into a lot of greenhouse gas emissions. One report from Lawrence Berkeley National Lab found that plastics production accounted for 2.24 billion metric tons of carbon dioxide emissions in 2019—that’s roughly 5% of the global total.  

And looking into the future, emissions from plastics are only set to grow. Another estimate, from the Organisation for Economic Co-operation and Development, projects that emissions from plastics could swell from about 2 billion metric tons to 4 billion metric tons by 2060.

This chart is what really strikes me and makes the conclusion of the plastic treaty talks such a disappointment.

Recycling is a great tool, and new methods could make it possible to recycle more plastics and make it easier to do so. (I’m particularly interested in efforts to recycle a mix of plastics, cutting down on the slow and costly sorting process.)

But just addressing plastic at its end of life won’t be enough to address the climate impacts of the material. Most emissions from plastic come from making it. So we need new ways to make plastic, using different ingredients and fuels to take oil and gas out of the equation. And we need to be smarter about the volume of plastic we produce.  

One positive note here: The plastic treaty isn’t dead, just on hold for the moment. Officials say that there’s going to be an effort to revive the talks.

Less than 10% of plastic that’s ever been produced has been recycled. Whether it’s a water bottle, a polyester shirt you wore a few times, or a princess toothbrush from when you were a kid, it’s still out there somewhere in a landfill or in the environment. Maybe you already knew that. But also consider this: The greenhouse gases emitted to make the plastic are still in the atmosphere, too, contributing to climate change. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

How to make clean energy progress under Trump in the states—blue and red alike

The second Trump administration is proving to be more disastrous for the climate and the clean energy economy than many had feared. 

Donald Trump’s One Big Beautiful Bill Act repealed most of the clean energy incentives in former president Joe Biden’s Inflation Reduction Act. Meanwhile, his EPA administrator moved to revoke the endangerment finding, the legal basis for federal oversight of greenhouse gases. For those of us who have been following policy developments in this area closely, nearly every day brings a new blow to past efforts to salvage our climate and to build the clean energy economy of the future.


Heat Exchange

MIT Technology Review’s guest opinion series, offering expert commentary on legal, political and regulatory issues related to climate change and clean energy. You can read the rest of the pieces here.


This has left many in the climate and clean energy communities wondering what do we do now? The answer, I would argue, is to return to state capitals—a policymaking venue that climate and renewable energy advocates already know well. This can be done strategically, focusing on a handful of key states rather than all fifty. 

But I have another piece of advice: Don’t get too caught up in “red states” versus “blue states” when considering which states to target. American politics is being remade before our eyes, and long-standing policy problems are being redefined and reframed.  

Let’s take clean energy, for example. Yes, shifting away from carbon-spewing resources is about slowing down climate change, and for some this is the single most important motivation for pursuing it. But it also can be about much more. 

The case can be made just as forcefully—and perhaps more effectively—that shifting to clean energy advances affordability at a time when electricity bills are skyrocketing. It promotes energy freedom by resisting monopolistic utilities’ ownership and gatekeeping of the grid. It increases reliability as battery storage reaches new heights and renewable sources and baseload power plants like nuclear or natural gas facilities (some of which we certainly do and will need) increasingly complement one another. And it drives job creation and economic development. 

Talking about clean energy policy in these ways is safer from ideological criticisms of “climate alarmism.” Research reported in my forthcoming book, Owning the Green Grid, shows that this framing has historically been effective in red states. In addition, using the arguments above to promote all forms of energy can allow clean energy proponents to reclaim a talking point deployed in a previous era by the political right: a true “all-of-the-above” approach to energy policy.

Every energy technology—gas, nuclear, wind, solar, geothermal and storage, among others—has its own set of strengths and weaknesses. But combining them enhances overall grid performance, delivering more than the sum of their individual parts.

To be clear, this is not the approach of the current national administration in Washington, DC. Its policies have picked winners (coal, oil, and natural gas) and losers (solar and wind) among energy technologies—ironically, given conservative claims of blue states having done so in the past. Yet a true all-of-the-above approach can now be sold in state capitals throughout the country, in red states and even in fossil-fuel producing states. 

To be sure, the Trump-led Republican party has taken such extreme measures that it will constrain certain state policymaking possibilities. Notably, in May the US Senate voted to block waivers allowing California to phase out gas guzzlers in the state, over the objections of the Senate parliamentarian. The fiscal power of the federal government is also immense. But there are a variety of other ways to continue to make state-level progress on greenhouse gas emissions.

State and local advocacy efforts are nothing new for the clean energy community. For decades before the Inflation Reduction Act, the states were the primary locus of activity for clean energy policy. But in recent years, some have suggested that Democratic state governments are a necessary prerequisite to making meaningful state-level progress. This view is limiting, and it perpetuates a false—or at least unnecessary—alignment between party and energy technology. 

The electric grid is nonpartisan. Struggling to pay your utility bill is nonpartisan. Keeping the lights on is nonpartisan. Even before renewable energy was as cheap as it is today, early progress at diversifying energy portfolios was made in conservative states. Iowa, Texas, and Montana were all early adopters of renewable portfolio standards. Advocates in such places did not lead with messaging about climate change, but rather about economic development and energy independence. These policy efforts paid off: The deeply red Lone Star State, for instance, generates more wind energy than any other state and ranks only behind California in producing solar power. 

Now, in 2025, advances in technology and improvements in cost should make the economic arguments for clean energy even easier and more salient. So, in the face of a national government that is choosing last century’s energy technologies as policy winners and this century’s technologies as policy losers, the states offer clean energy advocates a familiar terrain on which to make continued progress, if they tailor their selling points to the reality on the ground.         

Joshua A. Basseches is the David and Jane Flowerree Assistant Professor of Environmental Studies and Public Policy at Tulane University. His research focuses on state-level renewable energy politics and policymaking, especially in the electricity sector.