Why EVs are gaining ground in Africa

EVs are getting cheaper and more common all over the world. But the technology still faces major challenges in some markets, including many countries in Africa.

Some regions across the continent still have limited grid and charging infrastructure, and those that do have widespread electricity access sometimes face reliability issues—a problem for EV owners, who require a stable electricity source to charge up and get around.

But there are some signs of progress. I just finished up a story about the economic case: A recent study in Nature Energy found that EVs from scooters to minibuses could be cheaper to own than gas-powered vehicles in Africa by 2040.

If there’s one thing to know about EVs in Africa, it’s that each of the 54 countries on the continent faces drastically different needs, challenges, and circumstances. There’s also a wide range of reasons to be optimistic about the prospects for EVs in the near future, including developing policies, a growing grid, and an expansion of local manufacturing.  

Even the world’s leading EV markets fall short of Ethiopia’s aggressively pro-EV policies. In 2024, the country became the first in the world to ban the import of non-electric private vehicles.

The case is largely an economic one: Gasoline is expensive there, and the country commissioned Africa’s largest hydropower dam in September 2025, providing a new source of cheap and abundant clean electricity. The nearly $5 billion project has a five-gigawatt capacity, doubling the grid’s peak power in the country.  

Much of Ethiopia’s vehicle market is for used cars, and some drivers are still opting for older gas-powered vehicles. But this nudge could help increase the market for EVs there.  

Other African countries are also pushing some drivers toward electrification. Rwanda banned new registrations for commercial gas-powered motorbikes in the capital city of Kigali last year, encouraging EVs as an alternative. These motorbike taxis can make up over half the vehicles on the city’s streets, so the move is a major turning point for transportation there. 

Smaller two- and three-wheelers are a bright spot for EVs globally: In 2025, EVs made up about 45% of new sales for such vehicles. (For cars and trucks, the share was about 25%.)

And Africa’s local market is starting to really take off. There’s already some local assembly of electric two-wheelers in countries including Morocco, Kenya, and Rwanda, says Nelson Nsitem, lead Africa energy transition analyst at BloombergNEF, an energy consultancy. 

Spiro, a Dubai-based electric motorbike company, recently raised $100 million in funding to expand operations in Africa. The company currently assembles its bikes in Uganda, Kenya, Nigeria, and Rwanda, and as of October it has over 60,000 bikes deployed and 1,500 battery swap stations operating.

Assembly and manufacturing for larger EVs and batteries is also set to expand. Gotion High-Tech, a Chinese battery company, is currently building Africa’s first battery gigafactory. It’s a $5.6 billion project that could produce 20 gigawatt-hours of batteries annually, starting in 2026. (That’s enough for hundreds of thousands of EVs each year.)

Chinese EV companies are looking to growing markets like Southeast Asia and Africa as they attempt to expand beyond an oversaturated domestic scene. BYD, the world’s largest EV company, is aggressively expanding across South Africa and plans to have as many as 70 dealerships in the country by the end of this year. That will mean more options for people in Africa looking to buy electric. 

“You have very high-quality, very affordable vehicles coming onto the market that are benefiting from the economies of scale in China. These countries stand to benefit from that,” says Kelly Carlin, a manager in the program on carbon-free transportation at the Rocky Mountain Institute, an energy think tank. “It’s a game changer,” he adds.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

EVs could be cheaper to own than gas cars in Africa by 2040

Electric vehicles could be economically competitive in Africa sooner than expected. Just 1% of new cars sold across the continent in 2025 were electric, but a new analysis finds that with solar off-grid charging, EVs could be cheaper to own than gas vehicles by 2040.

There are major barriers to higher EV uptake in many countries in Africa, including a sometimes unreliable grid, limited charging infrastructure, and a lack of access to affordable financing. As a result some previous analyses have suggested that fossil-fuel vehicles would dominate in Africa through at least 2050. 

But as batteries and the vehicles they power continue to get cheaper, the economic case for EVs is building. Electric two-wheelers, cars, larger automobiles, and even minibuses could compete in most African countries in just 15 years, according to the new study, published in Nature Energy.

“EVs have serious economic potential in most African countries in the not-so-distant future,” says Bessie Noll, a senior researcher at ETH Zürich and one of the authors of the study.

The study considered the total cost of ownership over the lifetime of a vehicle. That includes the sticker price, financing costs, and the cost of fueling (or charging). The researchers didn’t consider policy-related costs like taxes, import fees, and government subsidies, choosing to focus instead on only the underlying economics.

EVs are getting cheaper every year as battery and vehicle manufacturing improve and production scales, and the researchers found that in most cases and in most places across Africa, EVs are expected to be cheaper than equivalent gas-powered vehicles by 2040. EVs should also be less expensive than vehicles that use synthetic fuels. 

For two-wheelers like electric scooters, EVs could be the cheaper option even sooner: with smaller, cheaper batteries, these vehicles will be economically competitive by the end of the decade. On the other hand, one of the most difficult segments for EVs to compete in is small cars, says Christian Moretti, a researcher at ETH Zürich and the Paul Scherrer Institute in Switzerland.

Because some countries still have limited or unreliable grid access, charging is a major barrier to EV uptake, Noll says. So for EVs, the authors analyzed the cost of buying not only the vehicle but also a solar off-grid charging system. This includes solar panels, batteries, and the inverter required to transform the electricity into a version that can charge an EV. (The additional batteries help the system store energy for charging at times when the sun isn’t shining.)

Mini grids and other standalone systems that include solar panels and energy storage are increasingly common across Africa. It’s possible that this might be a primary way that EV owners in Africa will charge their vehicles in the future, Noll says.

One of the bigger barriers to EVs in Africa is financing costs, she adds. In some cases, the cost of financing can be more than the up-front cost of the vehicle, significantly driving up the cost of ownership.

Today, EVs are more expensive than equivalent gas-powered vehicles in much of the world. But in places where it’s relatively cheap to borrow money, that difference can be spread out across the course of a vehicle’s whole lifetime for little cost. Then, since it’s often cheaper to charge an EV than fuel a gas-powered car, the EV is less expensive over time. 

In some African countries, however, political instability and uncertain economic conditions make borrowing money more expensive. To some extent, the high financing costs affect the purchase of any vehicle, regardless of how it’s powered. But EVs are more expensive up front than equivalent gas-powered cars, and that higher up-front cost adds up to more interest paid over time. In some cases, financing an EV can also be more expensive than financing a gas vehicle—the technology is newer, and banks may see the purchase as more of a risk and charge a higher interest rate, says Kelly Carlin, a manager in the program on carbon-free transportation at the Rocky Mountain Institute, an energy think tank.

The picture varies widely depending on the country, too. In South Africa, Mauritius, and Botswana, financing conditions are already close to levels required to allow EVs to reach cost parity, according to the study. In higher-risk countries (the study gives examples including Sudan, which is currently in a civil war, and Ghana, which is recovering from a major economic crisis), financing costs would need to be cut drastically for that to be the case. 

Making EVs an affordable option will be a key first step to putting more on the roads in Africa and around the world. “People will start to pick up these technologies when they’re competitive,” says Nelson Nsitem, lead Africa energy transition analyst at BloombergNEF, an energy consultancy. 

Solar-based charging systems, like the ones mentioned in the study, could help make electricity less of a constraint, bringing more EVs to the roads, Nsitem says. But there’s still a need for more charging infrastructure, a major challenge in many countries where the grid needs major upgrades for capacity and reliability, he adds. 

Globally, more EVs are hitting the roads every year. “The global trend is unmistakable,” Carlin says. There are questions about how quickly it’s happening in different places, he says, “but the momentum is there.”

Three questions about next-generation nuclear power, answered

Nuclear power continues to be one of the hottest topics in energy today, and in our recent online Roundtables discussion about next-generation nuclear power, hyperscale AI data centers, and the grid, we got dozens of great audience questions.

These ran the gamut, and while we answered quite a few (and I’m keeping some in mind for future reporting), there were a bunch we couldn’t get to, at least not in the depth I would have liked.

So let’s answer a few of your questions about advanced nuclear power. I’ve combined similar ones and edited them for clarity.

How are the fuel needs for next-generation nuclear reactors different, and how are companies addressing the supply chain?

Many next-generation reactors don’t use the low-enriched uranium used in conventional reactors.

It’s worth looking at high-assay low-enriched uranium, or HALEU, specifically. This fuel is enriched to higher concentrations of fissile uranium than conventional nuclear fuel, with a proportion of the isotope U-235 that falls between 5% and 20%. (In conventional fuel, it’s below 5%.)

HALEU can be produced with the same technology as low-enriched uranium, but the geopolitics are complicated. Today, Russia basically has a monopoly on HALEU production. In 2024, the US banned the import of Russian nuclear fuel through 2040 in an effort to reduce dependence on the country. Europe hasn’t taken the same measures, but it is working to move away from Russian energy as well.

That leaves companies in the US and Europe with the major challenge of securing the fuel they need when their regular Russian supply has been cut off or restricted.

The US Department of Energy has a stockpile of HALEU, which the government is doling out to companies to help power demonstration reactions. In the longer term, though, there’s still a major need to set up independent HALEU supply chains to support next-generation reactors.

How is safety being addressed, and what’s happening with nuclear safety regulation in the US?

There are some ways that next-generation nuclear power plants could be safer than conventional reactors. Some use alternative coolants that would prevent the need to run at the high pressure required in conventional water-cooled reactors. Many incorporate passive safety shutoffs, so if there are power supply issues, the reactors shut down harmlessly, avoiding risk of meltdown. (These can be incorporated in newer conventional reactors, too.)

But some experts have raised concerns that in the US, the current administration isn’t taking nuclear safety seriously enough.

A recent NPR investigation found that the Trump administration had secretly rewritten nuclear rules, stripping environmental protections and loosening safety and security measures. The government shared the new rules with companies that are part of a program building experimental nuclear reactors, but not with the public.

I’m reminded of a talk during our EmTech MIT event in November, where Koroush Shirvan, an MIT professor of nuclear engineering, spoke on this issue. “I’ve seen some disturbing trends in recent times, where words like ‘rubber-stamping nuclear projects’ are being said,” Shirvan said during that event.  

During the talk, Shirvan shared statistics showing that nuclear power has a very low rate of injury and death. But that’s not inherent to the technology, and there’s a reason injuries and deaths have been low for nuclear power, he added: “It’s because of stringent regulatory oversight.”  

Are next-generation reactors going to be financially competitive?

Building a nuclear power plant is not cheap. Let’s consider the up-front investment needed to build a power plant.  

Plant Vogtle in Georgia hosts the most recent additions to the US nuclear fleet—Units 3 and 4 came online in 2023 and 2024. Together, they had a capital cost of $15,000 per kilowatt, adjusted for inflation, according to a recent report from the US Department of Energy. (This wonky unit I’m using divides the total cost to build the reactors by their expected power output, so we can compare reactors of different sizes.)

That number’s quite high, partly because those were the first of their kind built in the US, and because there were some inefficiencies in the planning. It’s worth noting that China builds reactors for much less, somewhere between $2,000/kW and $3,000/kW, depending on the estimate.

The up-front capital cost for first-of-a-kind advanced nuclear plants will likely run between $6,000 and $10,000 per kilowatt, according to that DOE report. That could come down by up to 40% after the technologies are scaled up and mass-produced.

So new reactors will (hopefully) be cheaper than the ultra-over-budget and behind-schedule Vogtle project, but they aren’t necessarily significantly cheaper than efficiently built conventional plants, if you normalize by their size.

It’ll certainly be cheaper to build new natural-gas plants (setting aside the likely equipment shortages we’re likely going to see for years.) Today’s most efficient natural-gas plants cost just $1,600/kW on the high end, according to data from Lazard.

An important caveat: Capital cost isn’t everything—running a nuclear plant is relatively inexpensive, which is why there’s so much interest in extending the lifetime of existing plants or reopening shuttered ones.

Ultimately, by many metrics, nuclear plants of any type are going to be more expensive than other sources, like wind and solar power. But they provide something many other power sources don’t: a reliable, stable source of electricity that can run for 60 years or more.

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Microbes could extract the metal needed for cleantech

In a pine forest on Michigan’s Upper Peninsula, the only active nickel mine in the US is nearing the end of its life. At a time when carmakers want the metal for electric-vehicle batteries, nickel concentration at Eagle Mine is falling and could soon drop too low to warrant digging.

But earlier this year, the mine’s owner started testing a new process that could eke out a bit more nickel. In a pair of shipping containers recently installed at the mine’s mill, a fermentation-derived broth developed by the startup Allonnia is mixed with concentrated ore to capture and remove impurities. The process allows nickel production from lower-quality ore. 

Kent Sorenson, Allonnia’s chief technology officer, says this approach could help companies continue operating sites that, like Eagle Mine, have burned through their best ore. “The low-hanging fruit is to keep mining the mines that we have,” he says. 

Demand for nickel, copper, and rare earth elements is rapidly increasing amid the explosive growth of metal-intensive data centers, electric cars, and renewable energy projects. But producing these metals is becoming harder and more expensive because miners have already exploited the best resources. Like the age-old technique of rolling up the end of a toothpaste tube, Allonnia’s broth is one of a number of ways that biotechnology could help miners squeeze more metal out of aging mines, mediocre ore, or piles of waste.

The mining industry has intentionally seeded copper ore with microbes for decades. At current copper bioleaching sites, miners pile crushed copper ore into heaps and add sulfuric acid. Acid-loving bacteria like Acidithiobacillus ferrooxidans colonize the mound. A chemical the organisms produce breaks the bond between sulfur and copper molecules to liberate the metal.

Until now, beyond maintaining the acidity and blowing air into the heap, there wasn’t much more miners could do to encourage microbial growth. But Elizabeth Dennett, CEO of the startup Endolith, says the decreasing cost of genetic tools is making it possible to manage the communities of microbes in a heap more actively. “The technology we’re using now didn’t exist a few years ago,” she says.

Endolith analyzes bits of DNA and RNA in the copper-rich liquid that flows out of an ore heap to characterize the microbes living inside. Combined with a suite of chemical analyses, the information helps the company determine which microbes to sprinkle on a heap to optimize extraction. 

Two people in white coats and hard hats look up at steel columns inside a warehouse.
Endolith scientists use columns filled with copper ore to test the firm’s method of actively managing microbes in the ore to increase metal extraction.
ENDOLITH

In lab tests on ore from the mining firm BHP, Endolith’s active techniques outperformed passive bioleaching approaches. In November, the company raised $16.5 million to move from its Denver lab to heaps in active mines.

Despite these promising early results, Corale Brierley, an engineer who has worked on metal bioleaching systems since the 1970s, questions whether companies like Endolith that add additional microbes to ore will successfully translate their processes to commercial scales. “What guarantees are you going to give the company that those organisms will actually grow?” Brierley asks.

Big mining firms that have already optimized every hose, nut, and bolt in their process won’t be easy to convince either, says Diana Rasner, an analyst covering mining technology for the research firm Cleantech Group. 

“They are acutely aware of what it takes to scale these technologies because they know the industry,” she says. “They’ll be your biggest supporters, but they’re going to be your biggest critics.”

In addition to technical challenges, Rasner points out that venture-capital-backed biotechnology startups will struggle to deliver the quick returns their investors seek. Mining companies want lots of data before adopting a new process, which could take years of testing to compile. “This is not software,” Rasner says.  

Nuton, a subsidiary of the mining giant Rio Tinto, is a good example. The company has been working for decades on a copper bioleaching process that uses a blend of archaea and bacteria strains, plus some chemical additives. But it started demonstrating the technology only late last year, at a mine in Arizona. 

A large piece of machinery hovers over a mound of red dirt.
Nuton is testing an improved bioleaching process at Gunnison Copper’s Johnson Camp mine in Arizona.
NUTON

While Endolith and Nuton use naturally occurring microbes, the startup 1849 is hoping to achieve a bigger performance boost by genetically engineering microbes.

“You can do what mining companies have traditionally done,” says CEO Jai Padmakumar. “Or you can try to take the moonshot bet and engineer them. If you get that, you have a huge win.”

Genetic engineering would allow 1849 to tailor its microbes to the specific challenges facing a customer. But engineering organisms can also make them harder to grow, warns Buz Barstow, a Cornell University microbiologist who studies applications for biotechnology in mining.

Other companies are trying to avoid that trade-off by applying the products of microbial fermentation, rather than live organisms. Alta Resource Technologies, which closed a $28 million investment round in December, is engineering microbes that make proteins capable of extracting and separating rare earth elements. Similarly, the startup REEgen, based in Ithaca, New York, relies on the organic acids produced by an engineered strain of Gluconobacter oxydans to extract rare earth elements from ore and from waste materials like metal recycling slag, coal ash, or old electronics. “The microbes are the manufacturing,” says CEO Alexa Schmitz, an alumna of Barstow’s lab.

To make a dent in the growing demand for metal, this new wave of biotechnologies will have to go beyond copper and gold, says Barstow. In 2024, he started a project to map out genes that could be useful for extracting and separating a wider range of metals. Even with the challenges ahead, he says, biotechnology has the potential to transform mining the way fracking changed natural gas. “Biomining is one of these areas where the need … is big enough,” he says. 

The challenge will be moving fast enough to keep up with growing demand.

What’s next for EV batteries in 2026

MIT Technology Review’s What’s Next series looks across industries, trends, and technologies to give you a first look at the future. You can read the rest of them here.

Demand for electric vehicles and the batteries that power them has never been hotter.

In 2025, EVs made up over a quarter of new vehicle sales globally, up from less than 5% in 2020. Some regions are seeing even higher uptake: In China, more than 50% of new vehicle sales last year were battery electric or plug-in hybrids. In Europe, more purely electric vehicles hit the roads in December than gas-powered ones. (The US is the notable exception here, dragging down the global average with a small sales decline from 2024.)

As EVs become increasingly common on the roads, the battery world is growing too. Looking ahead, we could soon see wider adoption of new chemistries, including some that deliver lower costs or higher performance. Meanwhile, the geopolitics of batteries are shifting, and so is the policy landscape. Here’s what’s coming next for EV batteries in 2026 and beyond.

A big opportunity for sodium-ion batteries

Lithium-ion batteries are the default chemistry used in EVs, personal devices, and even stationary storage systems on the grid today. But in a tough environment in some markets like the US, there’s a growing interest in cheaper alternatives. Automakers right now largely care just about batteries’ cost, regardless of performance improvements, says Kara Rodby, a technical principal at Volta Energy Technologies, a venture capital firm that focuses on energy storage technology.

Sodium-ion cells have long been held up as a potentially less expensive alternative to lithium. The batteries are limited in their energy density, so they deliver a shorter range than lithium-ion. But sodium is also more abundant, so they could be cheaper.

Sodium’s growth has been cursed, however, by the very success of lithium-based batteries, says Shirley Meng, a professor of molecular engineering at the University of Chicago. A lithium-ion battery cell cost $568 per kilowatt-hour in 2013, but that cost had fallen to just $74 per kilowatt-hour by 2025—quite the moving target for cheaper alternatives to chase.

Sodium-ion batteries currently cost about $59 per kilowatt-hour on average. That’s less expensive than the average lithium-ion battery. But if you consider only lithium iron phosphate (LFP) cells, a lower-end type of lithium-ion battery that averages $52 per kilowatt-hour, sodium is still more expensive today. 

We could soon see an opening for sodium-batteries, though. Lithium prices have been ticking up in recent months, a shift that could soon slow or reverse the steady downward march of prices for lithium-based batteries. 

Sodium-ion batteries are already being used commercially, largely for stationary storage on the grid. But we’re starting to see sodium-ion cells incorporated into vehicles, too. The Chinese companies Yadea, JMEV, and HiNa Battery have all started producing sodium-ion batteries in limited numbers for EVs, including small, short-range cars and electric scooters that don’t require a battery with high energy density. CATL, a Chinese battery company that’s the world’s largest, says it recently began producing sodium-ion cells. The company plans to launch its first EV using the chemistry by the middle of this year

Today, both production and demand for sodium-ion batteries are heavily centered in China. That’s likely to continue, especially after a cutback in tax credits and other financial support for the battery and EV industries in the US. One of the biggest sodium-battery companies in the US, Natron, ceased operations last year after running into funding issues.

We could also see progress in sodium-ion research: Companies and researchers are developing new materials for components including the electrolyte and electrodes, so the cells could get more comparable to lower-end lithium-ion cells in terms of energy density, Meng says. 

Major tests for solid-state batteries

As we enter the second half of this decade, many eyes in the battery world are on big promises and claims about solid-state batteries.

These batteries could pack more energy into a smaller package by removing the liquid electrolyte, the material that ions move through when a battery is charging and discharging. With a higher energy density, they could unlock longer-range EVs.

Companies have been promising solid-state batteries for years. Toyota, for example, once planned to have them in vehicles by 2020. That timeline has been delayed several times, though the company says it’s now on track to launch the new cells in cars in 2027 or 2028.

Historically, battery makers have struggled to produce solid-state batteries at the scale needed to deliver a commercially relevant supply for EVs. There’s been progress in manufacturing techniques, though, and companies could soon actually make good on their promises, Meng says. 

Factorial Energy, a US-based company making solid-state batteries, provided cells for a Mercedes test vehicle that drove over 745 miles on a single charge in a real-world test in September. The company says it plans to bring its tech to market as soon as 2027. Quantumscape, another major solid-state player in the US, is testing its cells with automotive partners and plans to have its batteries in commercial production later this decade.  

Before we see true solid-state batteries, we could see hybrid technologies, often referred to as semi-solid-state batteries. These commonly use materials like gel electrolytes, reducing the liquid inside cells without removing it entirely. Many Chinese companies are looking to build semi-solid-state batteries before transitioning to entirely solid-state ones, says Evelina Stoikou, head of battery technologies and supply chains at BloombergNEF, an energy consultancy.

A global patchwork

The picture for the near future of the EV industry looks drastically different depending on where you’re standing.

Last year, China overtook Japan as the country with the most global auto sales. And more than one in three EVs made in 2025 had a CATL battery in it. Simply put, China is dominating the global battery industry, and that doesn’t seem likely to change anytime soon.

China’s influence outside its domestic market is growing especially quickly. CATL is expected to begin production this year at its second European site; the factory, located in Hungary, is an $8.2 billion project that will supply automakers including BMW and the Mercedes-Benz group. Canada recently signed a deal that will lower the import tax on Chinese EVs from 100% to roughly 6%, effectively opening the Canadian market for Chinese EVs.

Some countries that haven’t historically been major EV markets could become bigger players in the second half of the decade. Annual EV sales in Thailand and Vietnam, where the market was virtually nonexistent just a few years ago, broke 100,000 in 2025. Brazil, in particular, could see its new EV sales more than double in 2026 as major automakers including Volkswagen and BYD set up or ramp up production in the country. 

On the flip side, EVs are facing a real test in 2026 in the US, as this will be the first calendar year after the sunset of federal tax credits that were designed to push more drivers to purchase the vehicles. With those credits gone, growth in sales is expected to continue lagging. 

One bright spot for batteries in the US is outside the EV market altogether. Battery manufacturers are starting to produce low-cost LFP batteries in the US, largely for energy storage applications. LG opened a massive factory to make LFP batteries in mid-2025 in Michigan, and the Korean battery company SK On plans to start making LFP batteries at its facility in Georgia later this year. Those plants could help battery companies cash in on investments as the US EV market faces major headwinds. 

Even as the US lags behind, the world is electrifying transportation. By 2030, 40% of new vehicles sold around the world are projected to be electric. As we approach that milestone, expect to see more global players, a wider selection of EVs, and an even wider menu of batteries to power them. 

How the grid can ride out winter storms

The eastern half of the US saw a monster snowstorm over the weekend. The good news is the grid has largely been able to keep up with the freezing temperatures and increased demand. But there were some signs of strain, particularly for fossil-fuel plants.

One analysis found that PJM, the nation’s largest grid operator, saw significant unplanned outages in plants that run on natural gas and coal. Historically, these facilities can struggle in extreme winter weather.

Much of the country continues to face record-low temperatures, and the possibility is looming for even more snow this weekend. What lessons can we take from this storm, and how might we shore up the grid to cope with extreme weather?

Living in New Jersey, I have the honor of being one of the roughly 67 million Americans covered by the PJM Interconnection.

So I was in the thick of things this weekend, when PJM saw unplanned outages of over 20 gigawatts on Sunday during the height of the storm. (That’s about 16% of the grid’s demand that afternoon.) Other plants were able to make up the difference, and thankfully, the power didn’t go out in my area. But that’s a lot of capacity offline.

Typically, the grid operator doesn’t announce details about why an outage occurs until later. But analysts at Energy Innovation, a policy and research firm specializing in energy and climate, went digging. By examining publicly available grid mix data (a breakdown of what types of power plants are supplying the grid), the team came to a big conclusion: Fossil fuels failed during the storm.

The analysts found that gas-fired power plants were producing about 10 gigawatts less power on Sunday than the peak demand on Saturday, even while electricity prices were high. Coal- and oil-burning plants were down too. Because these plants weren’t operating, even when high prices would make it quite lucrative, they were likely a significant part of the problem, says Michelle Solomon, a manager in the electricity program at Energy Innovation.

PJM plans to share more details about the outages at an upcoming committee meeting once the cold snap passes, Dan Lockwood, a PJM spokesperson, told me via email.

Fossil-fuel plants can see reliability challenges during winter: When temperatures drop, pressures in natural-gas lines fall too, which can lead to issues for fuel supply. Freezing temperatures can throw compression stations and other mechanical equipment offline and even freeze piles of coal.

One of the starkest examples came in 2021, when Texas faced freezing temperatures that took many power plants offline and threw the grid into chaos. Many homes lost power for days, and at least 246 people died during that storm.

Texas fared much better this time around. After 2021, the state shored up its grid, adding winter weatherization for power plants and transmission systems. Texas has also seen a huge flood of batteries come online, which has greatly helped the grid during winter demand peaks, especially in the early mornings. Texas was also simply lucky that this storm was less severe there, as one expert told Inside Climate News this week.

Here on the East Coast, we’re not out of the woods yet. The snow has stopped falling, but grids are still facing high electricity demand because of freezing temperatures. (I’ve certainly been living under my heated blanket these last few days.)

PJM could see a peak power demand of 130 gigawatts for seven straight days, a winter streak that the local grid has never experienced, according to an update to the utility’s site on Tuesday morning.

The US Department of Energy issued emergency orders to several grid operators, including PJM, that allow power plants to run while basically ignoring emissions regulations. The department also issued orders allowing several grids to tell data centers and other facilities to begin using backup generators. (This is good news for reliability but bad news for clean air and the climate, since these power sources are often incredibly emissions-intensive.)

We here on the East Coast could learn a thing or two from Texas so we don’t need to resort to these polluting emergency measures to keep the lights on. More energy storage could be a major help in future winter storms, lending flexibility to the grid to help ride out the worst times, Solomon says. Getting offshore wind online could also help, since those facilities typically produce reliable power in the winter. 

No one energy source will solve the massive challenge of building and maintaining a resilient grid. But as we face the continued threat of extreme storms, renewables might actually help us weather them. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Why 2026 is a hot year for lithium

In 2026, I’m going to be closely watching the price of lithium.

If you’re not in the habit of obsessively tracking commodity markets, I certainly don’t blame you. (Though the news lately definitely makes the case that minerals can have major implications for global politics and the economy.)

But lithium is worthy of a close look right now.

The metal is crucial for lithium-ion batteries used in phones and laptops, electric vehicles, and large-scale energy storage arrays on the grid. Prices have been on quite the roller coaster over the last few years, and they’re ticking up again after a low period. What happens next could have big implications for mining and battery technology.

Before we look ahead, let’s take a quick trip down memory lane. In 2020, global EV sales started to really take off, driving up demand for the lithium used in their batteries. Because of that growing demand and a limited supply, prices shot up dramatically, with lithium carbonate going from under $10 per kilogram to a high of roughly $70 per kilogram in just two years.

And the tech world took notice. During those high points, there was a ton of interest in developing alternative batteries that didn’t rely on lithium. I was writing about sodium-based batteries, iron-air batteries, and even experimental ones that were made with plastic.

Researchers and startups were also hunting for alternative ways to get lithium, including battery recycling and processing methods like direct lithium extraction (more on this in a moment).

But soon, prices crashed back down to earth. We saw lower-than-expected demand for EVs in the US, and developers ramped up mining and processing to meet demand. Through late 2024 and 2025, lithium carbonate was back around $10 a kilogram again. Avoiding lithium or finding new ways to get it suddenly looked a lot less crucial.

That brings us to today: lithium prices are ticking up again. So far, it’s nowhere close to the dramatic rise we saw a few years ago, but analysts are watching closely. Strong EV growth in China is playing a major role—EVs still make up about 75% of battery demand today. But growth in stationary storage, batteries for the grid, is also contributing to rising demand for lithium in both China and the US.

Higher prices could create new opportunities. The possibilities include alternative battery chemistries, specifically sodium-ion batteries, says Evelina Stoikou, head of battery technologies and supply chains at BloombergNEF. (I’ll note here that we recently named sodium-ion batteries to our 2026 list of 10 Breakthrough Technologies.)

It’s not just batteries, though. Another industry that could see big changes from a lithium price swing: extraction.

Today, most lithium is mined from rocks, largely in Australia, before being shipped to China for processing. There’s a growing effort to process the mineral in other places, though, as countries try to create their own lithium supply chains. Tesla recently confirmed that it’s started production at its lithium refinery in Texas, which broke ground in 2023. We could see more investment in processing plants outside China if prices continue to climb.

This could also be a key year for direct lithium extraction, as Katie Brigham wrote in a recent story for Heatmap. That technology uses chemical or electrochemical processes to extract lithium from brine (salty water that’s usually sourced from salt lakes or underground reservoirs), quickly and cheaply. Companies including Lilac Solutions, Standard Lithium, and Rio Tinto are all making plans or starting construction on commercial facilities this year in the US and Argentina. 

If there’s anything I’ve learned about following batteries and minerals over the past few years, it’s that predicting the future is impossible. But if you’re looking for tea leaves to read, lithium prices deserve a look. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Three climate technologies breaking through in 2026

Happy New Year! I know it’s a bit late to say, but it never quite feels like the year has started until the new edition of our 10 Breakthrough Technologies list comes out. 

For 25 years, MIT Technology Review has put together this package, which highlights the technologies that we think are going to matter in the future. This year’s version has some stars, including gene resurrection (remember all the dire wolf hype last year?) and commercial space stations

And of course, the world of climate and energy is represented with sodium-ion batteries, next-generation nuclear, and hyperscale AI data centers. Let’s take a look at what ended up on the list, and what it says about this moment for climate tech. 

Sodium-ion batteries

I’ve been covering sodium-ion batteries for years, but this moment feels like a breakout one for the technology. 

Today, lithium-ion cells power everything from EVs, phones, and computers to huge stationary storage arrays that help support the grid. But researchers and battery companies have been racing to develop an alternative, driven by the relative scarcity of lithium and the metal’s volatile price in recent years. 

Sodium-ion batteries could be that alternative. Sodium is much more abundant than lithium, and it could unlock cheaper batteries that hold a lower fire risk.  

There are limitations here: Sodium-ion batteries won’t be able to pack as much energy into cells as their lithium counterparts. But it might not matter, especially for grid storage and smaller EVs. 

In recent years, we’ve seen a ton of interest in sodium-based batteries, particularly from major companies in China. Now the new technology is starting to make its way into the world—CATL says it started manufacturing these batteries at scale in 2025. 

Next-generation nuclear

Nuclear reactors are an important part of grids around the world today—massive workhorse reactors generate reliable, consistent electricity. But the countries with the oldest and most built-out fleets have struggled to add to them in recent years, since reactors are massive and cost billions. Recent high-profile projects have gone way over budget and faced serious delays. 

Next-generation reactor designs could help the industry break out of the old blueprint and get more nuclear power online more quickly, and they’re starting to get closer to becoming reality. 

There’s a huge variety of proposals when it comes to what’s next for nuclear. Some companies are building smaller reactors, which they say could make it easier to finance new projects, and get them done on time. 

Other companies are focusing on tweaking key technical bits of reactors, using alternative fuels or coolants that help ferry heat out of the reactor core. These changes could help reactors generate electricity more efficiently and safely. 

Kairos Power was the first US company to receive approval to begin construction on a next-generation reactor to produce electricity. China is emerging as a major center of nuclear development, with the country’s national nuclear company reportedly working on several next-gen reactors. 

Hyperscale data centers

This one isn’t quite what I would call a climate technology, but I spent most of last year reporting on the climate and environmental impacts of AI, and the AI boom is deeply intertwined with climate and energy. 

Data centers aren’t new, but we’re seeing a wave of larger centers being proposed and built to support the rise of AI. Some of these facilities require a gigawatt or more of power—that’s like the output of an entire conventional nuclear power plant, just for one data center. 

(This feels like a good time to mention that our Breakthrough Technologies list doesn’t just highlight tech that we think will have a straightforwardly positive influence on the world. I think back to our 2023 list, which included mass-market military drones.)

There’s no denying that new, supersize data centers are an important force driving electricity demand, sparking major public pushback, and emerging as a key bit of our new global infrastructure. 

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

Mitigating emissions from air freight: Unlocking the potential of SAF with book and claim

Emissions from air freight have increased by 25% since 2019, according to a 2024 analysis by environmental advocacy organization Stand.Earth.

The researchers found that the expansion of cargo-only fleets to transport goods during the pandemic — as air travel halted, slower freight modes faced disruption, but demand for rapid delivery soared — has led to a yearly increase of almost 20 million tons of carbon dioxide, making up 93.8m tonnes from air freight overall.

And though fleet modernization and operational improvements by freight operators have contributed to ongoing decarbonization efforts, sustainable aviation fuel (SAF) looks set to be instrumental in helping the sector achieve its ambitions to reduce environmental footprint in the long-term.

When used neat, or pure and unblended, SAF can help reduce the life cycle of greenhouse gas emissions from aviation by as much as 80% relative to conventional fuel. It’s why the International Air Transport Association (IATA) estimates that SAF could account for as much as 65% of total reduction of emissions.

For Christoph Wolff, CEO of the Smart Freight Centre, “SAF is the main pathway” to decarbonization across both freight and the wider aviation ecosystem.

“The great thing about SAF is it’s chemically identical to Jet A fuel,” he says. “You can blend it [which means] you have a pathway to ramp it up. You can start small and you can scale it. By scaling it there is the promise or the hope that the price comes down.”

At at least twice the price of conventional jet fuel, cost is a significant barrier hindering broader adoption.

And it isn’t the only one standing between SAF and wider penetration.

Bridging the gap between a concentrated supply of SAF and global demand also remains a major hurdle.

Though the number of verified SAF outlets has increased from fewer than 20 locations in 2021 to 114 as of April 2025, according to sustainability solutions framework 4Air, that accounts for only 92 airports worldwide out of more than 40,000.

“SAF is central to the decarbonization of the aviation sector,” believes Raman Ojha, president of Shell Aviation. “Having said that, adoption and penetration of SAF hasn’t really picked up massively. It’s not due to lack of production capacity, but there are lots of things that are at play. And book and claim in that context helps to bridge that gap.”

Bridging the gap with book and claim

Book and claim is a chain of custody model, where the flow of administrative records is not necessarily connected to the physical product through the supply chain (source: ISO 22095:2020).

Book and claim potentially enables airlines and corporations to access the life cycle GHG emissions reduction benefits of SAF relative to conventional jet fuel even when SAF is not physically available at their location; this model helps bridge the gap between that concentrated supply and global demand, until SAF’s availability improves.

“To be bold, without book and claim, no short-term science-based target will be achieved,” says Bettina Paschke, vice president of ESG accounting, reporting and controlling at DHL Express. “Book and claim is essential to achieving science-based targets.”

“SAF production facilities are not everywhere,” she reiterates. “They’re very focused on one location, and if a customer wants to fulfil a mass balance obligation, SAF would need to be shipped around the world just to be at that airport for that customer. That would be very complicated, and very unrealistic.” It would also, counterintuitively, increase total emissions. By using book and claim instead, air freight operators can unlock the life cycle greenhouse gas emissions reduction benefits of SAF relative to conventional jet fuel now, without waiting for supply to broaden. “It might no longer be needed when we have SAF product facilities at each airport in the future,” she points out. “But at the moment, that’s not the case.”

At DHL itself, the mechanism has become central to achieving its own three interconnected sustainability pillars, which focus on decarbonizing logistics supply chains, supporting customers toward their decarbonization goals, and ensuring credible emission claims can be shared along the value chain.

Demonstrating the importance of a credible and viable framework for book and claim systems is also what inspired the 2022 launch of Shell’s Avelia, one of the first blockchain-powered digital SAF book and claim solutions for aviation, which expanded in 2024 to encompass air freight in addition to business travel. Depending on the offering, Avelia offers freight forwarders the opportunity to share the life cycle greenhouse gas emissions reduction benefits of SAF relative to conventional jet fuel across the value chain with shippers using their services.

“It’s also backed by a physical supply chain, which gives our customers — whether those be corporates or freight forwarders or even airlines — a peace of mind that the SAF has been injected at a certain airport, it’s been used and environmental attributes, with the help of blockchain, have been tracked to where they’re getting retired,” says Ojha.

He adds: “The most important or critical part is the transparency that it’s providing to our customers to be sure that they’re not saying something which they can’t confidently stand behind.”

Moving beyond early adoption

To scale up SAF via book and claim and help make it a more commercially viable lower-carbon solution, its adoption will need to be a coordinated “ecosystem play,” says Wolff. That includes early adopters, such as DHL, inspiring action from peers, solution providers such as Shell, working with various stakeholders to drive joint advocacy, and industry associations, like the Smart Freight Centre creating the required frameworks, educational resources, and industry alignment.

An active book and claim community made up of many forward-thinking advocates is already driving much of this work forward with a common goal to develop greater standardization and consensus, Wolff points out. “It helps to make sure all definitions on the system are compatible and they can talk to one another, provide educational support, and [also that] there’s a repository of transactions so that it can be documented in a way that people can see and think, ‘oh this is how we do it.’ There are some early adopters that are very experienced, but it needs a lot more people for it to get comfortable.”

In early 2024, discussions were held with a diverse group of expert book and claim stakeholders to develop and refine 11 key principles and best practices book and claim models. These represent an aligned set of principles informed by practical successes and challenges faced by practitioners working to decarbonize the heavy transport sector.

Adherence to such a framework is crucial given that book and claim is not yet accepted by the Greenhouse Gas (GHG) Protocol nor the Science Based Targets Initiative (SBTi) as a recognized model for reducing greenhouse gas emissions — though there are hopes that might change.

“The industrialization of book and claim delivery systems is key to credibility and recognition,” says Wolff. “The Greenhouse Gas Protocol and the Science Based Targets Initiative are making steps in recognizing that. There’s a pathway that the Smart Freight Centre is very closely involved in the technical working groups for [looking]to build such a system where, in addition to physical inventory, you also pursue market-based inventories.”

Paschke urges companies not to sit back and wait for policy to change before taking action, though. “The solution is there,” she says. “There are companies like DHL that are making huge upfront investments, and every single contribution helps to scale the industry and give a strong signal to the eco-space.”

As pressure to accelerate decarbonization gains pace, it’s critical that air freight operators consider this now, agrees Ojha. “Don’t wait for perfection in guidelines, regulations, or platforms — act now,” he says. “That’s very, very critical. Second, learn by doing and join hands with others. Don’t try to do everything independently or in-house.

“Third, make use of registries and platforms, such as Avelia, that can give credibility. Join them, utilize them, and leverage them so that you won’t have to establish auditability from scratch.

“And fourth, don’t look at scope book and claim as a means for acquiring a certificate for environmental attributes. Think in terms of your decarbonisation commitment and think of this as a tool for exposure management. Think in terms of the bigger picture.”

That bigger picture being a significant sector-wide push toward faster decarbonization — and turning the tide on emissions’ steep upward ascent.

Watch the full webcast.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff. It was researched, designed, and written by human writers, editors, analysts, and illustrators. This includes the writing of surveys and collection of data for surveys. AI tools that may have been used were limited to secondary production processes that passed thorough human review.

This content is produced by MIT Technology Review Insights in association with Avelia. Avelia is a Shell owned solution and brand that was developed with support from Amex GBT, Accenture and Energy Web Foundation. The views from individuals not affiliated with Shell are their own and not those of Shell PLC or its affiliates. Cautionary note | Shell Global

What new legal challenges mean for the future of US offshore wind

For offshore wind power in the US, the new year is bringing new legal battles.

On December 22, the Trump administration announced it would pause the leases of five wind farms currently under construction off the US East Coast. Developers were ordered to stop work immediately.

The cited reason? National security, specifically concerns that turbines can cause radar interference. But that’s a known issue, and developers have worked with the government to deal with it for years.

Companies have been quick to file lawsuits, and the court battles could begin as soon as this week. Here’s what the latest kerfuffle might mean for the struggling offshore wind industry in the US.

This pause affects $25 billion in investment in five wind farms: Vineyard Wind 1 off Massachusetts, Revolution Wind off Rhode Island, Sunrise Wind and Empire Wind off New York, and Coastal Virginia Offshore Wind off Virginia. Together, those projects had been expected to create 10,000 jobs and power more than 2.5 million homes and businesses.

In a statement announcing the move, the Department of the Interior said that “recently completed classified reports” revealed national security risks, and that the pause would give the government time to work through concerns with developers. The statement specifically says that turbines can create radar interference (more on the technical details here in a moment).

Three of the companies involved have already filed lawsuits, and they’re seeking preliminary injunctions that would allow construction to continue. Orsted and Equinor (the developers for Revolution Wind and Empire Wind, respectively) told the New York Times that their projects went through lengthy federal reviews, which did address concerns about national security.

This is just the latest salvo from the Trump administration against offshore wind. On Trump’s first day in office, he signed an executive order stopping all new lease approvals for offshore wind farms. (That order was struck down by a judge in December.)

The administration previously ordered Revolution Wind to stop work last year, also citing national security concerns. A federal judge lifted the stop-work order weeks later, after the developer showed that the financial stakes were high, and that government agencies had previously found no national security issues with the project.

There are real challenges that wind farms introduce for radar systems, which are used in everything from air traffic control to weather forecasting to national defense operations. A wind turbine’s spinning can create complex signatures on radar, resulting in so-called clutter.

Previous government reports, including one 2024 report from the Department of Energy and a 2025 report from the Government Accountability Office (an independent government watchdog), have pointed out this issue in the past.

“To date, no mitigation technology has been able to fully restore the technical performance of impacted radars,” as the DOE report puts it. However, there are techniques that can help, including software that acts to remove the signatures of wind turbines. (Think of this as similar to how noise-canceling headphones work, but more complicated, as one expert told TechCrunch.)

But the most widespread and helpful tactic, according to the DOE report, is collaboration between developers and the government. By working together to site and design wind farms strategically, the groups can ensure that the projects don’t interfere with government or military operations. The 2025 GAO report found that government officials, researchers, and offshore wind companies were collaborating effectively, and any concerns could be raised and addressed in the permitting process.

This and other challenges threaten an industry that could be a major boon for the grid. On the East Coast where these projects are located, and in New England specifically, winter can bring tight supplies of fossil fuels and spiking prices because of high demand. It just so happens that offshore winds blow strongest in the winter, so new projects, including the five wrapped up in this fight, could be a major help during the grid’s greatest time of need.

One 2025 study found that if 3.5 gigawatts’ worth of offshore wind had been operational during the 2024-2025 winter, it would have lowered energy prices by 11%. (That’s the combined capacity of Revolution Wind and Vineyard Wind, two of the paused projects, plus two future projects in the pipeline.) Ratepayers would have saved $400 million.

Before Donald Trump was elected, the energy consultancy BloombergNEF projected that the US would build 39 gigawatts of offshore wind by 2035. Today, that expectation has dropped to just 6 gigawatts. These legal battles could push it lower still.

What’s hardest to wrap my head around is that some of the projects being challenged are nearly finished. The developers of Revolution Wind have installed all the foundations and 58 of 65 turbines, and they say the project is over 87% complete. Empire Wind is over 60% done and is slated to deliver electricity to the grid next year.

To hit the pause button so close to the finish line is chilling, not just for current projects but for future offshore wind efforts in the US. Even if these legal battles clear up and more developers can technically enter the queue, why would they want to? Billions of dollars are at stake, and if there’s one word to describe the current state of the offshore wind industry in the US, it’s “unpredictable.”

This article is from The Spark, MIT Technology Review’s weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.