The AI Hype Index: DeepSeek mania, Israel’s spying tool, and cheating at chess

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

While AI models are certainly capable of creating interesting and sometimes entertaining material, their output isn’t necessarily useful. Google DeepMind is hoping that its new robotics model could make machines more receptive to verbal commands, paving the way for us to simply speak orders to them aloud. Elsewhere, the Chinese startup Monica has created Manus, which it claims is the very first general AI agent to complete truly useful tasks. And burnt-out coders are allowing AI to take the wheel entirely in a new practice dubbed “vibe coding.”

AI means the end of internet search as we’ve known it

We all know what it means, colloquially, to google something. You pop a few relevant words in a search box and in return get a list of blue links to the most relevant results. Maybe some quick explanations up top. Maybe some maps or sports scores or a video. But fundamentally, it’s just fetching information that’s already out there on the internet and showing it to you, in some sort of structured way. 

But all that is up for grabs. We are at a new inflection point.

The biggest change to the way search engines have delivered information to us since the 1990s is happening right now. No more keyword searching. No more sorting through links to click. Instead, we’re entering an era of conversational search. Which means instead of keywords, you use real questions, expressed in natural language. And instead of links, you’ll increasingly be met with answers, written by generative AI and based on live information from all across the internet, delivered the same way. 

Of course, Google—the company that has defined search for the past 25 years—is trying to be out front on this. In May of 2023, it began testing AI-generated responses to search queries, using its large language model (LLM) to deliver the kinds of answers you might expect from an expert source or trusted friend. It calls these AI Overviews. Google CEO Sundar Pichai described this to MIT Technology Review as “one of the most positive changes we’ve done to search in a long, long time.”

AI Overviews fundamentally change the kinds of queries Google can address. You can now ask it things like “I’m going to Japan for one week next month. I’ll be staying in Tokyo but would like to take some day trips. Are there any festivals happening nearby? How will the surfing be in Kamakura? Are there any good bands playing?” And you’ll get an answer—not just a link to Reddit, but a built-out answer with current results. 

More to the point, you can attempt searches that were once pretty much impossible, and get the right answer. You don’t have to be able to articulate what, precisely, you are looking for. You can describe what the bird in your yard looks like, or what the issue seems to be with your refrigerator, or that weird noise your car is making, and get an almost human explanation put together from sources previously siloed across the internet. It’s amazing, and once you start searching that way, it’s addictive.

And it’s not just Google. OpenAI’s ChatGPT now has access to the web, making it far better at finding up-to-date answers to your queries. Microsoft released generative search results for Bing in September. Meta has its own version. The startup Perplexity was doing the same, but with a “move fast, break things” ethos. Literal trillions of dollars are at stake in the outcome as these players jockey to become the next go-to source for information retrieval—the next Google.

Not everyone is excited for the change. Publishers are completely freaked out. The shift has heightened fears of a “zero-click” future, where search referral traffic—a mainstay of the web since before Google existed—vanishes from the scene. 

I got a vision of that future last June, when I got a push alert from the Perplexity app on my phone. Perplexity is a startup trying to reinvent web search. But in addition to delivering deep answers to queries, it will create entire articles about the news of the day, cobbled together by AI from different sources. 

On that day, it pushed me a story about a new drone company from Eric Schmidt. I recognized the story. Forbes had reported it exclusively, earlier in the week, but it had been locked behind a paywall. The image on Perplexity’s story looked identical to one from Forbes. The language and structure were quite similar. It was effectively the same story, but freely available to anyone on the internet. I texted a friend who had edited the original story to ask if Forbes had a deal with the startup to republish its content. But there was no deal. He was shocked and furious and, well, perplexed. He wasn’t alone. Forbes, the New York Times, and Condé Nast have now all sent the company cease-and-desist orders. News Corp is suing for damages. 

People are worried about what these new LLM-powered results will mean for our fundamental shared reality. It could spell the end of the canonical answer.

It was precisely the nightmare scenario publishers have been so afraid of: The AI was hoovering up their premium content, repackaging it, and promoting it to its audience in a way that didn’t really leave any reason to click through to the original. In fact, on Perplexity’s About page, the first reason it lists to choose the search engine is “Skip the links.”

But this isn’t just about publishers (or my own self-interest). 

People are also worried about what these new LLM-powered results will mean for our fundamental shared reality. Language models have a tendency to make stuff up—they can hallucinate nonsense. Moreover, generative AI can serve up an entirely new answer to the same question every time, or provide different answers to different people on the basis of what it knows about them. It could spell the end of the canonical answer.

But make no mistake: This is the future of search. Try it for a bit yourself, and you’ll see. 

Sure, we will always want to use search engines to navigate the web and to discover new and interesting sources of information. But the links out are taking a back seat. The way AI can put together a well-reasoned answer to just about any kind of question, drawing on real-time data from across the web, just offers a better experience. That is especially true compared with what web search has become in recent years. If it’s not exactly broken (data shows more people are searching with Google more often than ever before), it’s at the very least increasingly cluttered and daunting to navigate. 

Who wants to have to speak the language of search engines to find what you need? Who wants to navigate links when you can have straight answers? And maybe: Who wants to have to learn when you can just know? 


In the beginning there was Archie. It was the first real internet search engine, and it crawled files previously hidden in the darkness of remote servers. It didn’t tell you what was in those files—just their names. It didn’t preview images; it didn’t have a hierarchy of results, or even much of an interface. But it was a start. And it was pretty good. 

Then Tim Berners-Lee created the World Wide Web, and all manner of web pages sprang forth. The Mosaic home page and the Internet Movie Database and Geocities and the Hampster Dance and web rings and Salon and eBay and CNN and federal government sites and some guy’s home page in Turkey.

Until finally, there was too much web to even know where to start. We really needed a better way to navigate our way around, to actually find the things we needed. 

And so in 1994 Jerry Yang created Yahoo, a hierarchical directory of websites. It quickly became the home page for millions of people. And it was … well, it was okay. TBH, and with the benefit of hindsight, I think we all thought it was much better back then than it actually was.

But the web continued to grow and sprawl and expand, every day bringing more information online. Rather than just a list of sites by category, we needed something that actually looked at all that content and indexed it. By the late ’90s that meant choosing from a variety of search engines: AltaVista and AlltheWeb and WebCrawler and HotBot. And they were good—a huge improvement. At least at first.  

But alongside the rise of search engines came the first attempts to exploit their ability to deliver traffic. Precious, valuable traffic, which web publishers rely on to sell ads and retailers use to get eyeballs on their goods. Sometimes this meant stuffing pages with keywords or nonsense text designed purely to push pages higher up in search results. It got pretty bad. 

And then came Google. It’s hard to overstate how revolutionary Google was when it launched in 1998. Rather than just scanning the content, it also looked at the sources linking to a website, which helped evaluate its relevance. To oversimplify: The more something was cited elsewhere, the more reliable Google considered it, and the higher it would appear in results. This breakthrough made Google radically better at retrieving relevant results than anything that had come before. It was amazing

Sundar Pichai
Google CEO Sundar Pichai describes AI Overviews as “one of the most positive changes we’ve done to search in a long, long time.”
JENS GYARMATY/LAIF/REDUX

For 25 years, Google dominated search. Google was search, for most people. (The extent of that domination is currently the subject of multiple legal probes in the United States and the European Union.)  

But Google has long been moving away from simply serving up a series of blue links, notes Pandu Nayak, Google’s chief scientist for search. 

“It’s not just so-called web results, but there are images and videos, and special things for news. There have been direct answers, dictionary answers, sports, answers that come with Knowledge Graph, things like featured snippets,” he says, rattling off a litany of Google’s steps over the years to answer questions more directly. 

It’s true: Google has evolved over time, becoming more and more of an answer portal. It has added tools that allow people to just get an answer—the live score to a game, the hours a café is open, or a snippet from the FDA’s website—rather than being pointed to a website where the answer may be. 

But once you’ve used AI Overviews a bit, you realize they are different

Take featured snippets, the passages Google sometimes chooses to highlight and show atop the results themselves. Those words are quoted directly from an original source. The same is true of knowledge panels, which are generated from information stored in a range of public databases and Google’s Knowledge Graph, its database of trillions of facts about the world.

While these can be inaccurate, the information source is knowable (and fixable). It’s in a database. You can look it up. Not anymore: AI Overviews can be entirely new every time, generated on the fly by a language model’s predictive text combined with an index of the web. 

“I think it’s an exciting moment where we have obviously indexed the world. We built deep understanding on top of it with Knowledge Graph. We’ve been using LLMs and generative AI to improve our understanding of all that,” Pichai told MIT Technology Review. “But now we are able to generate and compose with that.”

The result feels less like a querying a database than like asking a very smart, well-read friend. (With the caveat that the friend will sometimes make things up if she does not know the answer.) 

“[The company’s] mission is organizing the world’s information,” Liz Reid, Google’s head of search, tells me from its headquarters in Mountain View, California. “But actually, for a while what we did was organize web pages. Which is not really the same thing as organizing the world’s information or making it truly useful and accessible to you.” 

That second concept—accessibility—is what Google is really keying in on with AI Overviews. It’s a sentiment I hear echoed repeatedly while talking to Google execs: They can address more complicated types of queries more efficiently by bringing in a language model to help supply the answers. And they can do it in natural language. 

That will become even more important for a future where search goes beyond text queries. For example, Google Lens, which lets people take a picture or upload an image to find out more about something, uses AI-generated answers to tell you what you may be looking at. Google has even showed off the ability to query live video. 

When it doesn’t have an answer, an AI model can confidently spew back a response anyway. For Google, this could be a real problem. For the rest of us, it could actually be dangerous.

“We are definitely at the start of a journey where people are going to be able to ask, and get answered, much more complex questions than where we’ve been in the past decade,” says Pichai. 

There are some real hazards here. First and foremost: Large language models will lie to you. They hallucinate. They get shit wrong. When it doesn’t have an answer, an AI model can blithely and confidently spew back a response anyway. For Google, which has built its reputation over the past 20 years on reliability, this could be a real problem. For the rest of us, it could actually be dangerous.

In May 2024, AI Overviews were rolled out to everyone in the US. Things didn’t go well. Google, long the world’s reference desk, told people to eat rocks and to put glue on their pizza. These answers were mostly in response to what the company calls adversarial queries—those designed to trip it up. But still. It didn’t look good. The company quickly went to work fixing the problems—for example, by deprecating so-called user-generated content from sites like Reddit, where some of the weirder answers had come from.

Yet while its errors telling people to eat rocks got all the attention, the more pernicious danger might arise when it gets something less obviously wrong. For example, in doing research for this article, I asked Google when MIT Technology Review went online. It helpfully responded that “MIT Technology Review launched its online presence in late 2022.” This was clearly wrong to me, but for someone completely unfamiliar with the publication, would the error leap out? 

I came across several examples like this, both in Google and in OpenAI’s ChatGPT search. Stuff that’s just far enough off the mark not to be immediately seen as wrong. Google is banking that it can continue to improve these results over time by relying on what it knows about quality sources.

“When we produce AI Overviews,” says Nayak, “we look for corroborating information from the search results, and the search results themselves are designed to be from these reliable sources whenever possible. These are some of the mechanisms we have in place that assure that if you just consume the AI Overview, and you don’t want to look further … we hope that you will still get a reliable, trustworthy answer.”

In the case above, the 2022 answer seemingly came from a reliable source—a story about MIT Technology Review’s email newsletters, which launched in 2022. But the machine fundamentally misunderstood. This is one of the reasons Google uses human beings—raters—to evaluate the results it delivers for accuracy. Ratings don’t correct or control individual AI Overviews; rather, they help train the model to build better answers. But human raters can be fallible. Google is working on that too. 

“Raters who look at your experiments may not notice the hallucination because it feels sort of natural,” says Nayak. “And so you have to really work at the evaluation setup to make sure that when there is a hallucination, someone’s able to point out and say, That’s a problem.”

The new search

Google has rolled out its AI Overviews to upwards of a billion people in more than 100 countries, but it is facing upstarts with new ideas about how search should work.


Search Engine

Google
The search giant has added AI Overviews to search results. These overviews take information from around the web and Google’s Knowledge Graph and use the company’s Gemini language model to create answers to search queries.

What it’s good at

Google’s AI Overviews are great at giving an easily digestible summary in response to even the most complex queries, with sourcing boxes adjacent to the answers. Among the major options, its deep web index feels the most “internety.” But web publishers fear its summaries will give people little reason to click through to the source material.


Perplexity
Perplexity is a conversational search engine that uses third-party large
language models from OpenAI and Anthropic to answer queries.

Perplexity is fantastic at putting together deeper dives in response to user queries, producing answers that are like mini white papers on complex topics. It’s also excellent at summing up current events. But it has gotten a bad rep with publishers, who say it plays fast and loose with their content.


ChatGPT
While Google brought AI to search, OpenAI brought search to ChatGPT. Queries that the model determines will benefit from a web search automatically trigger one, or users can manually select the option to add a web search.

Thanks to its ability to preserve context across a conversation, ChatGPT works well for performing searches that benefit from follow-up questions—like planning a vacation through multiple search sessions. OpenAI says users sometimes go “20 turns deep” in researching queries. Of these three, it makes links out to publishers least prominent.


When I talked to Pichai about this, he expressed optimism about the company’s ability to maintain accuracy even with the LLM generating responses. That’s because AI Overviews is based on Google’s flagship large language model, Gemini, but also draws from Knowledge Graph and what it considers reputable sources around the web. 

“You’re always dealing in percentages. What we have done is deliver it at, like, what I would call a few nines of trust and factuality and quality. I’d say 99-point-few-nines. I think that’s the bar we operate at, and it is true with AI Overviews too,” he says. “And so the question is, are we able to do this again at scale? And I think we are.”

There’s another hazard as well, though, which is that people ask Google all sorts of weird things. If you want to know someone’s darkest secrets, look at their search history. Sometimes the things people ask Google about are extremely dark. Sometimes they are illegal. Google doesn’t just have to be able to deploy its AI Overviews when an answer can be helpful; it has to be extremely careful not to deploy them when an answer may be harmful. 

“If you go and say ‘How do I build a bomb?’ it’s fine that there are web results. It’s the open web. You can access anything,” Reid says. “But we do not need to have an AI Overview that tells you how to build a bomb, right? We just don’t think that’s worth it.” 

But perhaps the greatest hazard—or biggest unknown—is for anyone downstream of a Google search. Take publishers, who for decades now have relied on search queries to send people their way. What reason will people have to click through to the original source, if all the information they seek is right there in the search result?  

Rand Fishkin, cofounder of the market research firm SparkToro, publishes research on so-called zero-click searches. As Google has moved increasingly into the answer business, the proportion of searches that end without a click has gone up and up. His sense is that AI Overviews are going to explode this trend.  

“If you are reliant on Google for traffic, and that traffic is what drove your business forward, you are in long- and short-term trouble,” he says. 

Don’t panic, is Pichai’s message. He argues that even in the age of AI Overviews, people will still want to click through and go deeper for many types of searches. “The underlying principle is people are coming looking for information. They’re not looking for Google always to just answer,” he says. “Sometimes yes, but the vast majority of the times, you’re looking at it as a jumping-off point.” 

Reid, meanwhile, argues that because AI Overviews allow people to ask more complicated questions and drill down further into what they want, they could even be helpful to some types of publishers and small businesses, especially those operating in the niches: “You essentially reach new audiences, because people can now express what they want more specifically, and so somebody who specializes doesn’t have to rank for the generic query.”


 “I’m going to start with something risky,” Nick Turley tells me from the confines of a Zoom window. Turley is the head of product for ChatGPT, and he’s showing off OpenAI’s new web search tool a few weeks before it launches. “I should normally try this beforehand, but I’m just gonna search for you,” he says. “This is always a high-risk demo to do, because people tend to be particular about what is said about them on the internet.” 

He types my name into a search field, and the prototype search engine spits back a few sentences, almost like a speaker bio. It correctly identifies me and my current role. It even highlights a particular story I wrote years ago that was probably my best known. In short, it’s the right answer. Phew? 

A few weeks after our call, OpenAI incorporated search into ChatGPT, supplementing answers from its language model with information from across the web. If the model thinks a response would benefit from up-to-date information, it will automatically run a web search (OpenAI won’t say who its search partners are) and incorporate those responses into its answer, with links out if you want to learn more. You can also opt to manually force it to search the web if it does not do so on its own. OpenAI won’t reveal how many people are using its web search, but it says some 250 million people use ChatGPT weekly, all of whom are potentially exposed to it.  

“There’s an incredible amount of content on the web. There are a lot of things happening in real time. You want ChatGPT to be able to use that to improve its answers and to be a better super-assistant for you.”

Kevin Weil, chief product officer, OpenAI

According to Fishkin, these newer forms of AI-assisted search aren’t yet challenging Google’s search dominance. “It does not appear to be cannibalizing classic forms of web search,” he says. 

OpenAI insists it’s not really trying to compete on search—although frankly this seems to me like a bit of expectation setting. Rather, it says, web search is mostly a means to get more current information than the data in its training models, which tend to have specific cutoff dates that are often months, or even a year or more, in the past. As a result, while ChatGPT may be great at explaining how a West Coast offense works, it has long been useless at telling you what the latest 49ers score is. No more. 

“I come at it from the perspective of ‘How can we make ChatGPT able to answer every question that you have? How can we make it more useful to you on a daily basis?’ And that’s where search comes in for us,” Kevin Weil, the chief product officer with OpenAI, tells me. “There’s an incredible amount of content on the web. There are a lot of things happening in real time. You want ChatGPT to be able to use that to improve its answers and to be able to be a better super-assistant for you.”

Today ChatGPT is able to generate responses for very current news events, as well as near-real-time information on things like stock prices. And while ChatGPT’s interface has long been, well, boring, search results bring in all sorts of multimedia—images, graphs, even video. It’s a very different experience. 

Weil also argues that ChatGPT has more freedom to innovate and go its own way than competitors like Google—even more than its partner Microsoft does with Bing. Both of those are ad-dependent businesses. OpenAI is not. (At least not yet.) It earns revenue from the developers, businesses, and individuals who use it directly. It’s mostly setting large amounts of money on fire right now—it’s projected to lose $14 billion in 2026, by some reports. But one thing it doesn’t have to worry about is putting ads in its search results as Google does. 

Elizabeth Reid
“For a while what we did was organize web pages. Which is not really the same thing as organizing the world’s information or making it truly useful and accessible to you,” says Google head of search, Liz Reid.
WINNI WINTERMEYER/REDUX

Like Google, ChatGPT is pulling in information from web publishers, summarizing it, and including it in its answers. But it has also struck financial deals with publishers, a payment for providing the information that gets rolled into its results. (MIT Technology Review has been in discussions with OpenAI, Google, Perplexity, and others about publisher deals but has not entered into any agreements. Editorial was neither party to nor informed about the content of those discussions.)

But the thing is, for web search to accomplish what OpenAI wants—to be more current than the language model—it also has to bring in information from all sorts of publishers and sources that it doesn’t have deals with. OpenAI’s head of media partnerships, Varun Shetty, told MIT Technology Review that it won’t give preferential treatment to its publishing partners.

Instead, OpenAI told me, the model itself finds the most trustworthy and useful source for any given question. And that can get weird too. In that very first example it showed me—when Turley ran that name search—it described a story I wrote years ago for Wired about being hacked. That story remains one of the most widely read I’ve ever written. But ChatGPT didn’t link to it. It linked to a short rewrite from The Verge. Admittedly, this was on a prototype version of search, which was, as Turley said, “risky.” 

When I asked him about it, he couldn’t really explain why the model chose the sources that it did, because the model itself makes that evaluation. The company helps steer it by identifying—sometimes with the help of users—what it considers better answers, but the model actually selects them. 

“And in many cases, it gets it wrong, which is why we have work to do,” said Turley. “Having a model in the loop is a very, very different mechanism than how a search engine worked in the past.”

Indeed! 

The model, whether it’s OpenAI’s GPT-4o or Google’s Gemini or Anthropic’s Claude, can be very, very good at explaining things. But the rationale behind its explanations, its reasons for selecting a particular source, and even the language it may use in an answer are all pretty mysterious. Sure, a model can explain very many things, but not when that comes to its own answers. 


It was almost a decade ago, in 2016, when Pichai wrote that Google was moving from “mobile first” to “AI first”: “But in the next 10 years, we will shift to a world that is AI-first, a world where computing becomes universally available—be it at home, at work, in the car, or on the go—and interacting with all of these surfaces becomes much more natural and intuitive, and above all, more intelligent.” 

We’re there now—sort of. And it’s a weird place to be. It’s going to get weirder. That’s especially true as these things we now think of as distinct—querying a search engine, prompting a model, looking for a photo we’ve taken, deciding what we want to read or watch or hear, asking for a photo we wish we’d taken, and didn’t, but would still like to see—begin to merge. 

The search results we see from generative AI are best understood as a waypoint rather than a destination. What’s most important may not be search in itself; rather, it’s that search has given AI model developers a path to incorporating real-time information into their inputs and outputs. And that opens up all sorts of possibilities.

“A ChatGPT that can understand and access the web won’t just be about summarizing results. It might be about doing things for you. And I think there’s a fairly exciting future there,” says OpenAI’s Weil. “You can imagine having the model book you a flight, or order DoorDash, or just accomplish general tasks for you in the future. It’s just once the model understands how to use the internet, the sky’s the limit.”

This is the agentic future we’ve been hearing about for some time now, and the more AI models make use of real-time data from the internet, the closer it gets. 

Let’s say you have a trip coming up in a few weeks. An agent that can get data from the internet in real time can book your flights and hotel rooms, make dinner reservations, and more, based on what it knows about you and your upcoming travel—all without your having to guide it. Another agent could, say, monitor the sewage output of your home for certain diseases, and order tests and treatments in response. You won’t have to search for that weird noise your car is making, because the agent in your vehicle will already have done it and made an appointment to get the issue fixed. 

“It’s not always going to be just doing search and giving answers,” says Pichai. “Sometimes it’s going to be actions. Sometimes you’ll be interacting within the real world. So there is a notion of universal assistance through it all.”

And the ways these things will be able to deliver answers is evolving rapidly now too. For example, today Google can not only search text, images, and even video; it can create them. Imagine overlaying that ability with search across an array of formats and devices. “Show me what a Townsend’s warbler looks like in the tree in front of me.” Or “Use my existing family photos and videos to create a movie trailer of our upcoming vacation to Puerto Rico next year, making sure we visit all the best restaurants and top landmarks.”

“We have primarily done it on the input side,” he says, referring to the ways Google can now search for an image or within a video. “But you can imagine it on the output side too.”

This is the kind of future Pichai says he is excited to bring online. Google has already showed off a bit of what that might look like with NotebookLM, a tool that lets you upload large amounts of text and have it converted into a chatty podcast. He imagines this type of functionality—the ability to take one type of input and convert it into a variety of outputs—transforming the way we interact with information. 

In a demonstration of a tool called Project Astra this summer at its developer conference, Google showed one version of this outcome, where cameras and microphones in phones and smart glasses understand the context all around you—online and off, audible and visual—and have the ability to recall and respond in a variety of ways. Astra can, for example, look at a crude drawing of a Formula One race car and not only identify it, but also explain its various parts and their uses. 

But you can imagine things going a bit further (and they will). Let’s say I want to see a video of how to fix something on my bike. The video doesn’t exist, but the information does. AI-assisted generative search could theoretically find that information somewhere online—in a user manual buried in a company’s website, for example—and create a video to show me exactly how to do what I want, just as it could explain that to me with words today.

These are the kinds of things that start to happen when you put the entire compendium of human knowledge—knowledge that’s previously been captured in silos of language and format; maps and business registrations and product SKUs; audio and video and databases of numbers and old books and images and, really, anything ever published, ever tracked, ever recorded; things happening right now, everywhere—and introduce a model into all that. A model that maybe can’t understand, precisely, but has the ability to put that information together, rearrange it, and spit it back in a variety of different hopefully helpful ways. Ways that a mere index could not.

That’s what we’re on the cusp of, and what we’re starting to see. And as Google rolls this out to a billion people, many of whom will be interacting with a conversational AI for the first time, what will that mean? What will we do differently? It’s all changing so quickly. Hang on, just hang on. 

Small language models: 10 Breakthrough Technologies 2025

WHO

Allen Institute for Artificial Intelligence, Anthropic, Google, Meta, Microsoft, OpenAI

WHEN

Now

Make no mistake: Size matters in the AI world. When OpenAI launched GPT-3 back in 2020, it was the largest language model ever built. The firm showed that supersizing this type of model was enough to send performance through the roof. That kicked off a technology boom that has been sustained by bigger models ever since. As Noam Brown, a research scientist at OpenAI, told an audience at TEDAI San Francisco in October, “The incredible progress in AI over the past five years can be summarized in one word: scale.”

But as the marginal gains for new high-end models trail off, researchers are figuring out how to do more with less. For certain tasks, smaller models that are trained on more focused data sets can now perform just as well as larger ones—if not better. That’s a boon for businesses eager to deploy AI in a handful of specific ways. You don’t need the entire internet in your model if you’re making the same kind of request again and again. 

Most big tech firms now boast fun-size versions of their flagship models for this purpose: OpenAI offers both GPT-4o and GPT-4o mini; Google DeepMind has Gemini Ultra and Gemini Nano; and Anthropic’s Claude 3 comes in three flavors: outsize Opus, midsize Sonnet, and tiny Haiku. Microsoft is pioneering a range of small language models called Phi.

A growing number of smaller companies offer small models as well. The AI startup Writer claims that its latest language model matches the performance of the largest top-tier models on many key metrics despite in some cases having just a 20th as many parameters (the values that get calculated during training and determine how a model behaves). 

Explore the full 2025 list of 10 Breakthrough Technologies.

Smaller models are more efficient, making them quicker to train and run. That’s good news for anyone wanting a more affordable on-ramp. And it could be good for the climate, too: Because smaller models work with a fraction of the computer oomph required by their giant cousins, they burn less energy. 

These small models also travel well: They can run right in our pockets, without needing to send requests to the cloud. Small is the next big thing.

Generative AI search: 10 Breakthrough Technologies 2025

WHO

Apple, Google, Meta, Microsoft, OpenAI, Perplexity

WHEN

Now

Google’s introduction of AI Overviews, powered by its Gemini language model, will alter how billions of people search the internet. And generative search may be the first step toward an AI agent that handles any question you have or task you need done.

Rather than returning a list of links, AI Overviews offer concise answers to your queries. This makes it easier to get quick insights without scrolling and clicking through to multiple sources. After a rocky start with high-profile nonsense results following its US release in May 2024, Google limited its use of answers that draw on user-­generated content or satire and humor sites.   

Explore the full 2025 list of 10 Breakthrough Technologies.

The rise of generative search isn’t limited to Google. Microsoft and OpenAI both rolled out versions in 2024 as well. Meanwhile, in more places, on our computers and other gadgets, AI-assisted searches are now analyzing images, audio, and video to return custom answers to our queries. 

But Google’s global search dominance makes it the most important player, and the company has already rolled out AI Overviews to more than a billion people worldwide. The result is searches that feel more like conversations. Google and OpenAI both report that people interact differently with generative search—they ask longer questions and pose more follow-ups.    

This new application of AI has serious implications for online advertising and (gulp) media. Because these search products often summarize information from online news stories and articles in their responses, concerns abound that generative search results will leave little reason for people to click through to the original sources, depriving those websites of potential ad revenue. A number of publishers and artists have sued over the use of their content to train AI models; now, generative search will be another battleground between media and Big Tech.

Fast-learning robots: 10 Breakthrough Technologies 2025

WHO

Agility, Amazon, Covariant, Robust, Toyota Research Institute

WHEN

Now

Generative AI is causing a paradigm shift in how robots are trained. It’s now clear how we might finally build the sort of truly capable robots that have for decades remained the stuff of science fiction. 

Robotics researchers are no strangers to artificial intelligence—it has for years helped robots detect objects in their path, for example. But a few years ago, roboticists began marveling at the progress being made in large language models. Makers of those models could feed them massive amounts of text—books, poems, manuals—and then fine-tune them to generate text based on prompts. 

Explore the full 2025 list of 10 Breakthrough Technologies.

The idea of doing the same for robotics was tantalizing—but incredibly complicated. It’s one thing to use AI to create sentences on a screen, but another thing entirely to use it to coach a physical robot in how to move about and do useful things.

Now, roboticists have made major breakthroughs in that pursuit. One was figuring out how to combine different sorts of data and then make it all useful and legible to a robot. Take washing dishes as an example. You can collect data from someone washing dishes while wearing sensors. Then you can combine that with teleoperation data from a human doing the same task with robotic arms. On top of all that, you can also scrape the internet for images and videos of people doing dishes.

By merging these data sources properly into a new AI model, it’s possible to train a robot that, though not perfect, has a massive head start over those trained with more manual methods. Seeing so many ways that a single task can be done makes it easier for AI models to improvise, and to surmise what a robot’s next move should be in the real world. 

It’s a breakthrough that’s set to redefine how robots learn. Robots that work in commercial spaces like warehouses are already using such advanced training methods, and the lessons we learn from those experiments could lay the groundwork for smart robots that help out at home. 

The AI Hype Index: Robot pets, simulated humans, and Apple’s AI text summaries

Separating AI reality from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

More than 70 countries went to the polls in 2024. The good news is that this year of global elections turned out to be largely free from any major deepfake campaigns or AI manipulation. Instead we saw lots of AI slop: buff Trump, Elon as ultra-Chad, California as catastrophic wasteland. While some worry that development of large language models is slowing down, you wouldn’t know it from the steady drumbeat of new products, features, and services rolling out from itty-bitty startups and massive incumbents alike. So what’s for real and what’s just a lot of hallucinatory nonsense? 

AI is changing how we study bird migration

A small songbird soars above Ithaca, New York, on a September night. He is one of 4 billion birds, a great annual river of feathered migration across North America. Midair, he lets out what ornithologists call a nocturnal flight call to communicate with his flock. It’s the briefest of signals, barely 50 milliseconds long, emitted in the woods in the middle of the night. But humans have caught it nevertheless, with a microphone topped by a focusing funnel. Moments later, software called BirdVoxDetect, the result of a collaboration between New York University, the Cornell Lab of Ornithology, and École Centrale de Nantes, identifies the bird and classifies it to the species level.

Biologists like Cornell’s Andrew Farnsworth had long dreamed of snooping on birds this way. In a warming world increasingly full of human infrastructure that can be deadly to them, like glass skyscrapers and power lines, migratory birds are facing many existential threats. Scientists rely on a combination of methods to track the timing and location of their migrations, but each has shortcomings. Doppler radar, with the weather filtered out, can detect the total biomass of birds in the air, but it can’t break that total down by species. GPS tags on individual birds and careful observations by citizen-scientist birders help fill in that gap, but tagging birds at scale is an expensive and invasive proposition. And there’s another key problem: Most birds migrate at night, when it’s more difficult to identify them visually and while most birders are in bed. For over a century, acoustic monitoring has hovered tantalizingly out of reach as a method that would solve ornithologists’ woes.

In the late 1800s, scientists realized that migratory birds made species-specific nocturnal flight calls—“acoustic fingerprints.” When microphones became commercially available in the 1950s, scientists began recording birds at night. Farnsworth led some of this acoustic ecology research in the 1990s. But even then it was challenging to spot the short calls, some of which are at the edge of the frequency range humans can hear. Scientists ended up with thousands of tapes they had to scour in real time while looking at spectrograms that visualize audio. Though digital technology made recording easier, the “perpetual problem,” Farnsworth says, “was that it became increasingly easy to collect an enormous amount of audio data, but increasingly difficult to analyze even some of it.”

Then Farnsworth met Juan Pablo Bello, director of NYU’s Music and Audio Research Lab. Fresh off a project using machine learning to identify sources of urban noise pollution in New York City, Bello agreed to take on the problem of nocturnal flight calls. He put together a team including the French machine-listening expert Vincent Lostanlen, and in 2015, the BirdVox project was born to automate the process. “Everyone was like, ‘Eventually, when this nut is cracked, this is going to be a super-rich source of information,’” Farnsworth says. But in the beginning, Lostanlen recalls, “there was not even a hint that this was doable.” It seemed unimaginable that machine learning could approach the listening abilities of experts like Farnsworth.

“Andrew is our hero,” says Bello. “The whole thing that we want to imitate with computers is Andrew.”

They started by training BirdVoxDetect, a neural network, to ignore faults like low buzzes caused by rainwater damage to microphones. Then they trained the system to detect flight calls, which differ between (and even within) species and can easily be confused with the chirp of a car alarm or a spring peeper. The challenge, Lostanlen says, was similar to the one a smart speaker faces when listening for its unique “wake word,” except in this case the distance from the target noise to the microphone is far greater (which means much more background noise to compensate for). And, of course, the scientists couldn’t choose a unique sound like “Alexa” or “Hey Google” for their trigger. “For birds, we don’t really make that choice. Charles Darwin made that choice for us,” he jokes. Luckily, they had a lot of training data to work with—Farnsworth’s team had hand-annotated thousands of hours of recordings collected by the microphones in Ithaca.

With BirdVoxDetect trained to detect flight calls, another difficult task lay ahead: teaching it to classify the detected calls by species, which few expert birders can do by ear. To deal with uncertainty, and because there is not training data for every species, they decided on a hierarchical system. For example, for a given call, BirdVoxDetect might be able to identify the bird’s order and family, even if it’s not sure about the species—just as a birder might at least identify a call as that of a warbler, whether yellow-rumped or chestnut-sided. In training, the neural network was penalized less when it mixed up birds that were closer on the taxonomical tree.  

Last August, capping off eight years of research, the team published a paper detailing BirdVoxDetect’s machine-learning algorithms. They also released the software as a free, open-source product for ornithologists to use and adapt. In a test on a full season of migration recordings totaling 6,671 hours, the neural network detected 233,124 flight calls. In a 2022 study in the Journal of Applied Ecology, the team that tested BirdVoxDetect found acoustic data as effective as radar for estimating total biomass.

BirdVoxDetect works on a subset of North American migratory songbirds. But through “few-shot” learning, it can be trained to detect other, similar birds with just a few training examples. It’s like learning a language similar to one you already speak, Bello says. With cheap microphones, the system could be expanded to places around the world without birders or Doppler radar, even in vastly different recording conditions. “If you go to a bioacoustics conference and you talk to a number of people, they all have different use cases,” says Lostanlen. The next step for bioacoustics, he says, is to create a foundation model, like the ones scientists are working on for natural-language processing and image and video analysis, that would be reconfigurable for any species—even beyond birds. That way, scientists won’t have to build a new BirdVoxDetect for every animal they want to study.

The BirdVox project is now complete, but scientists are already building on its algorithms and approach. Benjamin Van Doren, a migration biologist at the University of Illinois Urbana-Champaign who worked on BirdVox, is using Nighthawk, a new user-friendly neural network based on both BirdVoxDetect and the popular birdsong ID app Merlin, to study birds migrating over Chicago and elsewhere in North and South America. And Dan Mennill, who runs a bioacoustics lab at the University of Windsor, says he’s excited to try Nighthawk on flight calls his team currently hand-­annotates after they’re recorded by microphones on the Canadian side of the Great Lakes. One weakness of acoustic monitoring is that unlike radar, a single microphone can’t detect the altitude of a bird overhead or the direction in which it is moving. Mennill’s lab is experimenting with an array of eight microphones that can triangulate to solve that problem. Sifting through recordings has been slow. But with Nighthawk, the analysis will speed dramatically.

With birds and other migratory animals under threat, Mennill says, BirdVoxDetect came at just the right time. Knowing exactly which birds are flying over in real time can help scientists keep tabs on how species are doing and where they’re going. That can inform practical conservation efforts like “Lights Out” initiatives that encourage skyscrapers to go dark at night to prevent bird collisions. “Bioacoustics is the future of migration research, and we’re really just getting to the stage where we have the right tools,” he says. “This ushers us into a new era.”

Christian Elliott is a science and environmental reporter based in Illinois.  

The 8 worst technology failures of 2024

They say you learn more from failure than success. If so, this is the story for you: MIT Technology Review’s annual roll call of the biggest flops, flimflams, and fiascos in all domains of technology.

Some of the foul-ups were funny, like the “woke” AI which got Google in trouble after it drew Black Nazis. Some caused lawsuits, like a computer error by CrowdStrike that left thousands of Delta passengers stranded. We also reaped failures among startups that raced to expand from 2020 to 2022, a period of ultra-low interest rates. But then the economic winds shifted. Money wasn’t free anymore. The result? Bankruptcy and dissolution for companies whose ambitious technological projects, from vertical farms to carbon credits, hadn’t yet turned a profit and might never do so.

Read on.

Woke AI blunder

ai-generated image of a female pope

GOOGLE GEMINI VIA X.COM/END WOKENESS

People worry about bias creeping into AI. But what if you add bias on purpose? Thanks to Google, we know where that leads: Black Vikings and female popes.

Google’s Gemini AI image feature, launched last February, had been tuned to zealously showcase diversity, damn the history books. Ask Google for a picture of German soldiers from World War II, and it would create a Benetton ad in Wehrmacht uniforms. 

Critics pounced and Google beat an embarrassed retreat. It paused Gemini’s ability to draw people and agreed its well-intentioned effort to be inclusive had “missed the mark.” 

The free version of Gemini still won’t create images of people. But paid versions will. When we asked for an image of 12 CEOs of public biotech companies, the software produced a photographic-quality image of middle-aged white men. Less than ideal. But closer to the truth. 

More: Is Google’s Gemini chatbot woke by accident, or by design? (The Economist), Gemini image generation got it wrong. We’ll do better. (Google)


Boeing Starliner

Boeing CST-100 Starliner

THE BOEING COMPANY VIA NASA

Boeing, we have a problem. And it’s your long-delayed reusable spaceship, the Starliner, which stranded NASA astronauts Sunita “Suni” Williams and  Barry “Butch” Wilmore on the International Space Station.

The June mission was meant to be a quick eight-day round trip to test Starliner before it embarked on longer missions. But, plagued by helium leaks and thruster problems, it had to come back empty. 

Now Butch and Suni won’t return to Earth until 2025, when a craft from Boeing competitor SpaceX is scheduled to bring them home. 

Credit Boeing and NASA with putting safety first. But this wasn’t Boeing’s only malfunction during 2024. The company began the year with a door blowing off one of its planes midflight, faced a worker strike, agreed to a major fine for misleading the government about the safety of its 737 Max airplane (which made our 2019 list of worst technologies), and saw its CEO step down in March.

After the Starliner fiasco, Boeing fired the chief of its space and defense unit. “At this critical juncture, our priority is to restore the trust of our customers and meet the high standards they expect of us to enable their critical missions around the world,” Boeing’s new CEO, Kelly Ortberg, said in a memo.

More: Boeing’s beleaguered space capsule is heading back to Earth without two NASA astronauts (NY Post), Boeing’s space and defense chief exits in new CEO’s first executive move (Reuters), CST-100 Starliner (Boeing)


CrowdStrike outage

MITTR / ENVATO

The motto of the cybersecurity company CrowdStrike is “We stop breaches.” And it’s true: No one can breach your computer if you can’t turn it on.

That’s exactly what happened to many people on July 19, when thousands of Windows computers at airlines, TV stations, and hospitals started displaying the “blue screen of death.” 

The cause wasn’t hackers or ransomware. Instead, those computers were stuck in a boot loop because of a bad update shipped by CrowdStrike itself. CEO George Kurtz jumped on X to say the “issue” had been identified as a “defect” in a single computer file.

So who is liable? CrowdStrike customer Delta Airlines, which canceled 7,000 flights, is suing for $500 million. It alleges that the security firm caused a “global catastrophe” when it took “uncertified and untested shortcuts.” 

CrowdStrike countersued. It says Delta’s management is to blame for its troubles and that the airline is due little more than a refund. 

More: “Crowdstrike is working with customers(George Kurtz), How to fix a Windows PC affected by the global outage (MIT Technology Review), Delta Sues CrowdStrike Over July Operations Meltdown (WSJ)


Vertical farms

a blighted brown leaf of lettuce

MITTR / ENVATO

Grow lettuce in buildings using robots, hydroponics, and LED lights. That’s what Bowery, a “vertical farming” startup, raised over $700 million to do. But in November, Bowery went bust, making it the biggest startup failure of the year, according to the business analytics firm CB Insights. 

Bowery claimed that vertical farms were “100 times more productive” per square foot than traditional farms, since racks of plants could be stacked 40 feet high. In reality, the company’s lettuce was more expensive, and when a stubborn plant infection spread through its East Coast facilities, Bowery had trouble delivering the green stuff at any price.

More: How a leaf-eating pathogen, failed deals brought down Bowery Farming (Pitchbook), Vertical farming “unicorn” Bowery to shut down (Axios)


Exploding pagers

an explosion behind a pager

MITTR / ADOBE STOCK

They beeped, and then they blew up. Across Lebanon, fingers and faces were shredded in what was called Israel’s “surprise opening blow in an all-out war to try to cripple Hezbollah.” 

The deadly attack was diabolically clever. Israel set up shell companies that sold thousands of pagers packed with explosives to the Islamic faction, which was already worried that its phones were being spied on. 

A coup for Israel’s spies. But was it a war crime? A 1996 treaty prohibits intentionally manufacturing “apparently harmless objects” designed to explode. The New York Times says nine-year-old Fatima Abdullah died when her father’s booby-trapped beeper chimed and she raced to take it to him.

More: Israel conducted Lebanon pager attack… (Axios), A 9-Year-Old Girl Killed in Pager Attack Is Mourned in Lebanon (New York Times), Did Israel break international law? (Middle East Eye)


23andMe

The 23 and me logo protruding from a cardboard box of desk items held by an office worker.

MITTR / ADOBE STOCK

The company that pioneered direct-to-consumer gene testing is sinking fast. Its stock price is going toward zero, and a plan to create valuable drugs is kaput after that team got pink slips this November.

23andMe always had a celebrity aura, bathing in good press. Now, though, the press is all bad. It’s a troubled company in the grip of a controlling founder, Anne Wojcicki, after its independent directors resigned en masse this September. Customers are starting to worry about what’s going to happen to their DNA data if 23andMe goes under.

23andMe says it created “the world’s largest crowdsourced platform for genetic research.” That’s true. It just never figured out how to turn a profit. 

More:  23andMe’s fall from $6 billion to nearly $0 (Wall Street Journal), How to…delete your 23andMe data (MIT Technology Review), 23andMe Financial Report, November 2024 (23andMe)


AI slop

ai-generated image of a representation of Jesus with outspread arms and body composed of shrimp parts

AUTHOR UNKNOWN VIA WIKIMEDIA COMMONS

Slop is the scraps and leftovers that pigs eat. “AI slop” is what you and I are increasingly consuming online now that people are flooding the internet with computer-generated text and pictures.  

AI slop is “dubious,” says the New York Times, and “dadaist,” according to Wired. It’s frequently weird, like Shrimp Jesus (don’t ask if you don’t know), or deceptive, like the picture of a shivering girl in a rowboat, supposedly showing the US government’s poor response to Hurricane Helene.

AI slop is often entertaining. AI slop is usually a waste of your time. AI slop is not fact-checked. AI slop exists mostly to get clicks. AI slop is that blue-check account on X posting 10-part threads on how great AI is—threads that were written by AI. 

Most of all, AI slop is very, very common. This year, researchers claimed that about half the long posts on LinkedIn and Medium were partly AI-generated.

More: First came ‘Spam.’ Now, With A.I., We’ve got ‘Slop’ (New York Times), AI Slop Is Flooding Medium (Wired)


Voluntary carbon markets

a spindly tree with a cloud of emissions hovering around it

MITTR / ENVATO

Your business creates emissions that contribute to global warming. So why not pay to have some trees planted or buy a more efficient cookstove for someone in Central America? Then you could reach net-zero emissions and help save the planet.

Neat idea, but good intentions aren’t enough. This year the carbon marketplace Nori shut down, and so did Running Tide, a firm trying to sink carbon into the ocean. “The problem is the voluntary carbon market is voluntary,” Running Tide’s CEO wrote in a farewell post, citing a lack of demand.

While companies like to blame low demand, it’s not the only issue. Sketchy technology, questionable credits, and make-believe offsets have created a credibility problem in carbon markets. In October, US prosecutors charged two men in a $100 million scheme involving the sale of nonexistent emissions savings. 

More: The growing signs of trouble for global carbon markets (MIT Technology Review), Running Tide’s ill-fated adventure in ocean carbon removal (Canary Media), Ex-carbon offsetting boss charged in New York with multimillion-dollar fraud (The Guardian) 

Introducing: The AI Hype Index

There’s no denying that the AI industry moves fast. Each week brings a bold new announcement, product release, or lofty claim that pushes the bounds of what we previously thought was possible. Separating AI fact from hyped-up fiction isn’t always easy. That’s why we’ve created the AI Hype Index—a simple, at-a-glance summary of everything you need to know about the state of the industry.

Our first index is a white-knuckle ride that ranges from the outright depressing—rising numbers of sexually explicit deepfakes; the complete lack of rules governing Elon Musk’s Grok AI model—to the bizarre, including AI-powered dating wingmen and startup Friend’s dorky intelligent-jewelry line. 

But it’s not all a horror show—at least not entirely. AI is being used for more wholesome endeavors, too, like simulating the classic video game Doom without a traditional gaming engine. Elsewhere, AI models have gotten so good at table tennis they can now beat beginner-level human opponents. They’re also giving us essential insight into the secret names monkeys use to communicate with one another. Because while AI may be a lot of things, it’s never boring. 

Sorry, AI won’t “fix” climate change

In an essay last week, Sam Altman, the CEO of OpenAI, argued that the accelerating capabilities of AI will usher in an idyllic “Intelligence Age,” unleashing “unimaginable” prosperity and “astounding triumphs” like “fixing the climate.”

It’s a promise that no one is in a position to make—and one that, when it comes to the topic of climate change, fundamentally misunderstands the nature of the problem. 

More maddening, the argument suggests that the technology’s massive consumption of electricity today doesn’t much matter, since it will allow us to generate abundant clean power in the future. That casually waves away growing concerns about a technology that’s already accelerating proposals for natural-gas plants and diverting major tech companies from their corporate climate targets

By all accounts, AI’s energy demands will only continue to increase, even as the world scrambles to build larger, cleaner power systems to meet the increasing needs of EV charging, green hydrogen production, heat pumps, and other low-carbon technologies. Altman himself reportedly just met with White House officials to make the case for building absolutely massive AI data centers, which could require the equivalent of five dedicated nuclear reactors to run.  

It’s a bedrock perspective of MIT Technology Review that technological advances can deliver real benefits and accelerate societal progress in meaningful ways. But for decades researchers and companies have oversold the potential of AI to deliver blockbuster medicines, achieve super intelligence, and free humanity from the need to work. To be fair, there have been significant advances, but nothing on the order of what’s been hyped.

Given that track record, I’d argue you need to develop a tool that does more than plagiarize journalism and help students cheat on homework before you can credibly assert that it will solve humanity’s thorniest problems, whether the target is rampant poverty or global warming.

To be sure, AI may help the world address the rising dangers of climate change. We have begun to see research groups and startups harness the technology to try to manage power grids more effectively, put out wildfires faster, and discover materials that could create cheaper, better batteries or solar panels.

All those advances are still relatively incremental. But let’s say AI does bring about an energy miracle. Perhaps its pattern-recognition prowess will deliver the key insight that finally cracks fusion—a technology that Altman is betting on heavily as an investor.

That would be fantastic. But technological advances are just the start—necessary but far from sufficient to eliminate the world’s climate emissions.

How do I know?

Because between nuclear fission plants, solar farms, wind turbines, and batteries, we already have every technology we need to clean up the power sector. This should be the low-hanging fruit of the energy transition. Yet in the largest economy on Earth, fossil fuels still generate 60% of the electricity. The fact that so much of our power still comes from coal, petroleum, and natural gas is a regulatory failure as much as a technological one. 

“As long as we effectively subsidize fossil fuels by allowing them to use the atmosphere as a waste dump, we are not allowing clean energy to compete on a level playing field,” Zeke Hausfather, a climate scientist at the independent research organization Berkeley Earth, wrote on X in a response to Altman’s post. “We need policy changes, not just tech breakthroughs, to meet our climate goals.”

That’s not to say there aren’t big technical problems we still need to solve. Just look at the continuing struggles to develop clean, cost-competitive ways of fertilizing crops or flying planes. But the fundamental challenges of climate change are sunk costs, development obstacles, and inertia.

We’ve built and paid for a global economy that spews out planet-warming gases, investing trillions of dollars in power plants, steel mills, factories, jets, boilers, water heaters, stoves, and SUVs that run on fossil fuels. And few people or companies will happily write off those investments so long as those products and plants still work. AI can’t remedy all that just by generating better ideas. 

To raze and replace the machinery of every industry around the world at the speed now required, we will need increasingly aggressive climate policies that incentivize or force everyone to switch to cleaner plants, products, and practices.

But with every proposal for a stricter law or some big new wind or solar farm, forces will push back, because the plan will hit someone’s wallet, block someone’s views, or threaten the areas or traditions someone cherishes. Climate change is an infrastructure problem, and building infrastructure is a messy human endeavor. 

Tech advances can ease some of these issues. Cheaper, better alternatives to legacy industries make hard choices more politically palatable. But there are no improvements to AI algorithms or underlying data sets that solve the challenge of NIMBYism, the conflict between human interests, or the desire to breathe the fresh air in an unsullied wilderness. 

To assert that a single technology—that just happens to be the one your company develops—can miraculously untangle these intractable conflicts of human society is at best self-serving, if not a little naïve. And it’s a troubling idea to proclaim at a point when the growth of that very technology is threatening to undermine the meager progress the world has begun to make on climate change.

As it is, the one thing we can state confidently about generative AI is that it’s making the hardest problem we’ve ever had to solve that much harder to solve.